1
|
Ghobadi F, Saadatmand M, Simorgh S, Brouki Milan P. Microfluidic 3D cell culture: potential application of collagen hydrogels with an optimal dose of bioactive glasses. Sci Rep 2025; 15:569. [PMID: 39747624 PMCID: PMC11696724 DOI: 10.1038/s41598-024-84346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
We engineered a microfluidic platform to study the effects of bioactive glass nanoparticles (BGNs) on cell viability under static culture. We incorporated different concentrations of BGNs (1%, 2%, and 3% w/v) in collagen hydrogel (with a concentration of 3.0 mg/mL). The microfluidic chip's dimensions were optimized through fluid flow and mass transfer simulations. Collagen type I extracted from rat tail tendons was used as the main material, and BGNs synthesized by the sol-gel method were used to enhance the mechanical properties of the hydrogel. The extracted collagen was characterized using FTIR and SDS-PAGE, and BGNs were analyzed using XRD, FTIR, DLS, and FE-SEM/EDX. The structure of the collagen-BGNs hydrogels was examined using SEM, and their mechanical properties were determined using rheological analysis. The cytotoxicity of BGNs was assessed using the MTT assay, and the viability of fibroblast (L929) cells encapsulated in the collagen-BGNs hydrogel inside the microfluidic device was assessed using a live/dead assay. Based on all these test results, the L929 cells showed high cell viability in vitro and promising microenvironment mimicry in a microfluidic device. Collagen3-BGNs3 (Collagen 3 mg/mL + BGNs 3% (w/v)) was chosen as the most suitable sample for further research on a microfluidic platform.
Collapse
Affiliation(s)
- Faezeh Ghobadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Sara Simorgh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies inMedicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies inMedicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Ma J, Fan H, Geng H. Distinct and overlapping functions of YAP and TAZ in tooth development and periodontal homeostasis. Front Cell Dev Biol 2024; 11:1281250. [PMID: 38259513 PMCID: PMC10800899 DOI: 10.3389/fcell.2023.1281250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Orthodontic tooth movement (OTM) involves mechanical-biochemical signal transduction, which results in tissue remodeling of the tooth-periodontium complex and the movement of orthodontic teeth. The dynamic regulation of osteogenesis and osteoclastogenesis serves as the biological basis for remodeling of the periodontium, and more importantly, the prerequisite for establishing periodontal homeostasis. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are key effectors of the Hippo signaling pathway, which actively respond to mechanical stimuli during tooth movement. Specifically, they participate in translating mechanical into biochemical signals, thereby regulating periodontal homeostasis, periodontal remodeling, and tooth development. YAP and TAZ have widely been considered as key factors to prevent dental dysplasia, accelerate orthodontic tooth movement, and shorten treatment time. In this review, we summarize the functions of YAP and TAZ in regulating tooth development and periodontal remodeling, with the aim to gain a better understanding of their mechanisms of action and provide insights into maintaining proper tooth development and establishing a healthy periodontal and alveolar bone environment. Our findings offer novel perspectives and directions for targeted clinical treatments. Moreover, considering the similarities and differences in the development, structure, and physiology between YAP and TAZ, these molecules may exhibit functional variations in specific regulatory processes. Hence, we pay special attention to their distinct roles in specific regulatory functions to gain a comprehensive and profound understanding of their contributions.
Collapse
Affiliation(s)
- Jing Ma
- Department of Oral Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Haixia Fan
- Department of Oral Medicine, Jining Medical University, Jining, Shandong, China
| | - Haixia Geng
- Department of Orthodontics, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
3
|
Yamaguchi H, Chang LC, Chang OSS, Chen YF, Hsiao YC, Wu CS, Hung MC. MRCK as a Potential Target for Claudin-Low Subtype of Breast Cancer. Int J Biol Sci 2024; 20:1-14. [PMID: 38164185 PMCID: PMC10750295 DOI: 10.7150/ijbs.88285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/09/2023] [Indexed: 01/03/2024] Open
Abstract
To find new molecular targets for triple negative breast cancer (TNBC), we analyzed a large-scale drug screening dataset based on breast cancer subtypes. We discovered that BDP-9066, a specific MRCK inhibitor (MRCKi), may be an effective drug against TNBC. After confirming the efficacy and specificity of BDP-9066 against TNBC in vitro and in vivo, we further analyzed the underlying mechanism of specific activity of BDP-9066 against TNBC. Comparing the transcriptome of BDP-9066-sensitive and -resistant cells, the activation of the focal adhesion and YAP/TAZ pathway were found to play an important role in the sensitive cells. Furthermore, YAP/TAZ is indeed repressed by BDP-9066 in the sensitive cells, and active form of YAP suppresses the effects of BDP-9066. YAP/TAZ expression and activity are high in TNBC, especially the Claudin-low subtype, consistent with the expression of focal adhesion-related genes. Interestingly, NF-κB functions downstream of YAP/TAZ in TNBC cells and is suppressed by BDP-9066. Furthermore, the PI3 kinase pathway adversely affected the effects of BDP-9066 and that alpelisib, a PI3 kinase inhibitor, synergistically increased the effects of BDP-9066, in PIK3CA mutant TNBC cells. Taken together, we have shown for the first time that MRCKi can be new drugs against TNBC, particularly the Claudin-low subtype.
