1
|
Hoang VT, Le DS, Hoang DM, Phan TTK, Ngo LAT, Nguyen TK, Bui VA, Nguyen Thanh L. Impact of tissue factor expression and administration routes on thrombosis development induced by mesenchymal stem/stromal cell infusions: re-evaluating the dogma. Stem Cell Res Ther 2024; 15:56. [PMID: 38414067 PMCID: PMC10900728 DOI: 10.1186/s13287-023-03582-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/22/2023] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Hyperactive coagulation might cause dangerous complications such as portal vein thrombosis and pulmonary embolism after mesenchymal stem/stromal cell (MSC) therapy. Tissue factor (TF), an initiator of the extrinsic coagulation pathway, has been suggested as a predictor of this process. METHODS The expression of TF and other pro- and anticoagulant genes was analyzed in xeno- and serum-free manufactured MSCs. Furthermore, culture factors affecting its expression in MSCs were investigated. Finally, coagulation tests of fibrinogen, D-dimer, aPPTs, PTs, and TTs were measured in patient serum after umbilical cord (UC)-MSC infusions to challenge a potential connection between TF expression and MSC-induced coagulant activity. RESULTS: Xeno- and serum-free cultured adipose tissue and UC-derived MSCs expressed the highest level of TF, followed by those from dental pulp, and the lowest expression was observed in MSCs of bone marrow origin. Environmental factors such as cell density, hypoxia, and inflammation impact TF expression, so in vitro analysis might fail to reflect their in vivo behaviors. MSCs also expressed heterogeneous levels of the coagulant factor COL1A1 and surface phosphatidylserine and anticoagulant factors TFPI and PTGIR. MSCs of diverse origins induced fibrin clots in healthy plasma that were partially suppressed by an anti-TF inhibitory monoclonal antibody. Furthermore, human umbilical vein endothelial cells exhibited coagulant activity in vitro despite their negative expression of TF and COL1A1. Patients receiving intravenous UC-MSC infusion exhibited a transient increase in D-dimer serum concentration, while this remained stable in the group with intrathecal infusion. There was no correlation between TF expression and D-dimer or other coagulation indicators. CONCLUSIONS The study suggests that TF cannot be used as a solid biomarker to predict MSC-induced hypercoagulation. Local administration, prophylactic intervention with anticoagulation drugs, and monitoring of coagulation indicators are useful to prevent thrombogenic events in patients receiving MSCs. Trial registration NCT05292625. Registered March 23, 2022, retrospectively registered, https://www. CLINICALTRIALS gov/ct2/show/NCT05292625?term=NCT05292625&draw=2&rank=1 . NCT04919135. Registered June 9, 2021, https://www. CLINICALTRIALS gov/ct2/show/NCT04919135?term=NCT04919135&draw=2&rank=1 .
Collapse
Affiliation(s)
- Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam.
| | - Duc Son Le
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam
| | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam
| | - Trang Thi Kieu Phan
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam
| | - Lan Anh Thi Ngo
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam
- Center of Applied Science and Regenerative Medicine, Vinmec Health Care System, 458 Minh Khai, Hanoi, 10000, Vietnam
| | - Trung Kien Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam
| | - Viet Anh Bui
- Center of Applied Science and Regenerative Medicine, Vinmec Health Care System, 458 Minh Khai, Hanoi, 10000, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam.
- Vinmec International Hospital - Times City, Vinmec Health Care System, 458 Minh Khai, Hanoi, 11622, Vietnam.
- College of Health Science, VinUniversity, Vinhomes Ocean Park, Gia Lam District, Hanoi, 1310, Vietnam.
