1
|
Wenbo Z, Jianwei H, Hua L, Lei T, Guijuan C, Mengfei T. The potential of flavonoids in hepatic fibrosis: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155932. [PMID: 39146877 DOI: 10.1016/j.phymed.2024.155932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Hepatic fibrosis is a pathophysiological process of extracellular matrix abnormal deposition induced by multiple pathogenic factors. Currently, there is still a lack of effective and non-toxic drugs for treating fibrosis in clinic. Flavonoids are polyphenolic compounds synthesized in plants and modern pharmacological studies confirmed flavonoids exhibit potent hepatoprotective effect. PURPOSE Summarize literature to elaborate the mechanism of HF and evaluate the potential of flavonoids in HF, aiming to provide a new perspective for future research. METHODS The literatures about hepatic fibrosis and flavonoids are collected via a series of scientific search engines including Google Scholar, Elsevier, PubMed, CNKI, WanFang, SciFinder and Web of Science database. The key words are "flavonoids", "hepatic fibrosis", "pharmacokinetic", "toxicity", "pathogenesis" "traditional Chinese medicine" and "mechanism" as well as combination application. RESULTS Phytochemical and pharmacological studies revealed that about 86 natural flavonoids extracted from Chinese herbal medicines possess significantly anti-fibrosis effect and the mechanisms maybe through anti-inflammatory, antioxidant, inhibiting hepatic stellate cells activation and clearing activated hepatic stellate cells. CONCLUSIONS This review summarizes the flavonoids which are effective in HF and the mechanisms in vivo and in vitro. However, fewer studies are focused on the pharmacokinetics of flavonoids in HF model and most studies are limited to preclinical studies, therefore there is no reliable data from clinical trials for the development of new drugs. Further in-depth research related it can be conducted to improve the bioavailability of flavonoids and serve the development of new drugs.
Collapse
Affiliation(s)
- Zhu Wenbo
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China.
| | - Han Jianwei
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Liu Hua
- NHC Key Laboratory of Birth Defect for Research and Prevention (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, Hunan 410008, China
| | - Tang Lei
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China
| | - Chen Guijuan
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China
| | - Tian Mengfei
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China
| |
Collapse
|
2
|
Hwang S, Eom YW, Kang SH, Baik SK, Kim MY. IFN-β Overexpressing Adipose-Derived Mesenchymal Stem Cells Mitigate Alcohol-Induced Liver Damage and Gut Permeability. Int J Mol Sci 2024; 25:8509. [PMID: 39126076 PMCID: PMC11313321 DOI: 10.3390/ijms25158509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Alcoholic liver disease (ALD) is a form of hepatic inflammation. ALD is mediated by gut leakiness. This study evaluates the anti-inflammatory effects of ASCs overexpressing interferon-beta (ASC-IFN-β) on binge alcohol-induced liver injury and intestinal permeability. In vitro, ASCs were transfected with a non-viral vector carrying the human IFN-β gene, which promoted hepatocyte growth factor (HGF) secretion in the cells. To assess the potential effects of ASC-IFN-β, C57BL/6 mice were treated with three oral doses of binge alcohol and were administered intraperitoneal injections of ASC-IFN-β. Mice treated with binge alcohol and administered ASC-IFN-β showed reduced liver injury and inflammation compared to those administered a control ASC. Analysis of intestinal tissue from ethanol-treated mice administered ASC-IFN-β also indicated decreased inflammation. Additionally, fecal albumin, blood endotoxin, and bacterial colony levels were reduced, indicating less gut leakiness in the binge alcohol-exposed mice. Treatment with HGF, but not IFN-β or TRAIL, mitigated the ethanol-induced down-regulation of cell death and permeability in Caco-2 cells. These results demonstrate that ASCs transfected with a non-viral vector to induce IFN-β overexpression have protective effects against binge alcohol-mediated liver injury and gut leakiness via HGF.
Collapse
Affiliation(s)
- Soonjae Hwang
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Republic of Korea;
- Regeneration Medicine Research Center, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Republic of Korea; (Y.W.E.); (S.K.B.)
- Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Republic of Korea
| | - Young Woo Eom
- Regeneration Medicine Research Center, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Republic of Korea; (Y.W.E.); (S.K.B.)
- Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Republic of Korea
| | - Seong Hee Kang
- Department of Internal Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea;
| | - Soon Koo Baik
- Regeneration Medicine Research Center, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Republic of Korea; (Y.W.E.); (S.K.B.)
- Department of Internal Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Republic of Korea
| | - Moon Young Kim
- Regeneration Medicine Research Center, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Republic of Korea; (Y.W.E.); (S.K.B.)