Collapse
Affiliation(s)
- Hirohito Yamaguchi
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 406040, Taiwan R.O.C
- Center for Molecular Medicine, China Medical University Hospital, Taichung City 40402, Taiwan R.O.C
- Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan R.O.C
| | - Ling-Chu Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung City 40402, Taiwan R.O.C
- Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan R.O.C
| | - Olin Shih-Shin Chang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Bristol-Myers Squibb, Redwood City, CA 94063, USA
| | - Yu-Fu Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 406040, Taiwan R.O.C
| | - Yu-Chun Hsiao
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 406040, Taiwan R.O.C
- Center for Molecular Medicine, China Medical University Hospital, Taichung City 40402, Taiwan R.O.C
- Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan R.O.C
| | - Chen-Shiou Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 406040, Taiwan R.O.C
- Center for Molecular Medicine, China Medical University Hospital, Taichung City 40402, Taiwan R.O.C
- Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan R.O.C
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 406040, Taiwan R.O.C
- Center for Molecular Medicine, China Medical University Hospital, Taichung City 40402, Taiwan R.O.C
- Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan R.O.C
| |
Collapse
|
4
|
Yoshii H, Kajiya M, Yoshino M, Morimoto S, Horikoshi S, Tari M, Motoike S, Iwata T, Ouhara K, Ando T, Yoshimoto T, Shintani T, Mizuno N. Mechanosignaling YAP/TAZ-TEAD Axis Regulates the Immunomodulatory Properties of Mesenchymal Stem Cells. Stem Cell Rev Rep 2024; 20:347-361. [PMID: 37917410 DOI: 10.1007/s12015-023-10646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Mesenchymal stem cells (MSCs) have gained significant attention in cell therapies due to their multipotency and immunomodulatory capacities. The transcriptional co-activators YAP/TAZ, central to the mechanotransduction system in MSCs, dominantly direct MSCs lineage commitment. However, their role in immunomodulation remains elusive. Accordingly, this present study aimed to investigate the role of mechanotransducer YAP/TAZ and their binding target transcriptional factor, TEAD, in the immunomodulatory capacities of human bone marrow-derived MSCs. Reducing YAP/TAZ activity by altering the matrix stiffness, disrupting the F-actin integrity with chemical inhibitors, or using siRNAs increased the expression of immunomodulatory genes, such as TSG-6 and IDO, upon TNF-α stimulation. Similarly, transfection of TEAD siRNA also increased the immunomodulatory capacities in MSCs. RNA-seq analysis and inhibition assays demonstrated that the immunomodulatory capacities caused by YAP/TAZ-TEAD axis disruption were due to the NF-κB signaling pathway activation. Then, we also evaluated the in vivo anti-inflammatory efficacy of MSCs in a dextran sulfate sodium (DSS)-induced mice colitis model. The administration of human MSCs transfected with TEAD siRNA, which exhibited enhanced immunomodulatory properties in vitro, significantly ameliorated inflammatory bowel disease symptoms, such as body weight loss and acute colon inflammation, in the DSS-induced mice colitis model. Our findings underscore the mechanosignaling YAP/TAZ-TEAD axis as a regulator of MSCs immunomodulation. Targeting these signaling pathways could herald promising MSCs-based therapies for immune disorders.
Collapse
Affiliation(s)
- Hiroki Yoshii
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
- Department of Innovation and Precision Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
| | - Mai Yoshino
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Shin Morimoto
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Susumu Horikoshi
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Misako Tari
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Souta Motoike
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Toshinori Ando
- Department of Innovation and Precision Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Tetsuya Yoshimoto
- Department of Innovation and Precision Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Tomoaki Shintani
- Department of Innovation and Precision Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
5
|
Zhu H, Wang J, Wang S, Yang Y, Chen M, Luan Q, Liu X, Lin Z, Hu J, Man K, Zhang J. Additively manufactured bioceramic scaffolds based on triply periodic minimal surfaces for bone regeneration. J Tissue Eng 2024; 15:20417314241244997. [PMID: 38617462 PMCID: PMC11010742 DOI: 10.1177/20417314241244997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/19/2024] [Indexed: 04/16/2024] Open
Abstract
The study focused on the effects of a triply periodic minimal surface (TPMS) scaffolds, varying in porosity, on the repair of mandibular defects in New Zealand white rabbits. Four TPMS configurations (40%, 50%, 60%, and 70% porosity) were fabricated with β-tricalcium phosphate bioceramic via additive manufacturing. Scaffold properties were assessed through scanning electron microscopy and mechanical testing. For proliferation and adhesion assays, mouse bone marrow stem cells (BMSCs) were cultured on these scaffolds. In vivo, the scaffolds were implanted into rabbit mandibular defects for 2 months. Histological staining evaluated osteogenic potential. Moreover, RNA-sequencing analysis and RT-qPCR revealed the significant involvement of angiogenesis-related factors and Hippo signaling pathway in influencing BMSCs behavior. Notably, the 70% porosity TPMS scaffold exhibited optimal compressive strength, superior cell proliferation, adhesion, and significantly enhanced osteogenesis and angiogenesis. These findings underscore the substantial potential of 70% porosity TPMS scaffolds in effectively promoting bone regeneration within mandibular defects.
Collapse
Affiliation(s)
- Hong Zhu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, P.R. China
| | - Jinsi Wang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, P.R. China
| | - Shengfa Wang
- Dalian University of Technology, Dalian, P.R. China
| | - Yue Yang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, P.R. China
| | - Meiyi Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, P.R. China
| | - Qifei Luan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, P.R. China
| | - Xiaochuan Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, P.R. China
| | - Ziheng Lin
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, P.R. China
| | - Jiaqi Hu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, P.R. China
| | - Kenny Man
- Department of Oral and Maxillofacial Surgery & Special Dental Care University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Urecht, Utrecht, The Netherlands
| | - Jingying Zhang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, P.R. China
| |
Collapse
|
6
|
Park J, Soh H, Jo S, Weon S, Lee SH, Park JA, Lee MK, Kim TH, Sung IH, Lee JK. Scaffold-induced compression enhances ligamentization potential of decellularized tendon graft reseeded with ACL-derived cells. iScience 2023; 26:108521. [PMID: 38162024 PMCID: PMC10755058 DOI: 10.1016/j.isci.2023.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Anterior cruciate ligament (ACL) reconstruction is often performed using a tendon graft. However, the predominant synthesis of fibrotic scar tissue (type III collagen) occurs during the healing process of the tendon graft, resulting in a significantly lower mechanical strength than that of normal ACL tissue. In this study, ACL-derived cells were reseeded to the tendon graft, and scaffold-induced compression was applied to test whether the compressive force results in superior cell survival and integration. Given nanofiber polycaprolactone (PCL) scaffold-induced compression, ACL-derived cells reseeded to a tendon graft demonstrated superior cell survival and integration and resulted in higher gene expression levels of type I collagen compared to non-compressed cell-allograft composites in vitro. Translocation of Yes-associated protein (YAP) into the nucleus was correlated with higher expression of type I collagen in the compression group. These data support the hypothesis of a potential role of mechanotransduction in the ligamentization process.