| |
Collapse
|
2
|
Schriner JB, Triolo F, Gill BS, Cardenas JC, Olson SD, Cox CS. Low molecular weight heparin decreases pro-coagulant activity in clinical MSC products. Cytotherapy 2024; 26:194-200. [PMID: 38127031 PMCID: PMC11350517 DOI: 10.1016/j.jcyt.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are multipotent adult cells that can be isolated from tissues including bone marrow [MSC(BM)], adipose [MSC(AT)] and umbilical cord [MSC(CT)]. Previous studies have linked expression of tissue factor (TF) on MSC surfaces to a procoagulant effect. Venous thromboembolism (VTE), immediate blood-mediated inflammatory reaction (IBMIR) and microvascular thrombosis remain a risk with intravascular MSC therapy. We examined the effect of low molecular weight heparin (LMWH) on clinical-grade MSCs using calibrated automated thrombography (CAT). METHODS Clinical grade MSC(BM)s, MSC(AT)s and MSC(CT)s harvested at passage 4 were added to normal pooled plasma (NPP) to a final concentration of either 400 000 or 50 000 cells/mL. LMWH was added to plasma in increments of 0.1 U/mL. Thrombin generation (TG) was measured using CAT. Flow cytometry was conducted on the cells to measure MSC phenotype and TF load. RESULTS Presence of MSCs decreased lag time and increased peak TG. All cell lines demonstrated a dose response to LMWH, with MSC(AT) demonstrating the least thrombogenicity and most sensitivity to LMWH. TG was significantly reduced in all cell lines at doses of 0.2 U/mL LMWH and higher. DISCUSSION All MSC types and concentrations had a decrease in peak thrombin and TG with increasing amounts of LMWH. While this in vitro study cannot determine optimal dosing, it suggests that LMWH can be effectively used to lower the risk of VTE associated with intravascular administration of MSCs. Future in vivo work can be done to determine optimal dosing and effect on IBMIR and VTE.
Collapse
Affiliation(s)
- Jacob B Schriner
- Department of Surgery, Center for Translational Injury Research, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| | - Fabio Triolo
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Brijesh S Gill
- Department of Surgery, Center for Translational Injury Research, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA; Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jessica C Cardenas
- Department of Surgery, Center for Translational Injury Research, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Charles S Cox
- Department of Surgery, Center for Translational Injury Research, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA; Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
3
|
Laterre PF, Sánchez García M, van der Poll T, Wittebole X, Martínez-Sagasti F, Hernandez G, Ferrer R, Caballero J, Cadogan KA, Sullivan A, Zhang B, de la Rosa O, Lombardo E, François B. The safety and efficacy of stem cells for the treatment of severe community-acquired bacterial pneumonia: A randomized clinical trial. J Crit Care 2024; 79:154446. [PMID: 37918129 DOI: 10.1016/j.jcrc.2023.154446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
PURPOSE Evaluate the safety profile of expanded allogeneic adipose-derived mesenchymal stem cell (eASC) for the treatment of severe community-acquired bacterial pneumonia (CABP). MATERIALS AND METHODS Randomized, multicenter, double-blind, placebo-controlled, phase 1b/2a trial. Patients with severe CABP were enrolled to receive intravenous infusions of Cx611 or placebo. The primary objective was safety including hypersensitivity reactions, thromboembolic events, and immunological responses to Cx611. The secondary endpoints included the clinical cure rate, ventilation-free days, and overall survival (Day 90). RESULTS Eighty-three patients were randomized and received infusions (Cx611: n = 42]; placebo: n = 41]. The mean age was similar (Cx611: 61.1 [11.2] years; placebo: 63.4 [10.4] years). The number of AEs and treatment-emergent AEs were similar (243; 184 and 2; 1) in Cx611 and placebo respectively. Hypersensitivity reactions or thromboembolic events were similar (Cx611: n = 9; placebo: n = 12). Each study arm had similar anti-HLA antibody/DSA levels at Day 90. The clinical cure rate (Cx611: 86.7%; placebo: 93.8%), mean number of ventilator-free days (Cx611: 12.2 [10.29] days; placebo: 15.4 [10.75] days), and overall survival (Cx611: 71.5%; placebo: 77.0%) did not differ between study arms. CONCLUSION Cx611 was well tolerated in severe CABP. These data provide insights for future stem cell clinical study designs, endpoints and sample size calculation. TRIAL REGISTRATION NCT03158727 (retrospectively registered: May 09, 2017). Full study protocol: https://clinicaltrials.gov/ProvidedDocs/27/NCT03158727/Prot_000.pdf.
