1
|
Ghasemi Gojani E, Rai S, Norouzkhani F, Shujat S, Wang B, Li D, Kovalchuk O, Kovalchuk I. Targeting β-Cell Plasticity: A Promising Approach for Diabetes Treatment. Curr Issues Mol Biol 2024; 46:7621-7667. [PMID: 39057094 PMCID: PMC11275945 DOI: 10.3390/cimb46070453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The β-cells within the pancreas play a pivotal role in insulin production and secretion, responding to fluctuations in blood glucose levels. However, factors like obesity, dietary habits, and prolonged insulin resistance can compromise β-cell function, contributing to the development of Type 2 Diabetes (T2D). A critical aspect of this dysfunction involves β-cell dedifferentiation and transdifferentiation, wherein these cells lose their specialized characteristics and adopt different identities, notably transitioning towards progenitor or other pancreatic cell types like α-cells. This process significantly contributes to β-cell malfunction and the progression of T2D, often surpassing the impact of outright β-cell loss. Alterations in the expressions of specific genes and transcription factors unique to β-cells, along with epigenetic modifications and environmental factors such as inflammation, oxidative stress, and mitochondrial dysfunction, underpin the occurrence of β-cell dedifferentiation and the onset of T2D. Recent research underscores the potential therapeutic value for targeting β-cell dedifferentiation to manage T2D effectively. In this review, we aim to dissect the intricate mechanisms governing β-cell dedifferentiation and explore the therapeutic avenues stemming from these insights.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| |
Collapse
|
2
|
Zhu J, Zhu X, Xu Y, Chen X, Ge X, Huang Y, Wang Z. The role of noncoding RNAs in beta cell biology and tissue engineering. Life Sci 2024; 348:122717. [PMID: 38744419 DOI: 10.1016/j.lfs.2024.122717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
The loss or dysfunction of pancreatic β-cells, which are responsible for insulin secretion, constitutes the foundation of all forms of diabetes, a widely prevalent disease worldwide. The replacement of damaged β-cells with regenerated or transplanted cells derived from stem cells is a promising therapeutic strategy. However, inducing the differentiation of stem cells into fully functional glucose-responsive β-cells in vitro has proven to be challenging. Noncoding RNAs (ncRNAs) have emerged as critical regulatory factors governing the differentiation, identity, and function of β-cells. Furthermore, engineered hydrogel systems, biomaterials, and organ-like structures possess engineering characteristics that can provide a three-dimensional (3D) microenvironment that supports stem cell differentiation. This review summarizes the roles and contributions of ncRNAs in maintaining the differentiation, identity, and function of β-cells. And it focuses on regulating the levels of ncRNAs in stem cells to activate β-cell genetic programs for generating alternative β-cells and discusses how to manipulate ncRNA expression by combining hydrogel systems and other tissue engineering materials. Elucidating the patterns of ncRNA-mediated regulation in β-cell biology and utilizing this knowledge to control stem cell differentiation may offer promising therapeutic strategies for generating functional insulin-producing cells in diabetes cell replacement therapy and tissue engineering.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xiaoren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yang Xu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xingyou Chen
- Medical School of Nantong University, Nantong 226001, China
| | - Xinqi Ge
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Zhiwei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
3
|
Zhu S, Xu Y, Li Y, Wang L, Huang Y, Wan J. Biomimetic Hydrogels Promote Pseudoislet Formation to Improve Glycemic Control in Diabetic Mice. ACS Biomater Sci Eng 2024; 10:2486-2497. [PMID: 38445596 DOI: 10.1021/acsbiomaterials.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Islet or β-cell transplantation is currently considered to be the ideal treatment for diabetes, and three-dimensional (3D) bioprinting of a bionic pancreas with physiological stiffness is considered to be promising for the encapsulation and transplantation of β-cells. In this study, a 5%GelMA/2%AlgMA hybrid hydrogel with pancreatic physiological stiffness was constructed and used for β-cell encapsulation, 3D bioprinting, and in vivo transplantation to evaluate glycemic control in diabetic mice. The hybrid hydrogel had good cytocompatibility and could induce insulin-producing cells (IPCs) to form pseudoislet structures and improve insulin secretion. Furthermore, we validated the importance of betacellulin (BTC) in IPCs differentiation and confirmed that IPCs self-regulation was achieved by altering the nuclear and cytoplasmic distributions of BTC expression. In vivo transplantation of diabetic mice quickly restored blood glucose levels. In the future, 3D bioprinting of β-cells using biomimetic hydrogels will provide a promising platform for clinical islet transplantation for the treatment of diabetes.
Collapse
Affiliation(s)
- Shajun Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China
| | - Yang Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200000, China
| | - Yuxi Li
- Medical School of Nantong University, Nantong 226000, China
| | - Lin Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China
| | - Jian Wan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China
| |
Collapse
|
4
|
Xu Y, Mao S, Fan H, Wan J, Wang L, Zhang M, Zhu S, Yuan J, Lu Y, Wang Z, Yu B, Jiang Z, Huang Y. LINC MIR503HG Controls SC-β Cell Differentiation and Insulin Production by Targeting CDH1 and HES1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305631. [PMID: 38243869 PMCID: PMC10987150 DOI: 10.1002/advs.202305631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/03/2024] [Indexed: 01/22/2024]
Abstract
Stem cell-derived pancreatic progenitors (SC-PPs), as an unlimited source of SC-derived β (SC-β) cells, offers a robust tool for diabetes treatment in stem cell-based transplantation, disease modeling, and drug screening. Whereas, PDX1+/NKX6.1+ PPs enhances the subsequent endocrine lineage specification and gives rise to glucose-responsive SC-β cells in vivo and in vitro. To identify the regulators that promote induction efficiency and cellular function maturation, single-cell RNA-sequencing is performed to decipher the transcriptional landscape during PPs differentiation. The comprehensive evaluation of functionality demonstrated that manipulating LINC MIR503HG using CRISPR in PP cell fate decision can improve insulin synthesis and secretion in mature SC-β cells, without effects on liver lineage specification. Importantly, transplantation of MIR503HG-/- SC-β cells in recipients significantly restored blood glucose homeostasis, accompanied by serum C-peptide release and an increase in body weight. Mechanistically, by releasing CtBP1 occupying the CDH1 and HES1 promoters, the decrease in MIR503HG expression levels provided an excellent extracellular niche and appropriate Notch signaling activation for PPs following differentiation. Furthermore, this exhibited higher crucial transcription factors and mature epithelial markers in CDH1High expressed clusters. Altogether, these findings highlighted MIR503HG as an essential and exclusive PP cell fate specification regulator with promising therapeutic potential for patients with diabetes.