Collapse
Affiliation(s)
- Jinsung Park
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Hyunsoo Soh
- Department of Orthopaedic Surgery, Hanyang University Hospital, Seoul, Republic of Korea
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Subin Weon
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Seung Hoon Lee
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Jeong-Ah Park
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Myung-Kyu Lee
- Department of Research and Development, Korea Public Tissue Bank, Seongnam-si, Gyeonggi-do, Korea
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Disease, Seoul, Republic of Korea
| | - Il-Hoon Sung
- Department of Orthopaedic Surgery, Hanyang University Hospital, Seoul, Republic of Korea
| | - Jin Kyu Lee
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
- Department of Orthopaedic Surgery, Hanyang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
7
|
Morimoto S, Kajiya M, Yoshii H, Yoshino M, Horikoshi S, Motoike S, Iwata T, Ouhara K, Ando T, Yoshimoto T, Shintani T, Mizuno N. A Cartilaginous Construct with Bone Collar Exerts Bone-Regenerative Property Via Rapid Endochondral Ossification. Stem Cell Rev Rep 2023; 19:1812-1827. [PMID: 37166558 DOI: 10.1007/s12015-023-10554-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Three-dimensional clumps of mesenchymal stem cells (MSCs)/extracellular matrix (ECM) complexes (C-MSCs) can be implanted into tissue defects with no artificial scaffolds. In addition, the cellular properties and characteristics of the ECM in C-MSCs can be regulated in vitro. Most bone formation in the developmental and healing process is due to endochondral ossification, which occurs after bone collar formation surrounding cartilage derived from MSCs. Thus, to develop a rapid and reliable bone-regenerative cell therapy, the present study aimed to generate cartilaginous tissue covered with a mineralized bone collar-like structure from human C-MSCs by combining chondrogenic and osteogenic induction. Human bone marrow-derived MSCs were cultured in xeno-free/serum-free (XF) growth medium. Confluent cells that formed cellular sheets were detached from the culture plate using a micropipette tip. The floating cellular sheet contracted to round clumps of cells (C-MSCs). C-MSCs were maintained in XF-chondro-inductive medium (CIM) and XF-osteo-inductive medium (OIM). The biological and bone-regenerative properties of the generated cellular constructs were assessed in vitro and in vivo. C-MSCs cultured in CIM/OIM formed cartilaginous tissue covered with a mineralized matrix layer, whereas CIM treatment alone induced cartilage with no mineralization. Transplantation of the cartilaginous tissue covered with a mineralized matrix induced more rapid bone reconstruction via endochondral ossification in the severe combined immunodeficiency mouse calvarial defect model than that of cartilage generated using only CIM. These results highlight the potential of C-MSC culture in combination with CIM/OIM to generate cartilage covered with a bone collar-like structure, which can be applied for novel bone-regenerative cell therapy.
Collapse
Affiliation(s)
- Shin Morimoto
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
- Department of Innovation and Precision Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
| | - Hiroki Yoshii
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Mai Yoshino
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Susumu Horikoshi
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Souta Motoike
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Toshinori Ando
- Department of Innovation and Precision Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Tetsuya Yoshimoto
- Department of Innovation and Precision Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Tomoaki Shintani
- Department of Innovation and Precision Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
8
|
Ogawa T, Kajiya M, Horikoshi S, Yoshii H, Yoshino M, Motoike S, Morimoto S, Sone H, Iwata T, Ouhara K, Matsuda S, Mizuno N. Xenotransplantation of cryopreserved human clumps of mesenchymal stem cells/extracellular matrix complexes pretreated with IFN-γ induces rat calvarial bone regeneration. Regen Ther 2022; 20:117-125. [PMID: 35582709 PMCID: PMC9065482 DOI: 10.1016/j.reth.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 04/14/2022] [Indexed: 11/10/2022] Open
Abstract
Introduction Three-dimensional (3D) clumps of mesenchymal stem cells (MSCs)/extracellular matrix (ECM) complexes, composed with cells and self-produced intact ECM, can be grafted into defect areas without artificial scaffold to induce successful bone regeneration. Moreover, C-MSCs pretreated with IFN-γ (C-MSCsγ) increased the immunomodulatory enzyme indoleamine 2,3-dioxygenase (IDO) expression and thereby inhibited T cell activity. Xenotransplantation of human C-MSCsγ suppressed host T cell immune rejection and induced bone regeneration in mice. Besides, we have also reported that C-MSCs retain the 3D structure and bone regenerative property even after cryopreservation. To develop the "off-the-shelf" cell preparation for bone regenerative therapy that is promptly provided when needed, we investigated whether C-MSCsγ can retain the immunosuppressive and osteogenic properties after cryopreservation. Methods Confluent human MSCs that had formed on the cellular sheet were scratched using a micropipette tip and then torn off. The sheet was rolled to make a round clump of cells. The round cell clumps were incubated with a growth medium for 3 days, and then C-MSCs were obtained. To generate C-MSCsγ, after 2 days' culture, C-MSCs were stimulated with 50 ng/ml of IFN-γ. Both C-MSCs and C-MSCsγ were cryopreserved for 2 days and then thawed to obtain Cryo-C-MSCs and Cryo-C-MSCsγ, respectively. The biological properties of those cell clumps were assessed in vitro. In addition, to test whether human Cryo-C-MSCsγ attenuates immune rejection to induce bone regeneration, a xenograft study using a rat calvarial defect was performed. Results Both IFN-γ pretreatment and cryopreservation process did not affect the 3D structure and cell viability in all human cell clumps. Interestingly, Cryo-C-MSCsγ showed significantly increased IDO mRNA expression equivalent to C-MSCsγ. More importantly, xenotransplantation of human C-MSCsγ and Cryo-C-MSCsγ induced rat calvarial bone regeneration by suppressing rat T cells infiltration and the grafted human cells reduction in the grafted area. Finally, there were no human donor cells in the newly formed bone, implying that the bone reconstruction by C-MSCsγ and Cryo-C-MSCsγ can be due to indirect host osteogenesis. Conclusion These findings implied that Cryo-C-MSCsγ can be a promising bone regenerative allograft therapy that can be certainly and promptly supplied on demand.
