1
|
Hou G, Li J, Liu W, Wei J, Xin Y, Jiang X. Mesenchymal stem cells in radiation-induced lung injury: From mechanisms to therapeutic potential. Front Cell Dev Biol 2022; 10:1100305. [PMID: 36578783 PMCID: PMC9790971 DOI: 10.3389/fcell.2022.1100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) is an effective treatment option for multiple thoracic malignant tumors, including lung cancers, thymic cancers, and tracheal cancers. Radiation-induced lung injury (RILI) is a serious complication of radiotherapy. Radiation causes damage to the pulmonary cells and tissues. Multiple factors contribute to the progression of Radiation-induced lung injury, including genetic alterations, oxidative stress, and inflammatory responses. Especially, radiation sources contribute to oxidative stress occurrence by direct excitation and ionization of water molecules, which leads to the decomposition of water molecules and the generation of reactive oxygen species (ROS), reactive nitrogen species (RNS). Subsequently, reactive oxygen species and reactive nitrogen species overproduction can induce oxidative DNA damage. Immune cells and multiple signaling molecules play a major role in the entire process. Mesenchymal stem cells (MSCs) are pluripotent stem cells with multiple differentiation potentials, which are under investigation to treat radiation-induced lung injury. Mesenchymal stem cells can protect normal pulmonary cells from injury by targeting multiple signaling molecules to regulate immune cells and to control balance between antioxidants and prooxidants, thereby inhibiting inflammation and fibrosis. Genetically modified mesenchymal stem cells can improve the natural function of mesenchymal stem cells, including cellular survival, tissue regeneration, and homing. These reprogrammed mesenchymal stem cells can produce the desired products, including cytokines, receptors, and enzymes, which can contribute to further advances in the therapeutic application of mesenchymal stem cells. Here, we review the molecular mechanisms of radiation-induced lung injury and discuss the potential of Mesenchymal stem cells for the prevention and treatment of radiation-induced lung injury. Clarification of these key issues will make mesenchymal stem cells a more fantastic novel therapeutic strategy for radiation-induced lung injury in clinics, and the readers can have a comprehensive understanding in this fields.
Collapse
Affiliation(s)
- Guowen Hou
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Jinjie Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Wenyun Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Jinlong Wei
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,*Correspondence: Ying Xin, ; Xin Jiang,
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China,*Correspondence: Ying Xin, ; Xin Jiang,
| |
Collapse
|
2
|
van Geffen C, Deißler A, Quante M, Renz H, Hartl D, Kolahian S. Regulatory Immune Cells in Idiopathic Pulmonary Fibrosis: Friends or Foes? Front Immunol 2021; 12:663203. [PMID: 33995390 PMCID: PMC8120991 DOI: 10.3389/fimmu.2021.663203] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
The immune system is receiving increasing attention for interstitial lung diseases, as knowledge on its role in fibrosis development and response to therapies is expanding. Uncontrolled immune responses and unbalanced injury-inflammation-repair processes drive the initiation and progression of idiopathic pulmonary fibrosis. The regulatory immune system plays important roles in controlling pathogenic immune responses, regulating inflammation and modulating the transition of inflammation to fibrosis. This review aims to summarize and critically discuss the current knowledge on the potential role of regulatory immune cells, including mesenchymal stromal/stem cells, regulatory T cells, regulatory B cells, macrophages, dendritic cells and myeloid-derived suppressor cells in idiopathic pulmonary fibrosis. Furthermore, we review the emerging role of regulatory immune cells in anti-fibrotic therapy and lung transplantation. A comprehensive understanding of immune regulation could pave the way towards new therapeutic or preventive approaches in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Chiel van Geffen
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany
| | - Astrid Deißler
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany.,Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Markus Quante
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany.,Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Dominik Hartl
- Department of Pediatrics I, Eberhard Karls University of Tübingen, Tübingen, Germany.,Dominik Hartl, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Saeed Kolahian
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany.,Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany.,Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
3
|
Mesenchymal stromal cells for the treatment of ocular autoimmune diseases. Prog Retin Eye Res 2021; 85:100967. [PMID: 33775824 DOI: 10.1016/j.preteyeres.2021.100967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/22/2022]
Abstract
Mesenchymal stromal cells, commonly referred to as MSCs, have emerged as a promising cell-based therapy for a range of autoimmune diseases thanks to several therapeutic advantages. Key among these are: 1) the ability to modulate innate and adaptive immune responses and to promote tissue regeneration, 2) the ease of their isolation from readily accessible tissues and expansion at scale in culture, 3) their low immunogenicity enabling use as an allogeneic "off-the-shelf" product, and 4) MSC therapy's safety and feasibility in humans, as demonstrated in more than one thousand clinical trials. Evidence from preclinical studies and early clinical trials indicate the therapeutic potential of MSCs and their derivatives for efficacy in ocular autoimmune diseases such as autoimmune uveoretinitis and Sjögren's syndrome-related dry eye disease. In this review, we provide an overview of the current understanding of the therapeutic mechanisms of MSCs, and summarize the results from preclinical and clinical studies that have used MSCs or their derivatives for the treatment of ocular autoimmune diseases. We also discuss the challenges to the successful clinical application of MSC therapy, and suggest strategies for overcoming them.