Collapse
Affiliation(s)
| | | | - Tom van der Poll
- Amsterdam University Medical Centers, University of Amsterdam, Center of Experimental and Molecular Medicine and Division of Infectious Diseases, Amsterdam, Netherlands
| | - Xavier Wittebole
- Department of Intensive Care Medicine, Cliniques universitaires Saint-Luc, Université Catholique de Louvain, UCLouvain, Brussels, Belgium
| | | | - Gonzalo Hernandez
- Intensive Care Department, Toledo University Hospital, Toledo, Spain
| | - Ricard Ferrer
- Intensive Care Department, Vall d'Hebron University Hospital, Barcelona, Spain; Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Jesus Caballero
- Intensive Care Department, Arnau de Vilanova University Hospital, Lleida, Spain; Grup de Recerca Medicina Intensiva, Institut de Recerca Biomèdica de Lleida Fundació Dr Pifarré, IRB Lleida, Lleida, Spain
| | | | | | | | - Olga de la Rosa
- Takeda Madrid, Cell Therapy Technology Center, Tres Cantos, Spain
| | | | - Bruno François
- Intensive care unit and Inserm CIC 1435 & UMR 1092, Limoges University Hospital, Limoges, France.
| |
Collapse
|
4
|
Armstrong BBS, Pedroso JCM, Conceição Carvalho JD, Ferreira LM. Mesenchymal stem cells in lung diseases and their potential use in COVID-19 ARDS: A systematized review. Clinics (Sao Paulo) 2023; 78:100237. [PMID: 37454534 PMCID: PMC10368758 DOI: 10.1016/j.clinsp.2023.100237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 01/23/2023] [Accepted: 04/24/2023] [Indexed: 07/18/2023] Open
Abstract
COVID-19 can converge with the pro-inflammatory immunoregulatory mechanisms of chronic lung diseases. Given the disorders inherent to lung transplantation and the inexistence of other definitive therapeutic alternatives, Adipose tissue-derived Stem Cells (ASCs) presented themselves as a therapeutic hope. The purpose of this review is to assess the basis for the potential use of ASCs in lung diseases unresponsive to conventional therapy, relating to their possible use in COVID-19 ARDS. 35 studies comprised this review, 14 being narrative reviews, 19 preclinical trials and two proofs of concept. COVID-19 can converge with the pro-inflammatory immunoregulatory mechanisms of chronic lung diseases. In view of the disorders inherent to lung transplantation and the inexistence of definitive therapeutic alternatives, Adipose tissue-derived Stem Cells (ASCs) presented themselves as a therapeutic hope. Its detailed reading indicated the absence of serious adverse effects and toxicity to the administration of ASCs and suggested possible effectiveness in reducing lung damage, in addition to promoting the recovery of leukocytes and lymphocytes with its immunomodulatory and anti-apoptotic effects. The revised clinical data suggests optimism in the applicability of ASCs in other immunoinflammatory diseases and in severe COVID-19 ARDS. However, further studies are needed to develop a consensus on the methods of collection of ASCs, the ideal dosage schedule, the most effective time and route of administration, as well as on the definition of indications for the administration of ASCs in cases of COVID-19 for conducting clinical trials in near future.
Collapse
Affiliation(s)
| | | | | | - Lydia Masako Ferreira
- Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Araldi RP, Prezoto BC, Gonzaga V, Policiquio B, Mendes TB, D’Amélio F, Vigerelli H, Viana M, Valverde CW, Pagani E, Kerkis I. Advanced cell therapy with low tissue factor loaded product NestaCell® does not confer thrombogenic risk for critically ill COVID-19 heparin-treated patients. Pharmacotherapy 2022; 149:112920. [PMID: 36068779 PMCID: PMC8971080 DOI: 10.1016/j.biopha.2022.112920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/15/2022]
Abstract
Since the COVID-19 pandemic started, mesenchymal stromal cells (MSC) appeared as a therapeutic option to reduce the over-activated inflammatory response and promote recovery of lung damage. Most clinical studies use intravenous injection for MSC delivery, raising several concerns of thrombogenic risk due to MSC procoagulant activity (PCA) linked to the expression of tissue factor (TF/CD142). This is the first study that demonstrated procoagulant activity of TF+ human immature dental pulp stromal cells (hIDPSC, NestaCell® product) with the percentage of TF+ cells varied from 0.2% to 63.9% in plasma of healthy donors and COVID-19 heparin-treated patients. Thrombogenic risk of TF+ hIDPSCs was evaluated by rotational thromboelastometry (in vitro) and in critically ill COVID-19 patients (clinical trial). We showed that the thromboelastography is not enough to predict the risk of TF+ MSC therapies. Using TF-negative HUVEC cells, we demonstrated that TF is not a unique factor responsible for the cell's procoagulant activity. However, heparin treatment minimizes MSC procoagulant (in vitro). We also showed that the intravenous infusion of hIDPSCs with prophylactic enoxaparin administration in moderate to critically ill COVID-19 patients did not change the values of D-dimer, neither in the PT and PTT times. Our COVID-19 clinical study measured and selected the therapeutic cells with low TF (less than 25% of TF+ hIDPSCs). Our data indicate that the concomitant administration of enoxaparin and low TF-loaded is safe even for critically ill COVID-19 patients.