Collapse
Affiliation(s)
- Tomoya Ogawa
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Susumu Horikoshi
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroki Yoshii
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mai Yoshino
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Souta Motoike
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Shin Morimoto
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hisakatsu Sone
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinji Matsuda
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
9
|
Kim S, Lee H, Kim JA, Park TH. Prevention of collagen hydrogel contraction using polydopamine-coating and alginate outer shell increases cell contractile force. BIOMATERIALS ADVANCES 2022; 136:212780. [PMID: 35929298 DOI: 10.1016/j.bioadv.2022.212780] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/07/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Collagen is the most abundant protein in the extracellular matrix of mammals and has a great effect on various cell behaviors including adhesion, differentiation, and migration. However, it is difficult to utilize collagen gel as a physical scaffold in vitro because of its severe contraction. Decrease in the overall hydrogel volume induces changes in cell distribution, and mass transfer within the gel. Uncontrolled mechanical and physiological factors in the fibrous matrix result in uncontrolled cell behaviors in the surrounding cells. In this study, two strategies were used to minimize the contraction of collagen gel. A disk-shaped frame made of polydopamine-coated polydimethylsiloxane (PDMS) prevented horizontal contraction at the edge of the hydrogel. The sequentially cross-linked collagen gel with alginate outer shell (CA-shell) structure inhibited the vertical gel contraction. The combined method synergistically prevented the hydrogel from shrinkage in long-term 3D cell culture. We observed the shift in balance of differentiation from adipogenesis to osteogenesis in mesenchymal stem cells under the environment where gel contraction was prevented, and confirmed that this phenomenon is closely associated with the mechanotransduction based on Yes-associated protein (YAP) localization. Development of this contraction inhibition platform made it possible to investigate the influence of regulation of cellular microenvironments. The physical properties of the hydrogel fabricated in this study were similar to that of pure collagen gel but completely changed the cell behavior within the gel by inhibition of gel contraction. The platform can be used to broaden our understanding of the fundamental mechanism underlying cell-matrix interactions and reproduce extracellular matrix in vivo.
Collapse
Affiliation(s)
- Seulha Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Haein Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Jeong Ah Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju, Chungbuk 28119, Republic of Korea.
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; BioMAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
10
|
Lee J, Jang S, Kwon J, Oh TI, Lee E. Comparative Evaluation of Synovial Multipotent Stem Cells and Meniscal Chondrocytes for Capability of Fibrocartilage Reconstruction. Cartilage 2021; 13:980S-990S. [PMID: 32748647 PMCID: PMC8804725 DOI: 10.1177/1947603520946367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Meniscus tissue is composed of highly aligned type I collagen embedded with cartilaginous matrix. This histological feature endows mechanical properties, such as tensile strength along the direction of the collagen alignment and endurance to compressive load induced by weight bearing. The main objective of this study was to compare the fibrocartilage construction capability of different cell sources in the presence of mechanical stimuli. DESIGN Synovial multipotent stem cells (SvMSCs) and meniscal chondrocytes (MCs) from immature and mature rabbits were maintained under similar conditions for comparative evaluation of growth characteristics and senescence tendency. The differentiation potential of cell sources, including fibrocartilage generation, were comparatively evaluated. To determine the capability of fibrocartilage generation, cultured cell sheets were rolled up to produce cable-form tissue and subjected to chondrogenic induction in the presence or absence of static tension. RESULTS Although SvMSCs showed superior cell growth characteristics during in vitro cell expansion, senescence-associated β-galactosidase expression was consistently higher, compared with MCs. MCs showed glycosaminoglycan (GAG)-rich matrix formation during default in vitro chondrogenesis. While application of static tension significantly reduced GAG production, MCs continued to show robust tissue growth. SvMSCs showed inferior chondrogenic differentiation and diminished tissue growth in the presence of static tension. CONCLUSIONS While SvMSCs produced fibrous tissue during default in vitro chondrogenesis, their fibrocartilage generation potential in the presence of static tension was significantly lower, compared with MCs. Our results support evaluation of cellular response to tensile stimulus as a decisive factor in determining the ideal cell source for fibrocartilage reconstruction.
Collapse
Affiliation(s)
- Jisoo Lee
- Department of Medical Engineering,
Graduate School, Kyung Hee University, Seoul, South Korea
| | - Seoyoung Jang
- Department of Medical Engineering,
Graduate School, Kyung Hee University, Seoul, South Korea
| | - JunPyo Kwon
- Department of Medical Engineering,
Graduate School, Kyung Hee University, Seoul, South Korea
| | - Tong In Oh
- Department of Biomedical
Engineering, School of Medicine, Kyung Hee University, Seoul, South
Korea
| | - EunAh Lee
- Impedance Imaging Research Center,
Kyung Hee University, Seoul, South Korea
| |
Collapse
|
11
|
Clumps of Mesenchymal Stem Cells/Extracellular Matrix Complexes Generated with Xeno-Free Chondro-Inductive Medium Induce Bone Regeneration via Endochondral Ossification. Biomedicines 2021; 9:biomedicines9101408. [PMID: 34680525 PMCID: PMC8533314 DOI: 10.3390/biomedicines9101408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/04/2021] [Accepted: 09/28/2021] [Indexed: 01/14/2023] Open
Abstract
Three-dimensional clumps of mesenchymal stem cells (MSCs)/extracellular matrix (ECM) complexes (C-MSCs) can be transplanted into tissue defect site with no artificial scaffold. Importantly, most bone formation in the developing process or fracture healing proceeds via endochondral ossification. Accordingly, this present study investigated whether C-MSCs generated with chondro-inductive medium (CIM) can induce successful bone regeneration and assessed its healing process. Human bone marrow-derived MSCs were cultured with xeno-free/serum-free (XF) growth medium. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and then torn off. The sheet was rolled to make a round clump of cells. The cell clumps, i.e., C-MSCs, were maintained in XF-CIM. C-MSCs generated with XF-CIM showed enlarged round cells, cartilage matrix, and hypertrophic chondrocytes genes elevation in vitro. Transplantation of C-MSCs generated with XF-CIM induced successful bone regeneration in the SCID mouse calvaria defect model. Immunofluorescence staining for human-specific vimentin demonstrated that donor human and host mouse cells cooperatively contributed the bone formation. Besides, the replacement of the cartilage matrix into bone was observed in the early period. These findings suggested that cartilaginous C-MSCs generated with XF-CIM can induce bone regeneration via endochondral ossification.