Collapse
|
4
|
Lei L, Guo Y, Lin J, Lin X, He S, Qin Z, Lin Q. Inhibition of endotoxin-induced acute lung injury in rats by bone marrow-derived mesenchymal stem cells: Role of Nrf2/HO-1 signal axis in inhibition of NLRP3 activation. Biochem Biophys Res Commun 2021; 551:7-13. [PMID: 33713981 DOI: 10.1016/j.bbrc.2021.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/02/2021] [Indexed: 12/29/2022]
Abstract
Both the Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) antioxidant pathway and Nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) pathway are considered essential for the development of acute lung injury (ALI)/ARDS induced by sepsis. Our aim was to study the role of Nrf2/HO-1 pathway on activation of the NLRP3 in the protective effect of marrow mesenchymal stem cells (BMSCs) on LPS-induced ALI. We found that BMSCs ameliorated ALI as evidenced by 1) decreased histopathological injury, wet/dry ratio, and protein permeability index in lung; 2) decreased reactive oxygen species (ROS), malondialdehyde (MDA), and protein carbonyl content and restored the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in lung tissue; 3) reduced LPS-induced increase in inflammatory cell count and promotion of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels in bronchoalveolar lavage fluid (BALF); 4) improvement in the four-day survival rate of animals; and 5) enhanced expression of Nrf2 and HO-1 and decreased expression of NOD-like receptor protein 3(NLRP3) and caspase-1 (p20) in lung tissue. Of note, Nrf2 transcription factor inhibitor brusatol and HO-1 inhibitor tin protoporphyrin IX (SnppIX) reversed BMSCs induced down-expression of NLRP3 and caspase-1 (p20), and inhibited the protective effects of BMSCs. These findings demonstrated that the Nrf2-mediated HO-1 signaling pathway plays a critical role in the protective effects of BMSCs on LPS-induced ALI. BMSCs may play an anti-inflammatory effect partly through the Nrf2/HO-1-dependent NLRP3 pathway.
Collapse
Affiliation(s)
- Lihua Lei
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Yiqing Guo
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Jun Lin
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Xiaohua Lin
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Shiling He
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Zaisheng Qin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, China.
| | - Qun Lin
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China; Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
| |
Collapse
|
5
|
Chen XY, Chen YY, Lin W, Chien CW, Chen CH, Wen YC, Hsiao TC, Chuang HC. Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells on the Acute Cigarette Smoke-Induced Pulmonary Inflammation Model. Front Physiol 2020; 11:962. [PMID: 32903481 PMCID: PMC7434987 DOI: 10.3389/fphys.2020.00962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/15/2020] [Indexed: 12/27/2022] Open
Abstract
Cigarette smoke (CS) has been reported to induce oxidative stress and inflammatory process in the lungs. However, the role of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in the regulation of pulmonary inflammation remains unclear. The objective of this study is to investigate the effects of hUC-MSCs on lung inflammation in the acute CS-induced pulmonary inflammation animal model. Eight-week-old male C57BL/6 mice were intravenously administered 3 × 106, 1 × 107, and 3 × 107 cells/kg of hUC-MSCs as well as normal saline alone (control) after 3 days of CS exposure. Mice exposed to high-efficiency particulate air (HEPA)-filtered room air served as the CS control group. High-dose (3 × 107 cells/kg) hUC-MSC administration significantly decreased tumor necrosis factor (TNF)-α in the bronchoalveolar lavage fluid (BALF) of CS-exposed mice (p < 0.05). The chemokine (CXC motif) ligand 1/keratinocyte chemoattractant (CXCL1/KC) in BALF were significantly reduced by low-dose (3 × 106 cells/kg) and high-dose (3 × 107 cells/kg) hUC-MSC (p < 0.05). Medium-dose hUC-MSC administration decreased interleukin (IL)-1β in lung of mice, and TNF-α and caspase-3 were decreased in the lung of CS-exposed mice by medium- and high-dose MSC (p < 0.05). Low-dose hUC-MSCs significantly elevated serum CXCL1/KC and IL-1β in CS-exposed mice (p < 0.05). Our results suggest that high-dose hUC-MSCs reduced pulmonary inflammation and had antiapoptotic effects in acute pulmonary inflammation.