Collapse
|
6
|
Moll G, Ankrum JA, Olson SD, Nolta JA. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:2-13. [PMID: 35641163 PMCID: PMC8895495 DOI: 10.1093/stcltm/szab005] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022] Open
Abstract
The number of mesenchymal stromal/stem cell (MSC) therapeutics and types of clinical applications have greatly diversified during the past decade, including rapid growth of poorly regulated “Stem Cell Clinics” offering diverse “Unproven Stem Cell Interventions.” This product diversification necessitates a critical evaluation of the reliance on the 2006 MSC minimal criteria to not only define MSC identity but characterize MSC suitability for intravascular administration. While high-quality MSC therapeutics have been safely administered intravascularly in well-controlled clinical trials, repeated case reports of mild-to-more-severe adverse events have been reported. These are most commonly related to thromboembolic complications upon infusion of highly procoagulant tissue factor (TF/CD142)-expressing MSC products. As TF/CD142 expression varies widely depending on the source and manufacturing process of the MSC product, additional clinical cell product characterization and guidelines are needed to ensure the safe use of MSC products. To minimize risk to patients receiving MSC therapy, we here propose to supplement the minimal criteria used for characterization of MSCs, to include criteria that assess the suitability of MSC products for intravascular use. If cell products are intended for intravascular delivery, which is true for half of all clinical applications involving MSCs, the effects of MSC on coagulation and hemocompatibility should be assessed and expression of TF/CD142 should be included as a phenotypic safety marker. This adjunct criterion will ensure both the identity of the MSCs as well as the safety of the MSCs has been vetted prior to intravascular delivery of MSC products.
Collapse
Affiliation(s)
- Guido Moll
- BIH Center for Regenerative Therapies (BCRT) and Berlin Brandenburg School of Regenerative Therapies (BSRT), Berlin Institute of Health (BIH) at the Charité—Universitätsmedizin Berlin, corporate member of Freie Universität zu Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Corresponding author: Guido Moll, PhD, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering and Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Jan A Nolta
- Director of the Stem Cell Program, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
7
|
Heard TC, Gómez BI, Saathoff ME, Duarte J, Dubick MA, Bynum JA, Christy RJ, Burmeister DM. Minimal Effects of Intravenous Administration of Xenogeneic Adipose Derived Stem Cells on Organ Function in a Porcine 40%TBSA Burn Model. J Burn Care Res 2021; 42:870-879. [PMID: 34057993 DOI: 10.1093/jbcr/irab094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adipose stem cells (ASCs) have shown therapeutic promise for various conditions, including burn injury. While ASCs have immunomodulatory properties, concerns exist over pro-coagulant activity after intravenous (IV) administration. In the present study, we examined IV human ASC delivery in terms of coagulation, organ function, and inflammation in a 40% total body surface area (TBSA) swine burn model. Anesthetized female Yorkshire swine were burned and randomized to receive 15ml/kg Lactated Ringer's containing: no ASCs; a low dose (5x10 5 ASCs/kg), or a high dose (5x10 6 ASCs/kg). For biochemical analysis, blood was collected at baseline (BL), 3, 6, 12, and 24 hours post-burn, while kidney and liver tissue was collected post-euthanasia. A significant, but transient, effect of ASCs was seen on prothrombin times and INR, wherein low doses revealed slight hypercoagulation. Burns increased partial thromboplastin time, fibrinogen, and d-dimer levels, which was unchanged with ASC administration. ASCs tended to exacerbate increases in bilirubin at 3 hours, but this didn't reach statistical significance. A significant effect of ASCs on creatinine and BUN was seen, wherein low doses elevated levels at 24 hours (creatinine, p=0.0012; BUN, p=0.0195). Hepatic and renal TUNEL staining were similar for all groups. A dose-dependent decrease in IL-8 was observed, while low doses significantly increased IL-1RA at 3 (p=0.050), IL-12 at 12 (p=0.021) and IL-6 at 24 hours post-burn (p=0.035). IV administration of xenogeneic ASCs slightly increased coagulation, but effects on burn-induced renal and hepatic dysfunction effects were minimal. Despite some significant immunomodulation, organ dysfunction effects were modest. Collectively, this study provides evidence to be skeptical about xenogeneic ASC administration in regards to burn.