- Department of Internal Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Republic of Korea
| |
Collapse
|
3
|
Wang X, Wang Y, Lu W, Qu J, Zhang Y, Ye J. Effectiveness and mechanisms of mesenchymal stem cell therapy in preclinical animal models of hepatic fibrosis: a systematic review and meta-analysis. Front Bioeng Biotechnol 2024; 12:1424253. [PMID: 39104627 PMCID: PMC11299041 DOI: 10.3389/fbioe.2024.1424253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/26/2024] [Indexed: 08/07/2024] Open
Abstract
Background Liver damage due to long-term viral infection, alcohol consumption, autoimmune decline, and other factors could lead to the gradual development of liver fibrosis. Unfortunately, until now, there has been no effective treatment for liver fibrosis. Mesenchymal stem cells, as a promising new therapy for liver fibrosis, can slow the progression of fibrosis by migrating to the site of liver injury and by altering the microenvironment of the fibrotic area. Aim By including all relevant studies to date to comprehensively assess the efficacy of mesenchymal stem cells for the treatment of hepatic fibrosis and to explore considerations for clinical translation and therapeutic mechanisms. Methods Data sources included PubMed, Web of Science, Embase, and Cochrane Library, and were constructed until October 2023. Data for each study outcome indicator were extracted for comprehensive analysis. Results The overall meta-analysis showed that mesenchymal stem cells significantly improved liver function. Moreover, it inhibited the expression level of transforming growth factor-β [SMD = 4.21, 95% CI (3.02,5.40)], which in turn silenced hepatic stellate cells and significantly reduced the area of liver fibrosis [SMD = 3.61, 95% CI (1.41,5.81)]. Conclusion Several outcome indicators suggest that mesenchymal stem cells therapy is relatively reliable in the treatment of liver fibrosis. The therapeutic effect is cell dose-dependent over a range of doses, but not more effective at higher doses. Bone-marrow derived mesenchymal stem cells were more effective in treating liver fibrosis than mesenchymal stem cells from other sources. Systematic Review Registration Identifier CRD42022354768.
Collapse
Affiliation(s)
- Xuesong Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- School of Rehabilitation Medicine Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, China
| | - Yue Wang
- College of Nursing, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Wenming Lu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- School of Rehabilitation Medicine Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, China
| | - Jiayang Qu
- Rehabilitation Assessment and Treatment Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yang Zhang
- School of Rehabilitation Medicine Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
4
|
Huai Q, Zhu C, Zhang X, Dai H, Li X, Wang H. Mesenchymal stem/stromal cells armored by FGF21 ameliorate alcohol-induced liver injury through modulating polarization of macrophages. Hepatol Commun 2024; 8:e0410. [PMID: 38551384 PMCID: PMC10984668 DOI: 10.1097/hc9.0000000000000410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/01/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Alcohol-associated liver disease (ALD) is a major health care challenge worldwide with limited therapeutic options. Although mesenchymal stem/stromal cells (MSCs) represent a newly emerging therapeutic approach to treat ALD, thus far, there have been extensive efforts to try and enhance their efficacy, including genetically engineering MSCs. FGF21, an endocrine stress-responsive hormone, has been shown to regulate energy balance, glucose, and lipid metabolism and to enhance the homing of MSCs toward injured sites. Therefore, the purpose of this study was to investigate whether MSCs that overexpress FGF21 (FGF21-MSCs) improve the therapeutic effect of MSCs in treating ALD. METHODS Human umbilical cord-derived MSCs served as the gene delivery vehicle for the FGF21 gene. Human umbilical cord-derived MSCs were transduced with the FGF21 gene using lentiviral vectors to mediate FGF21 overexpression. We utilized both chronic Lieber-DeCarli and Gao-binge models of ethanol-induced liver injury to observe the therapeutic effect of FGF21-MSCs. Liver injury was phenotypically evaluated by performing biochemical methods, histology, and inflammatory cytokine levels. RESULTS Compared with MSCs alone, administration of MSCs overexpressing FGF21(FGF21-MSCs) treatment significantly enhanced the therapeutic effect of ALD in mice, as indicated by the alleviation of liver injury with reduced steatosis, inflammatory infiltration, oxidative stress, and hepatic apoptosis, and the promotion of liver regeneration. Mechanistically, FGF21 could facilitate the immunomodulatory function of MSCs on macrophages by setting metabolic commitment for oxidative phosphorylation, which enables macrophages to exhibit anti-inflammatory inclination. CONCLUSIONS Our data elucidate that MSC modification by FGF21 could enhance their therapeutic effect in ALD and may help in the exploration of effective MSCs-based cell therapies for the treatment of ALD.