Collapse
Affiliation(s)
- Yang Xu
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Center of Gallbladder DiseaseShanghai East HospitalInstitute of Gallstone DiseaseSchool of MedicineTongji UniversityShanghai200092China
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Susu Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsCo‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Haowen Fan
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Jian Wan
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Lin Wang
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Department of Graduate SchoolDalian Medical UniversityDalianLiaoning116000China
| | - Mingyu Zhang
- Department of Nuclear MedicineBeijing Friendship HospitalAffiliated to Capital Medical UniversityBeijing100050China
| | - Shajun Zhu
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Jin Yuan
- Department of Endocrinology and MetabolismAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Zhiwei Wang
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsCo‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Zhaoyan Jiang
- Center of Gallbladder DiseaseShanghai East HospitalInstitute of Gallstone DiseaseSchool of MedicineTongji UniversityShanghai200092China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsCo‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
| |
Collapse
|
5
|
Xu Y, Xu T, Huang Y, Wan J, Jiang Z. Silencing hsa_circ_0032449 inhibits the pancreatic differentiation of human embryonic stem cells via the hsa_miR-195-5p/CCND1/PI3K/AKT signaling pathway. Exp Cell Res 2024; 434:113879. [PMID: 38072304 DOI: 10.1016/j.yexcr.2023.113879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Stem cell-derived β cells (SC-β cells) differentiated from stem cell-derived pancreatic progenitor (PP) cells are promising tools for enabling normal glucose control of islet transplants and have therapeutic potential for type 1 diabetes treatment. Pancreatic specification is essential for SC-β cell induction in vitro and low-quality PP cells may convert into derivatives of non-pancreatic lineages both in vivo and in vitro, impeding PP-derived β cell safety and differentiation efficiency. Circular RNA (circRNA) commonly determines the fate of stem cells by acting as competing endogenous RNA (ceRNA). Currently, the relationships between endogenous circRNA and pancreatic specification remain elusive. Herein, we used whole transcriptome sequencing analysis and functional experiments to reveal that deficiency of hsa_circ_0032449 resulted in posterior foregut-derived PP cells with a weakened the progenitor state with decreased expression of PDX1, NKX6.1 and CCND1. As differentiation processed into maturation, silencing of hsa_circ_0032449 suppressed PP cell development into functionally mature and glucose-responsive SC-β cells. These SC-β cells exhibited lower serum C-peptide levels compared with those of control groups in nude mice and had difficulties in reversing hyperglycemia in STZ-induced diabetic nude mice. Mechanistically, loss of hsa_circ_0032449 participated in PI3K-AKT signaling transduction by acting as a ceRNA to sponge miR-195-5p and by influencing the expression of the downstream target CCND1 at transcription and translation levels. Overall, our findings identified hsa_circ_0032449 as an essential PP cell-fate specification regulator, indicating a promising potential in clinical applications and basic research.
Collapse
Affiliation(s)
- Yang Xu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tianxin Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jian Wan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Zhaoyan Jiang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
6
|
Wang Y, Ding H, Guo C, Bao Q, Li D, Xiong Y. LncRNA Malat1 regulates iPSC-derived β-cell differentiation by targeting the miR-15b-5p/Ihh axis. Cell Signal 2024; 113:110975. [PMID: 37972802 DOI: 10.1016/j.cellsig.2023.110975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Differentiation of induced pluripotent stem cells (iPSCs)-derived β-like cells is a novel strategy for treatment of type 1 diabetes. Elucidation of the regulatory mechanisms of long noncoding RNAs (lncRNAs) in β-like cells derived from iPSCs is important for understanding the development of the pancreas and pancreatic β-cells and may improve the quality of β-like cells for stem cell therapy. METHODS β-like cells were derived from iPSCs in a three-step protocol. RNA sequencing and bioinformatics analysis were carried out to screen the differentially expressed lncRNAs and identify the putative target genes separately. LncRNA Malat1 was chosen for further research. Series of loss and gain of functions experiments were performed to study the biological function of LncRNA Malat1. Quantitative real-time PCR (qRT-PCR), Western blot (WB) analysis and immunofluorescence (IF) staining were carried out to separately detect the functions of pancreatic β-cells at the mRNA and protein levels. Cytoplasmic and nuclear RNA fractionation and fluorescence in situ hybridization (FISH) were used to determine the subcellar location of lncRNA Malat1 in β-like cells. Enzyme-linked immunosorbent assays (ELISAs) were performed to examine the differentiation and insulin secretion of β-like cells after stimulation with different glucose concentrations. Structural interactions between lncRNA Malat1 and miR-15b-5p and between miR-15b-5p/Ihh were detected by dual luciferase reporter assays (LRAs). RESULTS We found that the expression of lncRNA Malat1 declined during differentiation, and overexpression (OE) of lncRNA Malat1 notably impaired the differentiation and maturation of β-like cells derived from iPSCs in vitro and in vivo. Most importantly, lncRNA Malat1 could function as a competing endogenous RNA (ceRNA) of miR-15b-5p to regulate the expression of Ihh according to bioinformatics prediction, mechanistic analysis and downstream experiments. CONCLUSION This study established an unreported regulatory network of lncRNA Malat1 and the miR-15b-5p/Ihh axis during the differentiation of iPSCs into β-like cells. In addition to acting as an oncogene promoting tumorigenesis, lncRNA Malat1 may be an effective and novel target for treatment of diabetes in the future.