Collapse
Affiliation(s)
- Tiffany C Heard
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States of America
| | - Belinda I Gómez
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States of America
| | - Micaela E Saathoff
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States of America
| | - Jamila Duarte
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States of America
| | - Michael A Dubick
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States of America
| | - James A Bynum
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States of America
| | - Robert J Christy
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States of America
| | - David M Burmeister
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| |
Collapse
|
8
|
Rangasami VK, Nawale G, Asawa K, Kadekar S, Samanta S, Nilsson B, Ekdahl KN, Miettinen S, Hilborn J, Teramura Y, Varghese OP, Oommen OP. Pluronic Micelle-Mediated Tissue Factor Silencing Enhances Hemocompatibility, Stemness, Differentiation Potential, and Paracrine Signaling of Mesenchymal Stem Cells. Biomacromolecules 2021; 22:1980-1989. [PMID: 33813822 PMCID: PMC8154246 DOI: 10.1021/acs.biomac.1c00070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Mesenchymal stem/stromal
cells (MSCs) evoke great excitement for
treating different human diseases due to their ability to home inflamed
tissues, suppress inflammation, and promote tissue regeneration. Despite
great promises, clinical trial results are disappointing as allotransplantation
of MSCs trigger thrombotic activity and are damaged by the complement
system, compromising their survival and function. To overcome this,
a new strategy is presented by the silencing of tissue factor (TF),
a transmembrane protein that mediates procoagulant activity. Novel Pluronic-based micelles are designed
with the pendant pyridyl disulfide group, which are used to conjugate
TF-targeting siRNA by the thiol-exchange reaction. This nanocarrier
design effectively delivered the payload to MSCs resulting in ∼72%
TF knockdown (KD) without significant cytotoxicity. Hematological
evaluation of MSCs and TF-KD MSCs in an ex vivo human whole blood
model revealed a significant reduction in an instant-blood-mediated-inflammatory
reaction as evidenced by reduced platelet aggregation (93% of free
platelets in the TF-KD group, compared to 22% in untreated bone marrow-derived
MSCs) and thrombin–antithrombin complex formation. Effective
TF silencing induced higher MSC differentiation in osteogenic and
adipogenic media and showed stronger paracrine suppression of proinflammatory
cytokines in macrophages and higher stimulation in the presence of
endotoxins. Thus, TF silencing can produce functional cells with higher
fidelity, efficacy, and functions.
Collapse
Affiliation(s)
- Vignesh K Rangasami
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, Tampere 33720, Finland
| | - Ganesh Nawale
- Translational Chemical Biology Laboratory, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 751 21, Sweden
| | - Kenta Asawa
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sandeep Kadekar
- Translational Chemical Biology Laboratory, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 751 21, Sweden
| | - Sumanta Samanta
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, Tampere 33720, Finland
| | - Bo Nilsson
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-75105, Sweden
| | - Kristina N Ekdahl
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-75105, Sweden.,Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar SE-391 82, Sweden
| | - Susanna Miettinen
- Adult Stem Cells Group, Faculty of Medicine and Health Technologies, Tampere University, Tampere 33014, Finland.,Research, Development and Innovation Center, Tampere University Hospital, Tampere 33520, Finland
| | - Jöns Hilborn
- Polymer Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala 751 21, Sweden
| | - Yuji Teramura
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-75105, Sweden
| | - Oommen P Varghese
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Oommen P Oommen
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, Tampere 33720, Finland
| |
Collapse
|
9
|