Collapse
Affiliation(s)
- Qian Huai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Inflammation and Immune-mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Cheng Zhu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Inflammation and Immune-mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Xu Zhang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Inflammation and Immune-mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Hanren Dai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Inflammation and Immune-mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Xiaolei Li
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Inflammation and Immune-mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Inflammation and Immune-mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Chen L, Zhang N, Huang Y, Zhang Q, Fang Y, Fu J, Yuan Y, Chen L, Chen X, Xu Z, Li Y, Izawa H, Xiang C. Multiple Dimensions of using Mesenchymal Stem Cells for Treating Liver Diseases: From Bench to Beside. Stem Cell Rev Rep 2023; 19:2192-2224. [PMID: 37498509 DOI: 10.1007/s12015-023-10583-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
Liver diseases impose a huge burden worldwide. Although hepatocyte transplantation has long been considered as a potential strategy for treating liver diseases, its clinical implementation has created some obvious limitations. As an alternative strategy, cell therapy, particularly mesenchymal stem cell (MSC) transplantation, is widely used in treating different liver diseases, including acute liver disease, acute-on-chronic liver failure, hepatitis B/C virus, autoimmune hepatitis, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, alcoholic liver disease, liver fibrosis, liver cirrhosis, and hepatocellular carcinoma. Here, we summarize the status of MSC transplantation in treating liver diseases, focusing on the therapeutic mechanisms, including differentiation into hepatocyte-like cells, immunomodulating function with a variety of immune cells, paracrine effects via the secretion of various cytokines and extracellular vesicles, and facilitation of homing and engraftment. Some improved perspectives and current challenges are also addressed. In summary, MSCs have great potential in the treatment of liver diseases based on their multi-faceted characteristics, and more accurate mechanisms and novel therapeutic strategies stemming from MSCs will facilitate clinical practice.
Collapse
Affiliation(s)
- Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Ning Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yuqi Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Qi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yangxin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Jiamin Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Lu Chen
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, 311215, People's Republic of China
| | - Xin Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, People's Republic of China
| | - Zhenyu Xu
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, 311215, People's Republic of China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Hiromi Izawa
- Jingugaien Woman Life Clinic, Jingu-Gaien 3-39-5 2F, Shibuya-Ku, Tokyo, Japan
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
6
|
Zhao P, Sun T, Lyu C, Liang K, Du Y. Cell mediated ECM-degradation as an emerging tool for anti-fibrotic strategy. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:29. [PMID: 37653282 PMCID: PMC10471565 DOI: 10.1186/s13619-023-00172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/10/2023] [Indexed: 09/02/2023]
Abstract
Investigation into the role of cells with respect to extracellular matrix (ECM) remodeling is still in its infancy. Particularly, ECM degradation is an indispensable process during the recovery from fibrosis. Cells with ECM degradation ability due to the secretion of various matrix metalloproteinases (MMPs) have emerged as novel contributors to the treatment of fibrotic diseases. In this review, we focus on the ECM degradation ability of cells associated with the repertoire of MMPs that facilitate the attenuation of fibrosis through the inhibition of ECM deposition. Besides, innovative approaches to engineering and characterizing cells with degradation ability, as well as elucidating the mechanism of the ECM degradation, are also illustrated. Studies conducted to date on the use of cell-based degradation for therapeutic purposes to combat fibrosis are summarized. Finally, we discuss the therapeutic potential of cells with high degradation ability, hoping to bridge the gap between benchside research and bedside applications in treating fibrotic diseases.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tian Sun
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Cheng Lyu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Yang X, Li Q, Liu W, Zong C, Wei L, Shi Y, Han Z. Mesenchymal stromal cells in hepatic fibrosis/cirrhosis: from pathogenesis to treatment. Cell Mol Immunol 2023; 20:583-599. [PMID: 36823236 PMCID: PMC10229624 DOI: 10.1038/s41423-023-00983-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/29/2023] [Indexed: 02/25/2023] Open
Abstract
Hepatic fibrosis/cirrhosis is a significant health burden worldwide, resulting in liver failure or hepatocellular carcinoma (HCC) and accounting for many deaths each year. The pathogenesis of hepatic fibrosis/cirrhosis is very complex, which makes treatment challenging. Endogenous mesenchymal stromal cells (MSCs) have been shown to play pivotal roles in the pathogenesis of hepatic fibrosis. Paradoxically, exogenous MSCs have also been used in clinical trials for liver cirrhosis, and their effectiveness has been observed in most completed clinical trials. There are still many issues to be resolved to promote the use of MSCs in the clinic in the future. In this review, we will examine the controversial role of MSCs in the pathogenesis and treatment of hepatic fibrosis/cirrhosis. We also investigated the clinical trials involving MSCs in liver cirrhosis, summarized the parameters that need to be standardized, and discussed how to promote the use of MSCs from a clinical perspective.