Collapse
|
12
|
Self-Organization Provides Cell Fate Commitment in MSC Sheet Condensed Areas via ROCK-Dependent Mechanism. Biomedicines 2021; 9:biomedicines9091192. [PMID: 34572378 PMCID: PMC8470239 DOI: 10.3390/biomedicines9091192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Multipotent mesenchymal stem/stromal cells (MSC) are one of the crucial regulators of regeneration and tissue repair and possess an intrinsic program from self-organization mediated by condensation, migration and self-patterning. The ability to self-organize has been successfully exploited in tissue engineering approaches using cell sheets (CS) and their modifications. In this study, we used CS as a model of human MSC spontaneous self-organization to demonstrate its structural, transcriptomic impact and multipotent stromal cell commitment. We used CS formation to visualize MSC self-organization and evaluated the role of the Rho-GTPase pathway in spontaneous condensation, resulting in a significant anisotropy of the cell density within the construct. Differentiation assays were carried out using conventional protocols, and microdissection and RNA-sequencing were applied to establish putative targets behind the observed phenomena. The differentiation of MSC to bone and cartilage, but not to adipocytes in CS, occurred more effectively than in the monolayer. RNA-sequencing indicated transcriptional shifts involving the activation of the Rho-GTPase pathway and repression of SREBP, which was concordant with the lack of adipogenesis in CS. Eventually, we used an inhibitory analysis to validate our findings and suggested a model where the self-organization of MSC defined their commitment and cell fate via ROCK1/2 and SREBP as major effectors under the putative switching control of AMP kinase.
Collapse
|
13
|
Liu Y, Wang Z, Ju M, Zhao Y, Jing Y, Li J, Shao C, Fu T, Lv Z, Li G. Modification of COL1A1 in Autologous Adipose Tissue-Derived Progenitor Cells Rescues the Bone Phenotype in a Mouse Model of Osteogenesis Imperfecta. J Bone Miner Res 2021; 36:1521-1534. [PMID: 33950576 DOI: 10.1002/jbmr.4326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022]
Abstract
Osteogenesis imperfecta (OI) is a congenital genetic disorder mainly manifested as bone fragility and recurrent fracture. Mutation of COL1A1/COL1A2 genes encoding the type I collagen are most responsible for the clinical patients. Allogenic mesenchymal stem cells (MSCs) provide the potential to treat OI through differentiation into osteoblasts. Autologous defective MSCs have not been utilized in OI treatment mainly because of their impaired osteogenesis, but the latent mechanism has not been well understood. Here, the relative signaling abnormality of adipose-derived mesenchymal stem cells (ADSCs) isolated from OI type I mice (Col1a1+/-365 mice) was explored. Autologous ADSCs transfected by retrovirus carrying human COL1A1 gene was first utilized in OI therapy. The results showed that decreased activity of Yes-associated protein (YAP) due to hyperactive upstream Hippo kinases greatly contributed to the weakened bone-forming capacity of defective ADSCs. Recovered collagen synthesis of autologous ADSCs by COL1A1 gene modification normalized Hippo/YAP signaling and effectively rescued YAP-mediated osteogenesis. And the COL1A1 gene engineered autologous ADSCs efficaciously improved the microstructure, enhanced the mechanical properties and promoted bone formation of Col1a1+/-365 mice after femoral bone marrow cavity delivery and might serve as an alternative source of stem cells in OI treatment. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Yi Liu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zihan Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Mingyan Ju
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yuxia Zhao
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yaqing Jing
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jiaci Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Chenyi Shao
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Ting Fu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zhe Lv
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Guang Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
14
|
Zuo W, Yu L, Zhang H, Fei Q. Mineralized collagen scaffold bone graft accelerate the osteogenic process of HASCs in proper concentration. Regen Ther 2021; 18:161-167. [PMID: 34277898 PMCID: PMC8254075 DOI: 10.1016/j.reth.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose To investigate the feasibility and the optimum condition of human adipose-derived stem cells cultured on the mineralized collagen material; and to further explore the mechanism of osteogenic differentiation of the human Adipose-derived stem cells stimulated by the mineralized collagen material. Methods Primary human adipose-derived stem cells (HADSCs) were isolated from human adipose tissue using centrifugal stratification, which had been passed repeatedly to later generations and purified. Human adipose-derived stem cells were cultured on the bone graft material and the optimum concentration was explored by Alamar blue colorimetric method. The rest experiment was conducted according to the result. The experimental groups are shown below: group A (HADSCs + bone graft material); group B (HADSCs). Morphological observation was taken by scanning electronic microscope (SEM). Alkaline phosphatase activities were tested by histochemical method. Calcium deposition was investigated by alizarin red staining. The quantity access of osteogenic-related mRNA: ALP (alkaline phosphatase), BMP2 (bone morphogenetic protein 2) and RUNX2 (runt-related transcription factor 2) were detected using RT-PCR. Results The cultured cells grew stably and proliferated rapidly. The optimum condition was 0.5 mg/cm2 bone graft material coated on the bottom of medium. After culturing on the material 14 days, the alizarin red staining showed that more calcium deposition was detected in group A and alkaline phosphatase activities of group A was higher than group B (p ˃ 0.05). Similarly, after culturing for 14 days, the ALP, BMP2 and RUNX2 transcription activity of group A was higher than group B (p ˃ 0.05). Conclusion Human adipose-derived stem cells cultured on bone graft material were dominantly differentiated into osteoblast in vitro. Thus it provided a new choice for bone tissue engineering.