Collapse
Affiliation(s)
- Yao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Haoxiang Ding
- Nantong University Medical School, Nantong 226001, China
| | - Chengfeng Guo
- Nantong University Medical School, Nantong 226001, China
| | - Qian Bao
- Nantong University Medical School, Nantong 226001, China
| | - Dongqian Li
- Nantong University Medical School, Nantong 226001, China
| | - Yicheng Xiong
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
7
|
Dhanjal DS, Singh R, Sharma V, Nepovimova E, Adam V, Kuca K, Chopra C. Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine. Curr Med Chem 2024; 31:1646-1690. [PMID: 37138422 DOI: 10.2174/0929867330666230503144619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Varun Sharma
- Head of Bioinformatic Division, NMC Genetics India Pvt. Ltd., Gurugram, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
8
|
Wang J, Wan X, Le Q. Cross-regulation between SOX9 and the canonical Wnt signalling pathway in stem cells. Front Mol Biosci 2023; 10:1250530. [PMID: 37664185 PMCID: PMC10469848 DOI: 10.3389/fmolb.2023.1250530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
SOX9, a member of the SRY-related HMG-box transcription factors, has been reported to critically regulate fetal development and stem cell homeostasis. Wnt signalling is a highly conserved signalling pathway that controls stem cell fate decision and stemness maintenance throughout embryonic development and adult life. Many studies have shown that the interactions between SOX9 and the canonical Wnt signalling pathway are involved in many of the physiological and pathological processes of stem cells, including organ development, the proliferation, differentiation and stemness maintenance of stem cells, and tumorigenesis. In this review, we summarize the already-known molecular mechanism of cross-interactions between SOX9 and the canonical Wnt signalling pathway, outline its regulatory effects on the maintenance of homeostasis in different types of stem cells, and explore its potential in translational stem cell therapy.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Xichen Wan
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Qihua Le
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Research Center, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Myopia Key Laboratory of Ministry of Health, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| |
Collapse
|
9
|
Ouyang X, Wang S, Xie J, Kong J, Chunmei M, Pan H, Cao J, Chen D, Liu A. rno-miR-90 promotes chondrogenic differentiation of bone marrow mesenchymal stem cells by targeting SPARC-related modular calcium binding 2. Anat Rec (Hoboken) 2023. [PMID: 36691370 DOI: 10.1002/ar.25163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/25/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have the ability to differentiate into chondrocytes. In the differentiation of BMSCs into chondrocytes, micro-RNAs (miRNAs) play an important role. rno-miR-90 is a new miRNA discovered by our research team, and its role in chondrogenic differentiation of BMSCs is unknown. This study aimed to investigate whether rno-miR-90 could promote chondrogenic differentiation of BMSCs by regulating secreted protein acidic and rich in cysteine-related modular calcium binding 2 (Smoc2). First, BMSCs chondroblast differentiation was successfully induced in vitro by classical induction method of transforming growth factor (TGF)-β3. On this basis, we transfected rno-miR-90 mimic and inhibitor, and confirmed that rno-miR-90 mimic could promote the differentiation of BMSCs into chondrocytes by real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. In addition, we demonstrated that Smoc2 was a target gene of rno-miR-90 by dual-luciferase reporter assay, and confirmed that rno-miR-90 mimic could inhibit the expression of Smoc2 by RT-qPCR and western blotting. In order to further prove the targeting relationship between rno-miR-90 and Smoc2, we constructed three interfering fragments of Smoc2, and proved that silencing Smoc2 could promote the differentiation of BMSCs into chondrocytes at the transcriptional and protein levels. Finally, we constructed a carrier scaffold for ectopic chondrogenic differentiation in vivo, and confirmed that rno-miR-90 mimic and siSmoc2 could promote chondrogenic differentiation of BMSCs by Alcian blue staining and immunohistochemistry. In summary, our results suggested that rno-miR-90 could promote chondrogenic differentiation of BMSCs by down-regulating the expression of Smoc2. rno-miR-90 mimic and Smoc2 may be therapeutic targets of osteoarthritis.
Collapse
Affiliation(s)
- Xiyan Ouyang
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Shuxian Wang
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Jinqi Xie
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Jiechen Kong
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Ma Chunmei
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Hao Pan
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Jiahui Cao
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Dongfeng Chen
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Aijun Liu
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
10
|
An artificial LAMA2-GelMA hydrogel microenvironment for the development of pancreatic endocrine progenitors. Biomaterials 2022; 291:121882. [DOI: 10.1016/j.biomaterials.2022.121882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 11/21/2022]
|
11
|
Chen H, Zhang M, Zhang J, Chen Y, Zuo Y, Xie Z, Zhou G, Chen S, Chen Y. Application of Induced Pluripotent Stem Cell-Derived Models for Investigating microRNA Regulation in Developmental Processes. Front Genet 2022; 13:899831. [PMID: 35719367 PMCID: PMC9204592 DOI: 10.3389/fgene.2022.899831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Advances in induced pluripotent stem cell (iPSC) techniques have opened up new perspectives in research on developmental biology. Compared with other sources of human cellular models, iPSCs present a great advantage in hosting the unique genotype background of donors without ethical concerns. A wide spectrum of cellular and organoid models can be generated from iPSCs under appropriate in vitro conditions. The pluripotency of iPSCs is orchestrated by external signalling and regulated at the epigenetic, transcriptional and posttranscriptional levels. Recent decades have witnessed the progress of studying tissue-specific expressions and functions of microRNAs (miRNAs) using iPSC-derived models. MiRNAs are a class of short non-coding RNAs with regulatory functions in various biological processes during development, including cell migration, proliferation and apoptosis. MiRNAs are key modulators of gene expression and promising candidates for biomarker in development; hence, research on the regulation of human development by miRNAs is expanding. In this review, we summarize the current progress in the application of iPSC-derived models to studies of the regulatory roles of miRNAs in developmental processes.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mimi Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingzhi Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yapei Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yabo Zuo
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zhishen Xie
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Guanqing Zhou
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shehong Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaoyong Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Stem Cell-Derived Islets for Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms23095099. [PMID: 35563490 PMCID: PMC9105352 DOI: 10.3390/ijms23095099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Since the discovery of insulin a century ago, insulin injection has been a primary treatment for both type 1 (T1D) and type 2 diabetes (T2D). T2D is a complicated disea se that is triggered by the dysfunction of insulin-producing β cells and insulin resistance in peripheral tissues. Insulin injection partially compensates for the role of endogenous insulin which promotes glucose uptake, lipid synthesis and organ growth. However, lacking the continuous, rapid, and accurate glucose regulation by endogenous functional β cells, the current insulin injection therapy is unable to treat the root causes of the disease. Thus, new technologies such as human pluripotent stem cell (hPSC)-derived islets are needed for both identifying the key molecular and genetic causes of T2D and for achieving a long-term treatment. This perspective review will provide insight into the efficacy of hPSC-derived human islets for treating and understanding T2D. We discuss the evidence that β cells should be the primary target for T2D treatment, the use of stem cells for the modeling of T2D and the potential use of hPSC-derived islet transplantation for treating T2D.