Collapse
Affiliation(s)
- Xue Yang
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, 215000, China
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenting Liu
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Chen Zong
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Lixin Wei
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, 215000, China.
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Zhipeng Han
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China.
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China.
| |
Collapse
|
8
|
Sani F, Sani M, Moayedfard Z, Darayee M, Tayebi L, Azarpira N. Potential advantages of genetically modified mesenchymal stem cells in the treatment of acute and chronic liver diseases. Stem Cell Res Ther 2023; 14:138. [PMID: 37226279 DOI: 10.1186/s13287-023-03364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Liver damage caused by toxicity can lead to various severe conditions, such as acute liver failure (ALF), fibrogenesis, and cirrhosis. Among these, liver cirrhosis (LC) is recognized as the leading cause of liver-related deaths globally. Unfortunately, patients with progressive cirrhosis are often on a waiting list, with limited donor organs, postoperative complications, immune system side effects, and high financial costs being some of the factors restricting transplantation. Although the liver has some capacity for self-renewal due to the presence of stem cells, it is usually insufficient to prevent the progression of LC and ALF. One potential therapeutic approach to improving liver function is the transplantation of gene-engineered stem cells. Several types of mesenchymal stem cells from various sources have been suggested for stem cell therapy for liver disease. Genetic engineering is an effective strategy that enhances the regenerative potential of stem cells by releasing growth factors and cytokines. In this review, we primarily focus on the genetic engineering of stem cells to improve their ability to treat damaged liver function. We also recommend further research into accurate treatment methods that involve safe gene modification and long-term follow-up of patients to increase the effectiveness and reliability of these therapeutic strategies.
Collapse
Affiliation(s)
- Farnaz Sani
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Sani
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Moayedfard
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Darayee
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Khalili Street, P.O. Box: 7193711351, Shiraz, Iran.
| |
Collapse
|
9
|
Hu G, Cui Z, Chen X, Sun F, Li T, Li C, Zhang L, Guo X, Zhao H, Xia Y, Yan W, Yi W, Fan M, Yang R, Wang S, Tao L, Zhang F. Suppressing Mesenchymal Stromal Cell Ferroptosis Via Targeting a Metabolism-Epigenetics Axis Corrects their Poor Retention and Insufficient Healing Benefits in the Injured Liver Milieu. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206439. [PMID: 36808838 PMCID: PMC10161111 DOI: 10.1002/advs.202206439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/28/2023] [Indexed: 05/06/2023]
Abstract
Mesenchymal stromal cell (MSC) implantation is a promising option for liver repair, but their poor retention in the injured liver milieu critically blunts therapeutic effects. The aim is to clarify the mechanisms underlying massive MSC loss post-implantation and establish corresponding improvement strategies. MSC loss primarily occurs within the initial hours after implantation into the injured liver milieu or under reactive oxygen species (ROS) stress. Surprisingly, ferroptosis is identified as the culprit for rapid depletion. In ferroptosis- or ROS-provoking MSCs, branched-chain amino acid transaminase-1 (BCAT1) is dramatically decreased, and its downregulation renders MSC susceptible to ferroptosis via suppressing the transcription of glutathione peroxidase-4 (GPX4), a vital ferroptosis defensing enzyme. BCAT1 downregulation impedes GPX4 transcription via a rapid-responsive metabolism-epigenetics coordinating mechanism, involving α-ketoglutarate accumulation, histone 3 lysine 9 trimethylation loss, and early growth response protein-1 upregulation. Approaches to suppress ferroptosis (e.g., incorporating ferroptosis inhibitors in injection solvent and overexpressing BCAT1) significantly improve MSC retention and liver-protective effects post-implantation. This study provides the first evidence indicating that excessive MSC ferroptosis is the nonnegligible culprit for their rapid depletion and insufficient therapeutic efficacy after implantation into the injured liver milieu. Strategies suppressing MSC ferroptosis are conducive to optimizing MSC-based therapy.