Collapse
Affiliation(s)
- Weiyang Zuo
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, 100050, China
| | - Lingjia Yu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, 100050, China
| | - Haiyan Zhang
- Municipal Laboratory for Liver Protection and Regulation of Regeneration, Department of Cell Biology, Capital Medical University, Beijing, China
| | - Qi Fei
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, 100050, China
| |
Collapse
|
15
|
Dieterle MP, Husari A, Steinberg T, Wang X, Ramminger I, Tomakidi P. From the Matrix to the Nucleus and Back: Mechanobiology in the Light of Health, Pathologies, and Regeneration of Oral Periodontal Tissues. Biomolecules 2021; 11:824. [PMID: 34073044 PMCID: PMC8228498 DOI: 10.3390/biom11060824] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Among oral tissues, the periodontium is permanently subjected to mechanical forces resulting from chewing, mastication, or orthodontic appliances. Molecularly, these movements induce a series of subsequent signaling processes, which are embedded in the biological concept of cellular mechanotransduction (MT). Cell and tissue structures, ranging from the extracellular matrix (ECM) to the plasma membrane, the cytosol and the nucleus, are involved in MT. Dysregulation of the diverse, fine-tuned interaction of molecular players responsible for transmitting biophysical environmental information into the cell's inner milieu can lead to and promote serious diseases, such as periodontitis or oral squamous cell carcinoma (OSCC). Therefore, periodontal integrity and regeneration is highly dependent on the proper integration and regulation of mechanobiological signals in the context of cell behavior. Recent experimental findings have increased the understanding of classical cellular mechanosensing mechanisms by both integrating exogenic factors such as bacterial gingipain proteases and newly discovered cell-inherent functions of mechanoresponsive co-transcriptional regulators such as the Yes-associated protein 1 (YAP1) or the nuclear cytoskeleton. Regarding periodontal MT research, this review offers insights into the current trends and open aspects. Concerning oral regenerative medicine or weakening of periodontal tissue diseases, perspectives on future applications of mechanobiological principles are discussed.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Ayman Husari
- Center for Dental Medicine, Department of Orthodontics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany;
- Faculty of Engineering, University of Freiburg, Georges-Köhler-Allee 101, 79110 Freiburg, Germany
| | - Thorsten Steinberg
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Xiaoling Wang
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Imke Ramminger
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Pascal Tomakidi
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| |
Collapse
|
16
|
Dieterle MP, Husari A, Steinberg T, Wang X, Ramminger I, Tomakidi P. Role of Mechanotransduction in Periodontal Homeostasis and Disease. J Dent Res 2021; 100:1210-1219. [PMID: 33870741 DOI: 10.1177/00220345211007855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Novel findings broaden the concept of mechanotransduction (MT) in biophysically stimulated tissues such as the periodontium by considering nuclear MT, convergence of intracellular MT pathways, and mechanoresponsive cotranscription factors such as Yes-associated protein 1 (YAP1). Regarding periodontal disease, recent studies have elucidated the role of bacterial gingipain proteases in disturbing the barrier function of cadherins, thereby promoting periodontal inflammation. This leads to dysregulation of extracellular matrix homeostasis via proteases and changes the cell's biophysical environment, which leads to alterations in MT-induced cell behavior and loss of periodontal integrity. Newest experimental evidence from periodontal ligament cells suggests that the Hippo signaling protein YAP1, in addition to integrin-FAK (focal adhesion kinase) mechanosignaling, also regulates cell stemness. By addressing mechanosignaling-dependent transcription factors, YAP1 is involved in osteogenic and myofibroblast differentiation and influences core steps of autophagy. Recent in vivo evidence elucidates the decisive role of YAP1 in epithelial homeostasis and underlines its impact on oral pathologies, such as periodontitis-linked oral squamous cell carcinogenesis. Here, new insights reveal that YAP1 contributes to carcinogenesis via overexpression rather than mutation; promotes processes such as apoptosis resistance, epithelial-mesenchymal transition, or metastasis; and correlates with poor prognosis in oral squamous cell carcinoma. Furthermore, YAP1 has been shown to contribute to periodontitis-induced bone loss. Mechanistically, molecules identified to regulate YAP1-related periodontal homeostasis and disease include cellular key players such as MAPK (mitogen-activated protein kinase), JNK (c-Jun N-terminal kinase), Rho (Ras homologue) and ROCK (Rho kinase), Bcl-2 (B-cell lymphoma 2), AP-1 (activator protein 1), and c-myc (cellular myelocytomatosis). These findings qualify YAP1 as a master regulator of mechanobiology and cell behavior in human periodontal tissues. This review summarizes the most recent developments in MT-related periodontal research, thereby offering insights into outstanding research questions and potential applications of molecular or biophysical strategies aiming at periodontal disease mitigation or prevention.
Collapse
Affiliation(s)
- M P Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - A Husari
- Department of Orthodontics, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Engineering, University of Freiburg, Freiburg, Germany
| | - T Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - X Wang
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - I Ramminger
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - P Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Xie AW, Zacharias NA, Binder BYK, Murphy WL. Controlled aggregation enhances immunomodulatory potential of mesenchymal stromal cell aggregates. Stem Cells Transl Med 2021; 10:1184-1201. [PMID: 33818906 PMCID: PMC8284773 DOI: 10.1002/sctm.19-0414] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/04/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
Human mesenchymal stromal cells (MSCs) are promising candidates for cell therapy due to their ease of isolation and expansion and their ability to secrete antiapoptotic, pro‐angiogenic, and immunomodulatory factors. Three‐dimensional (3D) aggregation “self‐activates” MSCs to augment their pro‐angiogenic and immunomodulatory potential, but the microenvironmental features and culture parameters that promote optimal MSC immunomodulatory function in 3D aggregates are poorly understood. Here, we generated MSC aggregates via three distinct methods and compared them with regard to their (a) aggregate structure and (b) immunomodulatory phenotype under resting conditions and in response to inflammatory stimulus. Methods associated with fast aggregation kinetics formed aggregates with higher cell packing density and reduced extracellular matrix (ECM) synthesis compared to those with slow aggregation kinetics. While all three methods of 3D aggregation enhanced MSC expression of immunomodulatory factors compared to two‐dimensional culture, different aggregation methods modulated cells' temporal expression of these factors. A Design of Experiments approach, in which aggregate size and aggregation kinetics were systematically covaried, identified a significant effect of both parameters on MSCs' ability to regulate immune cells. Compared to small aggregates formed with fast kinetics, large aggregates with slow assembly kinetics were more effective at T‐cell suppression and macrophage polarization toward anti‐inflammatory phenotypes. Thus, culture parameters including aggregation method, kinetics, and aggregate size influence both the structural properties of aggregates and their paracrine immunomodulatory function. These findings underscore the utility of engineering strategies to control properties of 3D MSC aggregates, which may identify new avenues for optimizing the immunomodulatory function of MSC‐based cell therapies.