Collapse
Affiliation(s)
- Xiao-Yue Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ying Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Willie Lin
- Meridigen Biotech Co. Ltd., Taipei, Taiwan
| | | | | | | | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
6
|
Zhang X, Zou Y, Liu Y, Cao Y, Zhu J, Zhang J, Chen X, Zhang R, Li J. Inhibition of PIM1 kinase attenuates bleomycin-induced pulmonary fibrosis in mice by modulating the ZEB1/E-cadherin pathway in alveolar epithelial cells. Mol Immunol 2020; 125:15-22. [PMID: 32619930 DOI: 10.1016/j.molimm.2020.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/28/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
Abstract
PIM1 is serine/threonine protein kinase that is involved in numerous biological processes. Pulmonary fibrosis (PF) is a chronic pathological result of the dysfunctional repair of lung injury without effective therapeutic treatments. In the current study, we investigated whether PIM1 inhibition would improve bleomycin (BLM)-induced pulmonary fibrosis. In a BLM-induced pulmonary fibrosis model, PIM1 was persistently upregulated in fibrotic lung tissues. Furthermore, PIM1 inhibition by the PIM1-specific inhibitor SMI-4a showed protective effects against BLM-induced mortality. Furthermore, SMI-4a suppressed hydroxyproline deposition and reversed epithelial-mesenchymal transition (EMT) formation, which was characterized by E-cadherin and α-SMA expression in vivo. More importantly, the ZEB1/E-cadherin pathway was found to be closely associated with BLM-induced pulmonary fibrosis. After the in vitro treatment of A549 cells, PIM1 regulated E-cadherin expression by dependently modulating the activity of the transcription factor ZEB1. These findings were verified in vivo after SMI-4a administration. Finally, an shPIM1-expressing adeno-associated virus was delivered via intratracheal injection to induce a long-term PIM1 deficiency in the alveolar epithelium. AAV-mediated PIM1 knockdown in the lung tissues alleviated BLM-induced pulmonary fibrosis, as indicated by collagen accumulation reduction, pulmonary histopathological mitigation and EMT reversion. These findings enhance our understanding of the roles of PIM1 in BLM-induced pulmonary fibrosis and suggest PIM1 inhibition as a potential therapeutic strategy in chronic pulmonary injuries.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Anesthesiology, Weifang Medical University, Weifang, China; Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Zou
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqi Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yumeng Cao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiali Zhu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhai Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Zhang
- Department of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Jinbao Li
- Department of Anesthesiology, Weifang Medical University, Weifang, China; Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Qi J, Tang X, Li W, Chen W, Yao G, Sun L. Mesenchymal stem cells inhibited the differentiation of MDSCs via COX2/PGE2 in experimental sialadenitis. Stem Cell Res Ther 2020; 11:325. [PMID: 32727564 PMCID: PMC7391592 DOI: 10.1186/s13287-020-01837-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/25/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) can regulate innate and adaptive immune systems through interacting with immune cells directly and secreting multiple soluble factors. Due to their immunosuppressive properties, MSC transplantation has been applied to treat many clinical and experimental autoimmune diseases. However, the therapeutic effects and mechanisms by which MSCs regulate myeloid cells in Sjögren’s syndrome (SS) still remain elusive. Methods The number and immune-suppressive activity of myeloid-derived suppressor cells (MDSCs), polymorphonuclear MDSCs (PMN-MDSCs), and monocytic MDSCs (M-MDSCs) were determined in non-obese diabetic (NOD) mice with sialadenitis and in NOD mice with human umbilical cord-derived MSC (UC-MSC) transplantation. Bone marrow cells were cultured with MSC-conditioned medium (MSC-CM) for 4 days. The number and immune-suppressive gene of MDSCs were detected by flow cytometry or qRT-PCR. Results The results showed that the number of MDSCs and PMN-MDSCs was higher and M-MDSCs were lower in NOD mice with sialadenitis. UC-MSCs ameliorated SS-like syndrome by reducing MDSCs, PMN-MDSCs, and M-MDSCs and promoting the suppressive ability of MDSCs significantly in NOD mice. UC-MSCs inhibited the differentiation of MDSCs. In addition, UC-MSCs enhanced the suppressive ability of MDSCs in vitro. Mechanistically, MSCs inhibited the differentiation of MDSCs and PMN-MDSCs via secreting prostaglandin E2 (PGE2) and inhibited the differentiation of M-MDSCs through secreting interferon-β (IFN-β). Conclusions Our findings suggested that MSCs alleviated SS-like symptoms by suppressing the aberrant accumulation and improving the suppressive function of MDSCs in NOD mice with sialadenitis.