Collapse
|
13
|
Ren Y, Wang X, Liang H, Ma Y. Differentially expressed microRNAs during the differentiation of muscle-derived stem cells into insulin-producing cells, a promoting role of microRNA-708-5p/STK4 axis. PLoS One 2022; 17:e0266609. [PMID: 35395037 PMCID: PMC8992996 DOI: 10.1371/journal.pone.0266609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/23/2022] [Indexed: 12/03/2022] Open
Abstract
Objective Stem cell therapy is a promising approach for diabetes via promoting the differentiation of insulin-producing cells (IPCs). This study aimed to screen the differentially expressed miRNAs (DEmiRNAs) during the differentiation of muscle-derived stem cells (MDSCs) into IPCs, and uncover the underlying function and mechanism of a specific DEmiRNA, miR-708-5p. Methods MDSCs were successfully isolated from the leg muscle of rats, and were induced for IPCs differentiation through a five-stage protocol. miRNA microarray assay was performed for screening DEmiRNAs during differentiation. The features of MDSCs-derived IPCs were identified by qRT-PCR, flow cytometry, and immunofluorescence staining. The targeting of STK4 by miR-708-5p was examined by luciferase assay. The protein expression of STK4, YAP1, and p-YAP1 was determined by Western blot and immunofluorescence staining. Results MDSCs were successfully isolated and differentiated into IPCs. A total of 12 common DEmiRNAs were obtained during five-stage differentiation. Among them, miR-708-5p that highly expressed in MDSCs-derived IPCs was selected. Overexpression of miR-708-5p upregulated some key transcription factors (Pdx1, Ngn3, Nkx2.2, Nkx6.1, Gata4, Gata6, Pax4, and Pax6) involving in IPCs differentiation, and increased insulin positive cells. In addition, STK4 was identified as the target gene of miR-708-5p. miR-708-5p overexpression downregulated the expression of STK4 and the downstream phosphorylated YAP1. Conclusions There were 12 DEmiRNAs involved in the differentiation of MDSCs into IPCs. miR-708-5p promoted MDSCs differentiation into IPCs probably by targeting STK4-mediated Hippo-YAP1 signaling pathway.
Collapse
Affiliation(s)
- Yu Ren
- Scientific Research Department, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Xiao Wang
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Hongyu Liang
- Scientific Research Department, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yuzhen Ma
- Reproductive Medicine Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia Autonomous Region, China
- * E-mail:
| |
Collapse
|
14
|
Czapiewski R, Batrakou DG, de Las Heras JI, Carter RN, Sivakumar A, Sliwinska M, Dixon CR, Webb S, Lattanzi G, Morton NM, Schirmer EC. Genomic loci mispositioning in Tmem120a knockout mice yields latent lipodystrophy. Nat Commun 2022; 13:321. [PMID: 35027552 PMCID: PMC8758788 DOI: 10.1038/s41467-021-27869-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022] Open
Abstract
Little is known about how the observed fat-specific pattern of 3D-spatial genome organisation is established. Here we report that adipocyte-specific knockout of the gene encoding nuclear envelope transmembrane protein Tmem120a disrupts fat genome organisation, thus causing a lipodystrophy syndrome. Tmem120a deficiency broadly suppresses lipid metabolism pathway gene expression and induces myogenic gene expression by repositioning genes, enhancers and miRNA-encoding loci between the nuclear periphery and interior. Tmem120a-/- mice, particularly females, exhibit a lipodystrophy syndrome similar to human familial partial lipodystrophy FPLD2, with profound insulin resistance and metabolic defects that manifest upon exposure to an obesogenic diet. Interestingly, similar genome organisation defects occurred in cells from FPLD2 patients that harbour nuclear envelope protein encoding LMNA mutations. Our data indicate TMEM120A genome organisation functions affect many adipose functions and its loss may yield adiposity spectrum disorders, including a miRNA-based mechanism that could explain muscle hypertrophy in human lipodystrophy.
Collapse
Affiliation(s)
- Rafal Czapiewski
- Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Dzmitry G Batrakou
- Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | | | - Roderick N Carter
- Molecular Metabolism Group, University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | | | | | - Charles R Dixon
- Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Shaun Webb
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Giovanna Lattanzi
- CNR - National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, 40136, Italy
- IRCCS, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Nicholas M Morton
- Molecular Metabolism Group, University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Eric C Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
15
|
Chen W, Jiang W, Dong J, Wang J, Wang B. MiR-200b-3p induces the formation of insulin-producing cells from umbilical cord mesenchymal stem cells by targeting ZEB2. Crit Rev Eukaryot Gene Expr 2022; 32:33-46. [DOI: 10.1615/critreveukaryotgeneexpr.2022041822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Sałówka A, Martinez-Sanchez A. Molecular Mechanisms of Nutrient-Mediated Regulation of MicroRNAs in Pancreatic β-cells. Front Endocrinol (Lausanne) 2021; 12:704824. [PMID: 34803905 PMCID: PMC8600252 DOI: 10.3389/fendo.2021.704824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β-cells within the islets of Langerhans respond to rising blood glucose levels by secreting insulin that stimulates glucose uptake by peripheral tissues to maintain whole body energy homeostasis. To different extents, failure of β-cell function and/or β-cell loss contribute to the development of Type 1 and Type 2 diabetes. Chronically elevated glycaemia and high circulating free fatty acids, as often seen in obese diabetics, accelerate β-cell failure and the development of the disease. MiRNAs are essential for endocrine development and for mature pancreatic β-cell function and are dysregulated in diabetes. In this review, we summarize the different molecular mechanisms that control miRNA expression and function, including transcription, stability, posttranscriptional modifications, and interaction with RNA binding proteins and other non-coding RNAs. We also discuss which of these mechanisms are responsible for the nutrient-mediated regulation of the activity of β-cell miRNAs and identify some of the more important knowledge gaps in the field.