Laterre PF, Sánchez-García M, van der Poll T, de la Rosa O, Cadogan KA, Lombardo E, François B. A phase Ib/IIa, randomised, double-blind, multicentre trial to assess the safety and efficacy of expanded Cx611 allogeneic adipose-derived stem cells (eASCs) for the treatment of patients with community-acquired bacterial pneumonia admitted to the intensive care unit. BMC Pulm Med 2020; 20:309. [PMID: 33238991 PMCID: PMC7686829 DOI: 10.1186/s12890-020-01324-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Background Community-acquired bacterial pneumonia (CABP) can lead to sepsis and is associated with high mortality rates in patients presenting with shock and/or respiratory failure and who require mechanical ventilation and admission to intensive care units, thus reflecting the limited effectiveness of current therapy. Preclinical studies support the efficacy of expanded allogeneic adipose-derived mesenchymal stem cells (eASCs) in the treatment of sepsis. In this study, we aim to test the safety, tolerability and efficacy of eASCs as adjunctive therapy in patients with severe CABP (sCABP). Methods In addition to standard of care according to local guidelines, we will administer eASCs (Cx611) or placebo intravenously as adjunctive therapy to patients with sCABP. Enrolment is planned for approximately 180 patients who will be randomised to treatment groups in a 1:1 ratio according to a pre-defined randomization list. An equal number of patients is planned for allocation to each group. Cx611 will be administered on Day 1 and on Day 3 at a dose of 160 million cells (2 million cells / mL, total volume 80 mL) through a 20–30 min (240 mL/hr) intravenous (IV) central line infusion after dilution with Ringer Lactate solution. Placebo (Ringer Lactate) will also be administered through a 20–30 min (240 mL/hr) IV central line infusion at the same quantity (total volume of 80 mL) and following the same schedule as the active treatment. The study was initiated in January 2017 and approved by competent authorities and ethics committees in Belgium, Spain, Lithuania, Italy, Norway and France; monitoring will be performed at regular intervals. Funding is from the European Union’s Horizon 2020 Research and Innovation Program. Discussion SEPCELL is the first trial to assess the effects of eASCs in sCABP. The data generated will advance understanding of the mode of action of Cx611 and will provide evidence on the safety, tolerability and efficacy of Cx611 in patients with sCABP. These data will be critical for the design of future confirmatory clinical investigations and will assist in defining endpoints, key biomarkers of interest and sample size determination. Trial registration NCT03158727, retrospectively registered on 9 May 2017. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-020-01324-2.
Collapse
Affiliation(s)
- Pierre-François Laterre
- Intensive Care Unit, St Luc University Hospital, Université Catholique de Louvain, 10 avenue, 1200, Brussels, Belgium.
| | | | - Tom van der Poll
- The Center of Experimental and Molecular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Olga de la Rosa
- Takeda Madrid, Cell Therapy Technology Center, Tres Cantos, Spain
| | | | | | - Bruno François
- Intensive Care Unit, and Inserm CIC1435 & UMR1092, Dupuytren University Hospital, Limoges, France
| |
Collapse
|
10
|
Byrnes D, Masterson CH, Artigas A, Laffey JG. Mesenchymal Stem/Stromal Cells Therapy for Sepsis and Acute Respiratory Distress Syndrome. Semin Respir Crit Care Med 2020; 42:20-39. [PMID: 32767301 DOI: 10.1055/s-0040-1713422] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sepsis and acute respiratory distress syndrome (ARDS) constitute devastating conditions with high morbidity and mortality. Sepsis results from abnormal host immune response, with evidence for both pro- and anti-inflammatory activation present from the earliest phases. The "proinflammatory" response predominates initially causing host injury, with later-phase sepsis characterized by immune cell hypofunction and opportunistic superinfection. ARDS is characterized by inflammation and disruption of the alveolar-capillary membrane leading to injury and lung dysfunction. Sepsis is the most common cause of ARDS. Approximately 20% of deaths worldwide in 2017 were due to sepsis, while ARDS occurs in over 10% of all intensive care unit patients and results in a mortality of 30 to 45%. Given the fact that sepsis and ARDS share some-but not all-underlying pathophysiologic injury mechanisms, the lack of specific therapies, and their frequent coexistence in the critically ill, it makes sense to consider therapies for both conditions together. In this article, we will focus on the therapeutic potential of mesenchymal stem/stromal cells (MSCs). MSCs are available from several tissues, including bone marrow, umbilical cord, and adipose tissue. Allogeneic administration is feasible, an important advantage for acute conditions like sepsis or ARDS. They possess diverse mechanisms of action of relevance to sepsis and ARDS, including direct and indirect antibacterial actions, potent effects on the innate and adaptive response, and pro-reparative effects. MSCs can be preactivated thereby potentiating their effects, while the use of their extracellular vesicles can avoid whole cell administration. While early-phase clinical trials suggest safety, considerable challenges exist in moving forward to phase III efficacy studies, and to implementation as a therapy should they prove effective.