Collapse
Affiliation(s)
- Jingjing Qi
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, People's Republic of China.,Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, People's Republic of China
| | - Wenchao Li
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, People's Republic of China
| | - Weiwei Chen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, People's Republic of China
| | - Genhong Yao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, People's Republic of China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, People's Republic of China.
| |
Collapse
|
8
|
Lopez-Santalla M, Hervas-Salcedo R, Fernandez-Garcia M, Bueren JA, Garin MI. Cell Therapy With Mesenchymal Stem Cells Induces an Innate Immune Memory Response That Attenuates Experimental Colitis in the Long Term. J Crohns Colitis 2020; 14:1424-1435. [PMID: 32318720 PMCID: PMC7533896 DOI: 10.1093/ecco-jcc/jjaa079] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Mesenchymal stem cells [MSCs] are used in preclinical and clinical studies for treatment of immune-mediated disorders, thanks to their immunomodulatory properties. Cell therapy with MSCs induces multiple effects in the immune system which ultimately lead to increase in the number of immune cells with regulatory phenotype. In this study, we investigated whether the beneficial effects of MSC therapy are maintained in the long term in a clinically relevant mouse model of colitis. METHODS A single dose of adipose-derived MSCs [aMSCs] was infused into dextran sulphate sodium [DSS]-induced colitic mice during the induction phase of the disease. Following a latency period of 12 weeks, mice were re-challenged with a second 7-day cycle of DSS. RESULTS DSS-induced colitic mice treated with aMSCs showed significant reduction in their colitic disease activity index during the second DSS challenge when compared with non-aMSC treated DSS-induced colitic mice. Strikingly, the long-term protection induced by aMSC therapy was also observed in Rag-1-/- mice where no adaptive immune memory cell responses take place. Increased percentages of Ly6G+CD11b+ myeloid cells were observed 12 weeks after the first inflammatory challenge in the peritoneal cavity, spleen, and bone marrow of DSS-induced colitic mice that were infused with aMSCs. Interestingly, upon re-challenge with DSS, these animals showed a concomitant increase in the regulatory/inflammatory macrophage ratio in the colon lamina propria. CONCLUSIONS Our findings demonstrate for the first time that MSC therapy can imprint an innate immune memory-like response in mice which confers sustained protection against acute inflammation in the long term.
Collapse
Affiliation(s)
- Mercedes Lopez-Santalla
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas [CIEMAT] and Centro de Investigación Biomédica en Red de Enfermedades Raras [CIBER-ER], Madrid, Spain,Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz [IIS-FJD/UAM], Madrid, Spain
| | - Rosario Hervas-Salcedo
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas [CIEMAT] and Centro de Investigación Biomédica en Red de Enfermedades Raras [CIBER-ER], Madrid, Spain,Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz [IIS-FJD/UAM], Madrid, Spain
| | - Maria Fernandez-Garcia
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas [CIEMAT] and Centro de Investigación Biomédica en Red de Enfermedades Raras [CIBER-ER], Madrid, Spain,Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz [IIS-FJD/UAM], Madrid, Spain
| | - Juan Antonio Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas [CIEMAT] and Centro de Investigación Biomédica en Red de Enfermedades Raras [CIBER-ER], Madrid, Spain,Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz [IIS-FJD/UAM], Madrid, Spain
| | - Marina Inmaculada Garin
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas [CIEMAT] and Centro de Investigación Biomédica en Red de Enfermedades Raras [CIBER-ER], Madrid, Spain,Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz [IIS-FJD/UAM], Madrid, Spain,Corresponding author: Marina Inmaculada Garina, PhD, Building 70, Floor 0, Avda, Complutense, 40, 28040 Madrid, Spain.