Collapse
Affiliation(s)
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
17
|
Hashemitabar M, Rezaei-Tazangi F, Khorsandi L, Mard SA. Autophagy Involves in Differentiation of Insulin-Secreting Cells from Adipose Derived Stem Cells. CELL JOURNAL 2021; 23:619-625. [PMID: 34939754 PMCID: PMC8665986 DOI: 10.22074/cellj.2021.7408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/16/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Destruction of pancreatic beta-cells induces an insulin deficiency and causes type 1 diabetes. The role of autophagy in inducing insulin-secreting cells (ISCs) from adipose-derived mesenchymal stem cells (AMSCs) was investigated in the current study. MATERIALS AND METHODS In this experimental study, the isolated AMSCs were characterization and exposed to a cocktail differentiation medium (CDM) in the absence or presence of 3-methyladenine (3MA), an autophagy inhibitor. The differentiation of ISCs was confirmed by the evaluation of the expression of beta-cell-specific genes including pancreatic and duodenal homeobox 1 (PDX1), musculoaponeurotic fibrosarcoma oncogene homolog A (MAF-A), Nk class of homeodomain-encoding genes 6.1 and 2.2 (NKX6-1 and NKX2.2), Glucose transporter 2 (GLUT-2) and INSLIN. Using Newport Green (NG), insulin-positive cells were identified. Insulin secretion in response to various glucose concentrations was measured. Autophagy was evaluated by Acridine orange (AO) staining. Also, expression of autophagy-associated genes, including autophagy-related gene 5 (ATG-5), autophagy-related gene 7 (ATG-7), BECLIN-1, and mammalian target of rapamycin (mTOR), was evaluated by Real-time polymerase chain reaction (PCR) method. RESULTS We observed a significant increase of beta-cell specific genes expression in the CDM-treated cells (P<0.01 or P<0.001), whereas the expression of these genes was down-regulated in 3MA-exposed cells. Expression of INSULIN and GLUT-2 genes (P<0.01 and P<0.05, respectively), insulin secretion in response to glucose (P<0.01), and percentage of NG-positive cells (P<0.05) in the 3MA-exposed cells were considerably lower than the cells treated with CDM. The percentage of AO-positive cells (P<0.01) and the expression of autophagy-related genes (P<0.001) was significantly enhanced in the CDM group. These events were significantly prevented by the 3MA. CONCLUSION Our data showed that autophagy is necessary for beta-cell differentiation, and preventing autophagy by 3MA causes the reduction of beta-cell differentiation and insulin secretion.
Collapse
Affiliation(s)
- Mahmoud Hashemitabar
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical
Sciences, Ahvaz, Iran,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical
Sciences, Ahvaz, Iran,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran ,P.O.Box: 61335Department of Anatomical SciencesFaculty of MedicineAhvaz Jundishapur University of Medical
SciencesAhvazIran
| | - Seyed Ali Mard
- Alimentary Tract Research Center, Physiology Research Center, Medical Basic Sciences Research Institute, The School of Medicine,
Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
18
|
Wang D, Zhu Y, Huang Y, Zhu J, Zhu B, Zhao Y, Lu Y, Wang Z, Guo Y. Pancreatic Extracellular Matrix/Alginate Hydrogels Provide a Supportive Microenvironment for Insulin-Producing Cells. ACS Biomater Sci Eng 2021; 7:3793-3805. [PMID: 34251797 DOI: 10.1021/acsbiomaterials.1c00269] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Type 1 diabetes mellitus (T1DM), as an autoimmune deficiency disease, is associated with an absolute deficiency of insulin subject to islet β-cell destruction. Insulin-producing cells (IPCs) differentiated from induced pluripotent stem cells are an ideal replacement origin of β-cells, which can be applied for cell transplantation therapies in T1DM. At present, more strategies focus on inducing and differentiating to obtain IPCs; however, the unsatisfactory differentiation efficiency and the lack of ideal carriers for in vivo transplantation limited their application. It is necessary to consider the cell microenvironment by constructing a biomimetic niche to improve the differentiation and transplantation efficiency. The main components of the extracellular matrix derived from pancreatic (the niche of β-cells) decellularization were retained, which could provide the ideal extracellular microenvironment for IPCs. In this research, a hydrogel prepared with alginate (Alg) and the pancreatic extracellular matrix (pECM) was assessed for the beneficial outcomes on encapsulated IPCs. The results showed that pECM/Alg improved the differentiation efficiency and promoted insulin secretion and the expression of insulin-related genes as well. Besides, pECM/Alg-encapsulated IPCs exhibited obvious biocompatibility in vivo, which can prolong the transplantation effect and hypoglycemic function by reducing the inflammatory reaction. RNA-seq indicated that the PI3K/Akt pathway may be related to the improvement of the differentiation efficiency and function of IPCs. In general, the pECM/Alg hydrogel provides an ideal biomimetic microenvironment for IPCs and is suitable for in vivo transplantation.
Collapse
Affiliation(s)
- Dongzhi Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P. R China
| | - Yi Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P. R China
| | - Yan Huang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P. R China
| | - Jiachen Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P. R China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Biwen Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P. R China
| | - Yahong Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yuhua Lu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Zhiwei Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P. R China
| |
Collapse
|
19
|
Sabouri E, Rajabzadeh A, Enderami SE, Saburi E, Soleimanifar F, Barati G, Rahmati M, Khamisipour G, Enderami SE. The Role of MicroRNAs in the Induction of Pancreatic Differentiation. Curr Stem Cell Res Ther 2021; 16:145-154. [PMID: 32564764 DOI: 10.2174/1574888x15666200621173607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
Stem cell-based therapy is one of the therapeutic options with promising results in the treatment of diabetes. Stem cells from various sources are expanded and induced to generate the cells capable of secreting insulin. These insulin-producing cells [IPCs] could be used as an alternative to islets in the treatment of patients with diabetes. Soluble growth factors, small molecules, geneencoding transcription factors, and microRNAs [miRNAs] are commonly used for the induction of stem cell differentiation. MiRNAs are small non-coding RNAs with 21-23 nucleotides that are involved in the regulation of gene expression by targeting multiple mRNA targets. Studies have shown the dynamic expression of miRNAs during pancreatic development and stem cell differentiation. MiR- 7 and miR-375 are the most abundant miRNAs in pancreatic islet cells and play key roles in pancreatic development as well as islet cell functions. Some studies have tried to use these small RNAs for the induction of pancreatic differentiation. This review focuses on the miRNAs used in the induction of stem cells into IPCs and discusses their functions in pancreatic β-cells.