Collapse
Affiliation(s)
- Declan Byrnes
- Department of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Claire H Masterson
- Department of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Antonio Artigas
- Critical Care Center, Corporació Sanitaria Parc Tauli, CIBER Enfermedades Respiratorias, Autonomous University of Barcelona, Sabadell, Spain
| | - John G Laffey
- Department of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.,Department of Anaesthesia, SAOLTA University Health Group, Galway University Hospitals, Galway, Ireland
| |
Collapse
|
11
|
Rogers CJ, Harman RJ, Bunnell BA, Schreiber MA, Xiang C, Wang FS, Santidrian AF, Minev BR. Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients. J Transl Med 2020; 18:203. [PMID: 32423449 PMCID: PMC7232924 DOI: 10.1186/s12967-020-02380-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023] Open
Abstract
In late 2019, a novel coronavirus (SARS-CoV-2) emerged in Wuhan, capital city of Hubei province in China. Cases of SARS-CoV-2 infection quickly grew by several thousand per day. Less than 100 days later, the World Health Organization declared that the rapidly spreading viral outbreak had become a global pandemic. Coronavirus disease 2019 (COVID-19) is typically associated with fever and respiratory symptoms. It often progresses to severe respiratory distress and multi-organ failure which carry a high mortality rate. Older patients or those with medical comorbidities are at greater risk for severe disease. Inflammation, pulmonary edema and an over-reactive immune response can lead to hypoxia, respiratory distress and lung damage. Mesenchymal stromal/stem cells (MSCs) possess potent and broad-ranging immunomodulatory activities. Multiple in vivo studies in animal models and ex vivo human lung models have demonstrated the MSC's impressive capacity to inhibit lung damage, reduce inflammation, dampen immune responses and aid with alveolar fluid clearance. Additionally, MSCs produce molecules that are antimicrobial and reduce pain. Upon administration by the intravenous route, the cells travel directly to the lungs where the majority are sequestered, a great benefit for the treatment of pulmonary disease. The in vivo safety of local and intravenous administration of MSCs has been demonstrated in multiple human clinical trials, including studies of acute respiratory distress syndrome (ARDS). Recently, the application of MSCs in the context of ongoing COVID-19 disease and other viral respiratory illnesses has demonstrated reduced patient mortality and, in some cases, improved long-term pulmonary function. Adipose-derived stem cells (ASC), an abundant type of MSC, are proposed as a therapeutic option for the treatment of COVID-19 in order to reduce morbidity and mortality. Additionally, when proven to be safe and effective, ASC treatments may reduce the demand on critical hospital resources. The ongoing COVID-19 outbreak has resulted in significant healthcare and socioeconomic burdens across the globe. There is a desperate need for safe and effective treatments. Cellular based therapies hold great promise for the treatment of COVID-19. This literature summary reviews the scientific rationale and need for clinical studies of adipose-derived stem cells and other types of mesenchymal stem cells in the treatment of patients who suffer with COVID-19.
Collapse
Affiliation(s)
| | | | - Bruce A. Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA USA
| | - Martin A. Schreiber
- Department of Surgery, Oregon Health and Science University, Portland, OR USA
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center, Beijing, 100039 China
| | | | - Boris R. Minev
- Calidi Biotherapeutics, Inc., San Diego, CA USA
- Department of Radiation Medicine and Applied Sciences, Moores UCSD Cancer Center, San Diego, CA USA
| |
Collapse
|
12
|
George MJ, Prabhakara K, Toledano-Furman NE, Gill BS, Wade CE, Cotton BA, Cap AP, Olson SD, Cox CS. Procoagulant in vitro effects of clinical cellular therapeutics in a severely injured trauma population. Stem Cells Transl Med 2020; 9:491-498. [PMID: 31903737 PMCID: PMC7103617 DOI: 10.1002/sctm.19-0206] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Clinical trials in trauma populations are exploring the use of clinical cellular therapeutics (CCTs) like human mesenchymal stromal cells (MSC) and mononuclear cells (MNC). Recent studies demonstrate a procoagulant effect of these CCTs related to their expression of tissue factor (TF). We sought to examine this relationship in blood from severely injured trauma patients and identify methods to reverse this procoagulant effect. Human MSCs from bone marrow, adipose, and amniotic tissues and freshly isolated bone marrow MNC samples were tested. TF expression and phenotype were quantified using flow cytometry. CCTs were mixed individually with trauma patients' whole blood, assayed with thromboelastography (TEG), and compared with healthy subjects mixed with the same cell sources. Heparin was added to samples at increasing concentrations until TEG parameters normalized. Clotting time or R time in TEG decreased relative to the TF expression of the CCT treatment in a logarithmic fashion for trauma patients and healthy subjects. Nonlinear regression curves were significantly different with healthy subjects demonstrating greater relative decreases in TEG clotting time. In vitro coadministration of heparin normalized the procoagulant effect and required dose escalation based on TF expression. TF expression in human MSC and MNC has a procoagulant effect in blood from trauma patients and healthy subjects. The procoagulant effect is lower in trauma patients possibly because their clotting time is already accelerated. The procoagulant effect due to MSC/MNC TF expression could be useful in the bleeding trauma patient; however, it may emerge as a safety release criterion due to thrombotic risk. The TF procoagulant effect is reversible with heparin.