| |
Collapse
|
9
|
Carpenter R, Oh HJ, Ham IH, Kim D, Hur H, Lee J. Scaffold-Assisted Ectopic Transplantation of Internal Organs and Patient-Derived Tumors. ACS Biomater Sci Eng 2019; 5:6667-6678. [PMID: 33423485 DOI: 10.1021/acsbiomaterials.9b00978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Xenotransplantation of human tissues into immunodeficient mice has emerged as an invaluable preclinical model to study human biology and disease progression and predict clinical response. The most common anatomical site for tissue transplantation is the subcutaneous pocket due to simple surgical procedures and accessibility for gross monitoring and advanced imaging modalities. However, subcutaneously implanted tissues initially experience a sharp change in oxygen and nutrient supply and increased mechanical deformation. During this acute phase of tissue integration to the host vasculature, substantial cell death and tissue fibrosis occur limiting engraftment efficiency. Previously, we demonstrated that the implantation of inverted colloidal crystal hydrogel scaffolds triggers proangiogenic and immunomodulatory functions without characteristic foreign body encapsulation. In this study, we examine the use of this unique host response to improve the ectopic transplantation of tissues to the subcutaneous site. Scaffold-assisted tissues preserved morphological features and blood vessel density compared to native tissues, whereas scaffold-free tissues collapsed and were less vascularized. Notably, the supporting biomaterial scaffold modulated the foreign body response to reduce the localization of Ly6G+ cells within the transplanted tissues. Cotransplantation of patient-derived gastric cancer with a scaffold resulted in a comparable level of engraftment to conventional methods; however, detailed immunohistological characterization revealed significantly better retention of proliferative cells (Ki67+) and human immune cells (CD45+) by the end of the study. We envision that leveraging the immunomodulatory properties of biomaterial interfaces can be an attractive strategy to improve the functional engraftment of xenotransplants and accelerate individualized diagnostics and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
| | - Hye Jeong Oh
- Department of Surgery, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea
| | - In-Hye Ham
- Department of Surgery, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea
| | - Daeyoung Kim
- Department of Mathematics & Statistics, University of Massachusetts, Amherst, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Hoon Hur
- Department of Surgery, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea
| | | |
Collapse
|
10
|
Oliveira AC, Fu C, Lu Y, Williams MA, Pi L, Brantly ML, Ventetuolo CE, Raizada MK, Mehrad B, Scott EW, Bryant AJ. Chemokine signaling axis between endothelial and myeloid cells regulates development of pulmonary hypertension associated with pulmonary fibrosis and hypoxia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L434-L444. [PMID: 31364370 PMCID: PMC6842914 DOI: 10.1152/ajplung.00156.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/11/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
Pulmonary hypertension complicates the care of many patients with chronic lung diseases (defined as Group 3 pulmonary hypertension), yet the mechanisms that mediate the development of pulmonary vascular disease are not clearly defined. Despite being the most prevalent form of pulmonary hypertension, to date there is no approved treatment for patients with disease. Myeloid-derived suppressor cells (MDSCs) and endothelial cells in the lung express the chemokine receptor CXCR2, implicated in the evolution of both neoplastic and pulmonary vascular remodeling. However, precise cellular contribution to lung disease is unknown. Therefore, we used mice with tissue-specific deletion of CXCR2 to investigate the role of this receptor in Group 3 pulmonary hypertension. Deletion of CXCR2 in myeloid cells attenuated the recruitment of polymorphonuclear MDSCs to the lungs, inhibited vascular remodeling, and protected against pulmonary hypertension. Conversely, loss of CXCR2 in endothelial cells resulted in worsened vascular remodeling, associated with increased MDSC migratory capacity attributable to increased ligand availability, consistent with analyzed patient sample data. Taken together, these data suggest that CXCR2 regulates MDSC activation, informing potential therapeutic application of MDSC-targeted treatments.
Collapse
Affiliation(s)
- Aline C Oliveira
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida
| | - Chunhua Fu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Yuanqing Lu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Mason A Williams
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Liya Pi
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Mark L Brantly
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Corey E Ventetuolo
- Division of Pulmonary, Critical Care and Sleep Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida
| | - Borna Mehrad
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Edward W Scott
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida
| | - Andrew J Bryant
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida
| |
Collapse
|