Collapse
Affiliation(s)
- Elham Sabouri
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Rajabzadeh
- Applied Cell Sciences and Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Elnaz Enderami
- Department of Stem Cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology [NIGEB], Tehran, Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Soleimanifar
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | | | | | - Gholamreza Khamisipour
- Department of Hematology, School of Allied Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyed Ehsan Enderami
- Diabetes Research Center, Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
20
|
Giallongo S, Rehakova D, Raffaele M, Lo Re O, Koutna I, Vinciguerra M. Redox and Epigenetics in Human Pluripotent Stem Cells Differentiation. Antioxid Redox Signal 2021; 34:335-349. [PMID: 32567336 DOI: 10.1089/ars.2019.7983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Since their discovery, induced pluripotent stem cells (iPSCs) had generated considerable interest in the scientific community for their great potential in regenerative medicine, disease modeling, and cell-based therapeutic approach, due to their unique characteristics of self-renewal and pluripotency. Recent Advances: Technological advances in iPSC genome-wide epigenetic profiling led to the elucidation of the epigenetic control of cellular identity during nuclear reprogramming. Moreover, iPSC physiology and metabolism are tightly regulated by oxidation-reduction events that mainly occur during the respiratory chain. In theory, iPSC-derived differentiated cells would be ideal for stem cell transplantation as autologous cells from donors, as the risks of rejection are minimal. Critical Issues: However, iPSCs experience high oxidative stress that, in turn, confers a high risk of increased genomic instability, which is most often linked to DNA repair deficiencies. Genomic instability has to be assessed before iPSCs can be used in therapeutic designs. Future Directions: This review will particularly focus on the links between redox balance and epigenetic modifications-in particular based on the histone variant macroH2A1-that determine DNA damage response in iPSCs and derived differentiated cells, and that might be exploited to decrease the teratogenic potential on iPSC transplantation. Antioxid. Redox Signal. 34, 335-349.
Collapse
Affiliation(s)
- Sebastiano Giallongo
- International Clinical Research Center, St' Anne's University Hospital, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Daniela Rehakova
- International Clinical Research Center, St' Anne's University Hospital, Brno, Czech Republic.,Faculty of Informatics, Centre for Biomedical Image Analysis, Masaryk University, Brno, Czech Republic
| | - Marco Raffaele
- International Clinical Research Center, St' Anne's University Hospital, Brno, Czech Republic
| | - Oriana Lo Re
- International Clinical Research Center, St' Anne's University Hospital, Brno, Czech Republic
| | - Irena Koutna
- International Clinical Research Center, St' Anne's University Hospital, Brno, Czech Republic.,Faculty of Informatics, Centre for Biomedical Image Analysis, Masaryk University, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St' Anne's University Hospital, Brno, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
21
|
Park J, Lee J, Choi K, Kang HJ. Regulation of behavioral response to stress by microRNA-690. Mol Brain 2021; 14:7. [PMID: 33422095 PMCID: PMC7797085 DOI: 10.1186/s13041-021-00728-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/01/2021] [Indexed: 12/12/2022] Open
Abstract
Psychiatric disorders are affected by genetic susceptibility and environmental adversities. Therefore, the regulation of gene expression under certain environments, such as stress, is a key issue in psychiatric disorders. MicroRNAs (miRNAs) have been implicated as post-transcriptional regulators of several biological processes, which can be differentially controlled through the targeting of multiple mRNAs. However, studies reporting the functions of miRNAs in relation to stress are lacking. In this study, we identified a significant increase in the expression of miRNA-690 (miR-690) in the medial prefrontal cortex (mPFC) of FK506-binding protein 51 knock-out (Fkbp5 KO) mice. In addition, the expression pattern of miR-690 was similar to the sucrose preference of the same group in WT and Fkbp5 KO mice. miR-690 was injected into the mPFC using a recombinant adeno-associated virus mediated gene delivery method. After recovery, miR-690 overexpressing mice were exposed to restraint stress for 2 weeks. In the sucrose preference test and forced swim test, the stressed miR-690 overexpressing mice showed higher sucrose preference and lower immobility time, respectively, than stressed mice injected with the control virus. In the novel object recognition test, the stressed miR-690 overexpressing mice interacted longer with the novel object than those injected with the control virus. These results showed that miR-690 might play a role in stress resilience and could provide new insights into the epigenetic regulation of stress-associated biological functions and diseases, such as depression and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Jungyoung Park
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 South Korea
| | - Joonhee Lee
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 South Korea
| | - Koeul Choi
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 South Korea
| | - Hyo Jung Kang
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 South Korea
| |
Collapse
|
22
|
Kh S, Haider KH. Stem Cells: A Renewable Source of Pancreatic β-Cells and Future for Diabetes Treatment. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Guo Q, Lu Y, Huang Y, Guo Y, Zhu S, Zhang Q, Zhu D, Wang Z, Luo J. Exosomes from β-Cells Promote Differentiation of Induced Pluripotent Stem Cells into Insulin-Producing Cells Through microRNA-Dependent Mechanisms. Diabetes Metab Syndr Obes 2021; 14:4767-4782. [PMID: 34934332 PMCID: PMC8678630 DOI: 10.2147/dmso.s342647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Exosomes have emerged as potential tools for the differentiation of induced pluripotent stem cells (iPSCs) into insulin-producing cells (IPCs). Exosomal microRNAs are receiving increasing attention in this process. Here, we aimed at investigating the role of exosomes derived from a murine pancreatic β-cell line and identifying signature exosomal miRNAs on iPSCs differentiation. METHODS Exosomes were isolated from MIN6 cells and identified with TEM, NTA and Western blot. PKH67 tracer and transwell assay were used to confirm exosome delivery into iPSCs. qRT-PCR was applied to detect key pancreatic transcription gene expression and exosome-derived miRNA expression. Insulin secretion was determined using FCM and immunofluorescence. The specific exosomal miRNAs were determined via RNA-interference of Ago2. The therapeutic effect of 21 day-exosome-induced IPCs was validated in T1D mice induced by STZ. RESULTS iPSCs cultured in medium containing exosomes showed sustained higher expression of MAFA, Insulin1, Insulin2, Isl1, Neuroud1, Nkx6.1 and NGN3 compared to control iPSCs. In FCM analysis, approximately 52.7% of the differentiated cells displayed insulin expression at the middle stage. Consistent with the gene expression data, immunofluorescence assays showed that Nkx6.1 and insulin expression in iPSCs were significantly upregulated. Intriguingly, the expression of pancreatic markers and insulin was significantly decreased in iPSCs cultured with siAgo2 exosomes. Transplantation of 21 day-induced IPCs intoT1D mice efficiently enhanced glucose tolerance and partially controlled hyperglycemia. The therapeutic effect was significantly attenuated in T1D mice that received iPSCs cultured with siAgo2 exosomes. Of the seven exosomal microRNAs selected for validation, miR-706, miR-709, miR-466c-5p, and miR-423-5p showed dynamic expression during 21 days in culture. CONCLUSION These data indicate that differentiation of exosome-induced iPSCs into functional cells is crucially dependent on the specific miRNAs encased within exosomes, whose functional analysis is likely to provide insight into novel regulatory mechanisms governing iPSCs differentiation into IPCs.