Collapse
Affiliation(s)
- Mitchell J George
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center, Houston, Texas
| | - Karthik Prabhakara
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center, Houston, Texas
| | - Naama E Toledano-Furman
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center, Houston, Texas
| | - Brijesh S Gill
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center, Houston, Texas
| | - Charles E Wade
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center, Houston, Texas
| | - Bryan A Cotton
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center, Houston, Texas
| | - Andrew P Cap
- U.S. Army Institute of Surgical Research, JBSA-FT Sam Houston, San Antonio, Texas
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center, Houston, Texas
| | - Charles S Cox
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center, Houston, Texas.,Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center, Houston, Texas
| |
Collapse
|
13
|
Sadeghi B, Moretti G, Arnberg F, Samén E, Kohein B, Catar R, Kamhieh-Milz J, Geissler S, Moll G, Holmin S, Ringdén O. Preclinical Toxicity Evaluation of Clinical Grade Placenta-Derived Decidua Stromal Cells. Front Immunol 2019; 10:2685. [PMID: 31803191 PMCID: PMC6877599 DOI: 10.3389/fimmu.2019.02685] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022] Open
Abstract
Placenta-derived decidua stromal cells (DSCs) are being investigated as an alternative to other sources of mesenchymal stromal cells (MSCs) for cellular therapy. DSCs are more effective in treating acute inflammatory diseases in human and this is our preclinical safety study of human DSCs in Sprague-Dawley rats and Balb/c mice. Human DSCs were cultured and expanded from fetal membranes obtained from placentas following cesarean section. In rats, 0.5 × 106 cells/kg were injected intravenously (n = 4) or intra-aortal (n = 4). In mice, DSCs were given intravenously at doses ranging from 4–40 × 106 cells/kg (total of n = 120 mice). In vivo tracking of human cells in mice was performed by using transduced DSC with luciferin gene, and in rats by using 18F-FDG PET. Clotting parameters were determined in vitro and in vivo. All intra-arterially DSC-treated rats had normal motility and behavior and histological examination was normal for liver, spleen kidneys and thigh muscles. Mice treated with DSCs showed no immediate or long-term side effects. None of the mice died or showed acute toxicity or adverse reactions 3 and 30 days after DSC infusion. Murine blood biochemistry profiles related to liver, kidney, heart, and inflammatory indices was not influenced by DSC infusion and complete blood counts were normal. In vivo tracking of infused DSCs detected a signal in the lungs for up to 4 days post infusion. Compared to bone marrow derived MSCs, the DSCs had better viability, smaller size, but stronger clotting in human blood and plasma. Both MSC- and DSC-induced coagulation and complement activation markers, thrombin-anti-thrombin complex (TAT) and C3a, and in vitro clotting parameters were decreased by heparin supplementation. In conclusion, DSCs are safe with almost no side effects even with doses 40 times higher than are used clinically, particularly when supplemented with low-dose heparin.
Collapse
Affiliation(s)
- Behnam Sadeghi
- Translational Cell Therapy Research (TCR), Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Gianluca Moretti
- Translational Cell Therapy Research (TCR), Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Fabian Arnberg
- Department of Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Neuroradiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Erik Samén
- Department of Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Neuroradiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Radiopharmacy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Bita Kohein
- Translational Cell Therapy Research (TCR), Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Rusan Catar
- Department of Nephrology and Internal Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie-Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Julian Kamhieh-Milz
- Department of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie-Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Sven Geissler
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie-Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Julius Wolff Institute (JWI), Charité-Universitätsmedizin Berlin, Corporate Member of Freie-Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie-Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie-Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie-Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Neuroradiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Olle Ringdén
- Translational Cell Therapy Research (TCR), Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|