Collapse
Affiliation(s)
- Angela W Xie
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nicholas A Zacharias
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Bernard Y K Binder
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
18
|
Functional Properties of Human-Derived Mesenchymal Stem Cell Spheroids: A Meta-Analysis and Systematic Review. Stem Cells Int 2021; 2021:8825332. [PMID: 33884001 PMCID: PMC8041538 DOI: 10.1155/2021/8825332] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/31/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSC) are adult multi-potent cells that can be isolated from many types of tissues including adipose tissue, bone marrow, and umbilical cord. They show great potential for cell therapy-based treatments, which is why they are being used in numerous clinical trials for a wide range of diseases. However, the success of placebo-controlled clinical trials has been limited, so new ways of improving the therapeutic effects of MSC are being developed, such as their assembly in a 3D conformation. In this meta-analysis, we review aggregate formation, in vitro functional properties and in vivo therapeutic potential displayed by adipose tissue, bone marrow, and umbilical cord-derived MSC, assembled as spheroids. The databases PubMed and SciELO were used to find eligible articles, using free-words and MeSH terms related to the subject, finding 28 published articles meeting all inclusion and exclusion criteria. Of the articles selected 15 corresponded to studies using MSC derived from bone marrow, 10 from adipose tissue and 3 from umbilical cord blood or tissue. The MSC spheroids properties analyzed that displayed enhancement in comparison with monolayer 2D culture, are stemness, angiogenesis, differentiation potential, cytokine secretion, paracrine and immunomodulatory effects. Overall studies reveal that the application of MSC spheroids in vivo enhanced therapeutic effects. For instance, research exhibited reduced inflammation, faster wound healing, and closure, functional recovery and tissue repair due to immunomodulatory effects, better MSC engraftment in damaged tissue, higher MSC survival and less apoptosis at the injury. Still, further research and clinical studies with controlled and consistent results are needed to see the real therapeutic efficacy of MSC spheroids.
Collapse
|
19
|
Zhang X, Liu Y, Clark KL, Padget AM, Alexander PG, Dai J, Zhu W, Lin H. Mesenchymal stem cell-derived extracellular matrix (mECM): a bioactive and versatile scaffold for musculoskeletal tissue engineering. ACTA ACUST UNITED AC 2020; 16:012002. [PMID: 32906098 DOI: 10.1088/1748-605x/abb6b3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cell-derived extracellular matrix (mECM) has received increased attention in the fields of tissue engineering and scaffold-assisted regeneration. mECM exhibits many unique characteristics, such as robust bioactivity, biocompatibility, ease of use, and the potential for autologous tissue engineering. As the use of mECM has increased in musculoskeletal tissue engineering, it should be noted that mECM generated from current methods has inherited insufficiencies, such as low mechanical properties and lack of internal architecture. In this review, we first summarize the development and use of mECM as a scaffold for musculoskeletal tissue regeneration and highlight our current progress on moving this technology toward clinical application. Then we review recent methods to improve the properties of mECM that will overcome current weaknesses. Lastly, we propose future studies that will pave the road for mECM application in regenerating tissues in humans.
Collapse
Affiliation(s)
- Xiurui Zhang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America. Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China. These authors contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Svandova E, Peterkova R, Matalova E, Lesot H. Formation and Developmental Specification of the Odontogenic and Osteogenic Mesenchymes. Front Cell Dev Biol 2020; 8:640. [PMID: 32850793 PMCID: PMC7396701 DOI: 10.3389/fcell.2020.00640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
Within the mandible, the odontogenic and osteogenic mesenchymes develop in a close proximity and form at about the same time. They both originate from the cranial neural crest. These two condensing ecto-mesenchymes are soon separated from each other by a very loose interstitial mesenchyme, whose cells do not express markers suggesting a neural crest origin. The two condensations give rise to mineralized tissues while the loose interstitial mesenchyme, remains as a soft tissue. This is crucial for proper anchorage of mammalian teeth. The situation in all three regions of the mesenchyme was compared with regard to cell heterogeneity. As the development progresses, the early phenotypic differences and the complexity in cell heterogeneity increases. The differences reported here and their evolution during development progressively specifies each of the three compartments. The aim of this review was to discuss the mechanisms underlying condensation in both the odontogenic and osteogenic compartments as well as the progressive differentiation of all three mesenchymes during development. Very early, they show physical and structural differences including cell density, shape and organization as well as the secretion of three distinct matrices, two of which will mineralize. Based on these data, this review highlights the consecutive differences in cell-cell and cell-matrix interactions, which support the cohesion as well as mechanosensing and mechanotransduction. These are involved in the conversion of mechanical energy into biochemical signals, cytoskeletal rearrangements cell differentiation, or collective cell behavior.