Collapse
Affiliation(s)
- Qingsong Guo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
| | - Shajun Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
| | - Qiuqiang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
| | - Donghui Zhu
- Nantong University Medical School, Nantong, 226001, People’s Republic of China
| | - Zhiwei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
- Zhiwei Wang Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Xi Si Road, Nantong, 226001, People’s Republic of China Email
| | - Jia Luo
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, People’s Republic of China
- Correspondence: Jia Luo Department of Pharmacy, Affiliated Hospital of Nantong University, Xi Si Road, Nantong, 226001, People’s Republic of China Email
| |
Collapse
|
24
|
Tao F, Wang F, Zhang W, Hao Y. MicroRNA-22 enhances the differentiation of mouse induced pluripotent stem cells into alveolar epithelial type II cells. Eur J Histochem 2020; 64. [PMID: 33334090 PMCID: PMC7542669 DOI: 10.4081/ejh.2020.3170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/31/2020] [Indexed: 11/23/2022] Open
Abstract
Considerable evidence has verified that microRNAs (miRNAs) play important roles in various cellular processes including differentiation. However, the regulatory roles of miRNAs involved in the differentiation of induced pluripotent stem cells (iPSC) into lung epithelial cells are still unknown. In this study, we first evaluated the current protocols to differentiate iPSC into alveolar epithelial type II (AEC II) cells, but the efficiency is low. We next identified that miR-22 can efficiently enhance the differentiation of iPSC into AEC II cells under the stimulation of proper growth factors and growing on appropriate matrix. Moreover, the AEC II cells generated from iPSC with miR-22 overexpression can proliferate and secrete lung surfactant. Here, we discovered a previously unknown interaction between miR-22 and iPSC differentiation but also provide a potential target for the effective derivation of AEC II from iPSCs for cell-based therapy.
Collapse
Affiliation(s)
- Fan Tao
- Department of Traditional Chinese Medicine, Wuhan Fifth Hospital, Wuhan.
| | - Feng Wang
- School of Physical Education, Wuhan Business University, Wuhan.
| | - Weichen Zhang
- Department of Traditional Chinese Medicine, Wuhan Fifth Hospital, Wuhan .
| | - Yaming Hao
- Department of Traditional Chinese Medicine, Wuhan Fifth Hospital, Wuhan .
| |
Collapse
|
25
|
Bioinformatic Analyses of miRNA-mRNA Signature during hiPSC Differentiation towards Insulin-Producing Cells upon HNF4α Mutation. Biomedicines 2020; 8:biomedicines8070179. [PMID: 32605028 PMCID: PMC7400504 DOI: 10.3390/biomedicines8070179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in the hepatocyte nuclear factor 4α (HNF4α) gene affect prenatal and postnatal pancreas development, being characterized by insulin-producing β-cell dysfunction. Little is known about the cellular and molecular mechanisms leading to β-cell failure as result of HNF4α mutation. In this study, we compared the miRNA profile of differentiating human induced pluripotent stem cells (hiPSC) derived from HNF4α+/Δ mutation carriers and their family control along the differentiation timeline. Moreover, we associated this regulation with the corresponding transcriptome profile to isolate transcript–miRNA partners deregulated in the mutated cells. This study uncovered a steep difference in the miRNA regulation pattern occurring during the posterior foregut to pancreatic endoderm transition, defining early and late differentiation regulatory windows. The pathway analysis of the miRNAome–transcriptome interactions revealed a likely gradual involvement of HNF4α+/Δ mutation in p53-mediated cell cycle arrest, with consequences for the proliferation potential, survival and cell fate acquisition of the differentiating cells. The present study is based on bioinformatics approaches and we expect that, pending further experimental validation, certain miRNAs deregulated in the HNF4α+/Δ cells would prove useful for therapy.
Collapse
|
26
|
He F, Li N, Huang HB, Wang JB, Yang XF, Wang HD, Huang W, Li FR. LSD1 inhibition yields functional insulin-producing cells from human embryonic stem cells. Stem Cell Res Ther 2020; 11:163. [PMID: 32345350 PMCID: PMC7189473 DOI: 10.1186/s13287-020-01674-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/15/2020] [Accepted: 04/08/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Human embryonic stem cells represent a potentially unlimited source of insulin-producing cells for diabetes therapy. While tremendous progress has been made in directed differentiation of human embryonic stem cells into IPCs in vitro, the mechanisms controlling its differentiation and function are not fully understood. Previous studies revealed that lysine-specific demethylase 1(LSD1) balanced the self-renewal and differentiation in human induced pluripotent stem cells and human embryonic stem cells. This study aims to explore the role of LSD1 in directed differentiation of human embryonic stem cells into insulin-producing cells. METHODS Human embryonic stem cell line H9 was induced into insulin-producing cells by a four-step differentiation protocol. Lentivirus transfection was applied to knockdown LSD1 expression. Immunofluorescence assay and flow cytometry were utilized to check differentiation efficiency. Western blot was used to examine signaling pathway proteins and differentiation-associated proteins. Insulin/C-peptide release was assayed by ELISA. Statistical analysis between groups was carried out with one-way ANOVA tests or a student's t test when appropriate. RESULTS Inhibition or silencing LSD1 promotes the specification of pancreatic progenitors and finally the commitment of functional insulin-producing β cells; Moreover, inhibition or silencing LSD1 activated ERK signaling and upregulated pancreatic progenitor associated genes, accelerating pre-maturation of pancreatic progenitors, and conferred the NKX6.1+ population with better proliferation ability. IPCs with LSD1 inhibitor tranylcypromine treatment displayed enhanced insulin secretion in response to glucose stimulation. CONCLUSIONS We identify a novel role of LSD1 inhibition in promoting IPCs differentiation from hESCs, which would be emerged as potential intervention for generation of functional pancreatic β cells to cure diabetes.
Collapse
Affiliation(s)
- Fei He
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 1017 Dongmen North Road, Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Ning Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 1017 Dongmen North Road, Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Hai-Bo Huang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 1017 Dongmen North Road, Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Jing-Bo Wang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 1017 Dongmen North Road, Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Xiao-Fei Yang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 1017 Dongmen North Road, Shenzhen, 518020, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell therapy, Shenzhen, 518020, China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen, 518020, China
| | - Hua-Dong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Wei Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fu-Rong Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 1017 Dongmen North Road, Shenzhen, 518020, China.
- Guangdong Engineering Technology Research Center of Stem Cell and Cell therapy, Shenzhen, 518020, China.
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen, 518020, China.
| |
Collapse
|
27
|
Liu W, Jin Y, Zhang W, Xiang Y, Jia P, Yi M, Jia K. MiR-202-5p Inhibits RIG-I-Dependent Innate Immune Responses to RGNNV Infection by Targeting TRIM25 to Mediate RIG-I Ubiquitination. Viruses 2020; 12:v12030261. [PMID: 32120903 PMCID: PMC7150862 DOI: 10.3390/v12030261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022] Open
Abstract
The RIG-I-like receptors (RLRs) signaling pathway is essential for inducing type I interferon (IFN) responses to viral infections. Meanwhile, it is also tightly regulated to prevent uncontrolled immune responses. Numerous studies have shown that microRNAs (miRNAs) are essential for the regulation of immune processes, however, the detailed molecular mechanism of miRNA regulating the RLRs signaling pathway remains to be elucidated. Here, our results showed that miR-202-5p was induced by red spotted grouper nervous necrosis virus (RGNNV) infection in zebrafish. Overexpression of miR-202-5p led to reduced expression of IFN 1 and its downstream antiviral genes, thus facilitating viral replication in vitro. In comparison, significantly enhanced levels of IFN 1 and antiviral genes and significantly low viral burden were observed in the miR-202-5p-/- zebrafish compared to wild type zebrafish. Subsequently, zebrafish tripartite motif-containing protein 25 (zbTRIM25) was identified as a target of miR-202-5p in both zebrafish and humans. Ectopic expression of miR-202-5p suppressed zbTRIM25-mediated RLRs signaling pathway. Furthermore, we showed that miR-202-5p inhibited zbTRIM25-mediated zbRIG-I ubiquitination and activation of IFN production. In conclusion, we demonstrate that RGNNV-inducible miR-202-5p acts as a negative regulator of zbRIG-I-triggered antiviral innate response by targeting zbTRIM25. Our study reveals a novel mechanism for the evasion of the innate immune response controlled by RGNNV.
Collapse
Affiliation(s)
- Wei Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong 510275, China
| | - Yilin Jin
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong 510275, China
| | - Wanwan Zhang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong 510275, China
| | - Yangxi Xiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong 510275, China
| | - Peng Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong 510275, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong 510275, China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong 510275, China
- Correspondence:
| |
Collapse
|
28
|
Pan G, Liu Q, Xin H, Liu J. The key regulation of miR-124-3p during reprogramming of primary mouse hepatocytes into insulin-producing cells. Biochem Biophys Res Commun 2020; 522:315-321. [PMID: 31761319 DOI: 10.1016/j.bbrc.2019.11.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022]
Abstract
Based on the action of small molecule compounds, the efficiency of differentiation of mouse primary hepatocytes into insulin-producing cells (IPCs) was improved by changing the expression of miR-124-2p. Hepatocytes were transfected with microRNA-124-3p (miR-124-3p) mimic or inhibitor, followed by a chemical-defined culture system for maturation of IPCs. Then, detect the expression of insulin-related genes and protein and insulin secretion of each stage during differentiation. The expression of Foxa2, PDX1, NeuroD, insulin1, and insulin2 in IPCs in the miR-124-3p inhibition expression group was significantly upregulated, while the results were opposite in the miR-124-3p overexpression group. The results of cell immunofluorescence and glucose stimulation in vitro of the miR-124-3p inhibition expression group showed that the expression of insulin, PDX1, and C-peptide was increased, and the differentiation efficiency was higher than those of the control group and overexpression group. The primary mouse hepatocytes were successfully reprogrammed into IPCs by small-molecule compounds. We found that miR-124-3p plays a negative regulatory role in the differentiation of hepatocytes into IPCs in vitro. Inhibition of miR-124-3p expression significantly increased the expression of FOXA2 and PDX1, promoted the differentiation of hepatocytes into IPCs, and increased the induction efficiency.
Collapse
Affiliation(s)
- Gui Pan
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; Department of Respiratory, People's Hospital of Jingdezhen of Jiangxi Province, Jingdezhen, China
| | - Quanwen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Hongbo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Jianping Liu
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
29
|
Li N, Liu L, Liu Y, Luo S, Song Y, Fang B. miR-144-3p Suppresses Osteogenic Differentiation of BMSCs from Patients with Aplastic Anemia through Repression of TET2. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:619-626. [PMID: 31945725 PMCID: PMC6965517 DOI: 10.1016/j.omtn.2019.12.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/30/2022]
Abstract
Reduced osteogenic capacity of bone marrow mesenchymal stem cells (BMSCs) has been causally linked to the development of aplastic anemia. In this work, we aimed to identify novel microRNAs (miRNAs) that participate in the regulation of differentiation of BMSCs from patients with aplastic anemia. We show that miR-144-3p is significantly upregulated in BMSCs from patients with aplastic anemia relative to control equivalents. Depletion of miR-144-3p significantly enhances osteogenic differentiation of BMSCs from patients with aplastic anemia after culturing in osteogenesis-inducing medium. Conversely, overexpression of miR-144-3p blocks osteogenic differentiation of BMSCs. Mechanistically, miR-144-3p negatively regulates the expression of ten-eleven translocation 2 (TET2) in BMSCs. Reduced TET2 expression is associated with a significant decrease in global 5-hydroxymethyl-cytosine (5hmC) levels and osteogenic gene expression. Knockdown of miR-144-3p elevates the expression of TET2 and total 5hmC levels in BMSCs. Silencing of TET2 inhibits the osteogenic differentiation of BMSCs. Overexpression of TET2 reverses miR-144-3p-mediated inhibition of osteogenesis. In addition, there is a significant negative correlation between the expression of miR-144-3p and TET2 in BMSCs from patients with aplastic anemia. Overall, miR-144-3p impairs the osteogenic capacity of BMSCs from patients with aplastic anemia through repression of TET2. Therefore, the targeting of miR-144-3p may be a therapeutic strategy against aplastic anemia.
Collapse
Affiliation(s)
- Ning Li
- Department of Oncology, Henan Cancer Hospital, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lina Liu
- Henan Institute of Haematology, Department of Hematology, Henan Cancer Hospital, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yuzhang Liu
- Henan Institute of Haematology, Department of Hematology, Henan Cancer Hospital, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Suxia Luo
- Department of Oncology, Henan Cancer Hospital, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yongping Song
- Henan Institute of Haematology, Department of Hematology, Henan Cancer Hospital, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| | - Baijun Fang
- Henan Institute of Haematology, Department of Hematology, Henan Cancer Hospital, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|