Collapse
Affiliation(s)
- Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| | - Renata Peterkova
- Department of Histology and Embryology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia.,Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Herve Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| |
Collapse
|
21
|
Cox2-mediated PGE2 production via p38/JNK-c-fos signaling inhibits cell apoptosis in 3D floating culture clumps of mesenchymal stem cell/extracellular matrix complexes. Biochem Biophys Res Commun 2020; 530:448-454. [PMID: 32553627 DOI: 10.1016/j.bbrc.2020.05.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 01/02/2023]
Abstract
Mesenchymal stem cells (MSCs), a class of adult stem cells, have attracted scientific and medical attention due to their self-renewing properties, multipotency, and trophic factor production. Although MSCs were originally studied on classical two-dimensional (2D) plastic plates, extensive scientific efforts have developed three-dimensional (3D) MSC culture systems, including MSCs spheroids and organoids that can mimic physical conditions. Moreover, we have recently developed 3D culture clumps of MSCs/extracellular matrix (ECM) complexes (C-MSCs) for novel bone regenerative cell therapy. Of note, even though it is widely accepted that cell detachment from the culture plate causes cell apoptosis, so called anoikis, these 3D MSCs constructs can be maintained in floating culture conditions. Currently, it is unclear why 3D floating-cultured MSCs constructs can escape from anoikis. To answer this question, the present study explored trophic factor production in 3D floating-cultured C-MSCs that play a cytoprotective role against anoikis and clarified the underlying molecular mechanism in vitro. Compared with cells cultured on 2D plastic plates, PGE2 production mediated by COX2 was significantly increased, and its inhibition drastically induced cell apoptosis in 3D floating-cultured C-MSCs. In the process of C-MSCs preparation, detachment of the cell sheet from culture plate activated the p38/JNK-c-Fos signaling pathway. Moreover, blockage of this signaling by chemical inhibitors abrogated COX2/PGE2 expressions and induced severe apoptosis. These results demonstrated that cell detachment facilitates cytoprotective COX2-mediated PGE2 synthesis via p38/JNK-c-Fos signaling, revealing a possible mechanism that allows resistance against anoikis in floating-cultured 3D MSCs constructs.
Collapse
|
22
|
Liu A, Zhang L, Fei D, Guo H, Wu M, Liu J, He X, Zhang Y, Xuan K, Li B. Sensory nerve-deficient microenvironment impairs tooth homeostasis by inducing apoptosis of dental pulp stem cells. Cell Prolif 2020; 53:e12803. [PMID: 32246537 PMCID: PMC7260073 DOI: 10.1111/cpr.12803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES The aim of this study is to investigate the role of sensory nerve in tooth homeostasis and its effect on mesenchymal stromal/stem cells (MSCs) in dental pulp. MATERIALS AND METHODS We established the rat denervated incisor models to identify the morphological and histological changes of tooth. The groups were as follows: IANx (inferior alveolar nerve section), SCGx (superior cervical ganglion removal), IANx + SCGx and Sham group. The biological behaviour of dental pulp stromal/stem cells (DPSCs) was evaluated. Finally, we applied activin B to DPSCs from sensory nerve-deficient microenvironment to analyse the changes of proliferation and apoptosis. RESULTS Incisor of IANx and IANx + SCGx groups exhibited obvious disorganized tooth structure, while SCGx group only showed slight decrease of dentin thickness, implying sensory nerve, not sympathetic nerve, contributes to the tooth homeostasis. Moreover, we found sensory nerve injury led to disfunction of DPSCs via activin B/SMAD2/3 signalling in vitro. Supplementing activin B promoted proliferation and reduced apoptosis of DPSCs in sensory nerve-deficient microenvironment. CONCLUSIONS This research first demonstrates that sensory nerve-deficient microenvironment impairs tooth haemostasis by inducing apoptosis of DPSCs via activin B/SMAD2/3 signalling. Our study provides the evidence for the crucial role of sensory nerve in tooth homeostasis.
Collapse
Affiliation(s)
- An‐Qi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
- Xi'an Institute of Tissue Engineering and Regenerative MedicineXi'anChina
- Department of Orthodontic DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Li‐Shu Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
- Xi'an Institute of Tissue Engineering and Regenerative MedicineXi'anChina
- Department of Orthodontic DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Dong‐Dong Fei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
- Xi'an Institute of Tissue Engineering and Regenerative MedicineXi'anChina
- Department of Periodontic DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Hao Guo
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
- Xi'an Institute of Tissue Engineering and Regenerative MedicineXi'anChina
- Department of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Mei‐Ling Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
- Xi'an Institute of Tissue Engineering and Regenerative MedicineXi'anChina
- Department of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Jin Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
- Xi'an Institute of Tissue Engineering and Regenerative MedicineXi'anChina
| | - Xiao‐Ning He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
- Xi'an Institute of Tissue Engineering and Regenerative MedicineXi'anChina
| | - Yong‐Jie Zhang
- Xi'an Institute of Tissue Engineering and Regenerative MedicineXi'anChina
| | - Kun Xuan
- Department of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Bei Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
- Xi'an Institute of Tissue Engineering and Regenerative MedicineXi'anChina
| |
Collapse
|
23
|
Clumps of Mesenchymal Stem Cell/Extracellular Matrix Complexes Generated with Xeno-Free Conditions Facilitate Bone Regeneration via Direct and Indirect Osteogenesis. Int J Mol Sci 2019; 20:ijms20163970. [PMID: 31443173 PMCID: PMC6720767 DOI: 10.3390/ijms20163970] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
Three-dimensional clumps of mesenchymal stem cell (MSC)/extracellular matrix (ECM) complexes (C-MSCs) consist of cells and self-produced ECM. We demonstrated previously that C-MSCs can be transplanted into bone defect regions with no artificial scaffold to induce bone regeneration. To apply C-MSCs in a clinical setting as a reliable bone regenerative therapy, the present study aimed to generate C-MSCs in xeno-free/serum-free conditions that can exert successful bone regenerative properties and to monitor interactions between grafted cells and host cells during bone healing processes. Human bone marrow-derived MSCs were cultured in xeno-free/serum-free medium. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and then torn off. The sheet was rolled to make a round clump of cells. Then, C-MSCs were transplanted into an immunodeficient mouse calvarial defect model. Transplantation of C-MSCs induced bone regeneration in a time-dependent manner. Immunofluorescence staining showed that both donor human cells and host mice cells contributed to bone reconstruction. Decellularized C-MSCs implantation failed to induce bone regeneration, even though the host mice cells can infiltrate into the defect area. These findings suggested that C-MSCs generated in xeno-free/serum-free conditions can induce bone regeneration via direct and indirect osteogenesis.
Collapse
|