Collapse
Affiliation(s)
- Guangyu Hu
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Zhe Cui
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xiyao Chen
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Fangfang Sun
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Tongzheng Li
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Ling Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xiong Guo
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Hang Zhao
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Miaomiao Fan
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Rongjin Yang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Shan Wang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| |
Collapse
|
10
|
Liu P, Qian Y, Liu X, Zhu X, Zhang X, Lv Y, Xiang J. Immunomodulatory role of mesenchymal stem cell therapy in liver fibrosis. Front Immunol 2023; 13:1096402. [PMID: 36685534 PMCID: PMC9848585 DOI: 10.3389/fimmu.2022.1096402] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Liver fibrosis is a fibrogenic and inflammatory process that results from hepatocyte injury and is characterized by hepatic architectural distortion and resultant loss of liver function. There is no effective treatment for advanced fibrosis other than liver transplantation, but it is limited by expensive costs, immune rejection, and postoperative complications. With the development of regenerative medicine in recent years, mesenchymal stem cell (MSCs) transplantation has become the most promising treatment for liver fibrosis. The underlying mechanisms of MSC anti-fibrotic effects include hepatocyte differentiation, paracrine, and immunomodulation, with immunomodulation playing a central role. This review discusses the immune cells involved in liver fibrosis, the immunomodulatory properties of MSCs, and the immunomodulation mechanisms of MSC-based strategies to attenuate liver fibrosis. Meanwhile, we discuss the current challenges and future directions as well.
Collapse
Affiliation(s)
- Peng Liu
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yerong Qian
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xin Liu
- Department of Radiotherapy, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Xulong Zhu
- Department of Surgical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Xufeng Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yi Lv
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Junxi Xiang, ; Yi Lv,
| | - Junxi Xiang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Junxi Xiang, ; Yi Lv,
| |
Collapse
|
11
|
Advance of Mesenchymal Stem Cells in Chronic End-Stage Liver Disease Control. Stem Cells Int 2022; 2022:1526217. [PMID: 36248254 PMCID: PMC9568364 DOI: 10.1155/2022/1526217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/18/2022] [Accepted: 09/25/2022] [Indexed: 11/26/2022] Open
Abstract
The chronic liver diseases will slowly develop into liver fibrosis, cirrhosis, and even liver cancer if no proper control is performed with high efficiency. Up to now, the most effective treatment for end-stage liver diseases is liver transplantation. However, liver transplantation has the problems of donor deficiency, low matching rate, surgical complications, high cost, and immune rejection. These problems indicate that novel therapeutic strategies are urgently required. Mesenchymal stem cells (MSCs) are somatic stem cells with multidirectional differentiation potential and self-renewal ability. MSCs can secrete a large number of cytokines, chemokines, immunomodulatory molecules, and hepatotrophic factors, as well as produce extracellular vesicles. They alleviate liver diseases by differentiating to hepatocyte-like cells, immunomodulation, homing to the injured site, regulating cell ferroptosis, regulating cell autophagy, paracrine effects, and MSC-mitochondrial transfer. In this review, we focus on the main resources of MSCs, underlying therapeutic mechanisms, clinical applications, and efforts made to improve MSC-based cell therapy efficiency.
Collapse
|
12
|
Liu P, Mao Y, Xie Y, Wei J, Yao J. Stem cells for treatment of liver fibrosis/cirrhosis: clinical progress and therapeutic potential. Stem Cell Res Ther 2022; 13:356. [PMID: 35883127 PMCID: PMC9327386 DOI: 10.1186/s13287-022-03041-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
Cost-effective treatment strategies for liver fibrosis or cirrhosis are limited. Many clinical trials of stem cells for liver disease shown that stem cells might be a potential therapeutic approach. This review will summarize the published clinical trials of stem cells for the treatment of liver fibrosis/cirrhosis and provide the latest overview of various cell sources, cell doses, and delivery methods. We also describe the limitations and strengths of various stem cells in clinical applications. Furthermore, to clarify how stem cells play a therapeutic role in liver fibrosis, we discuss the molecular mechanisms of stem cells for treatment of liver fibrosis, including liver regeneration, immunoregulation, resistance to injury, myofibroblast repression, and extracellular matrix degradation. We provide a perspective for the prospects of future clinical implementation of stem cells.
Collapse
Affiliation(s)
- Pinyan Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yongcui Mao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ye Xie
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jiayun Wei
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jia Yao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China. .,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.
| |
Collapse
|
13
|
Yao L, Hu X, Dai K, Yuan M, Liu P, Zhang Q, Jiang Y. Mesenchymal stromal cells: promising treatment for liver cirrhosis. Stem Cell Res Ther 2022; 13:308. [PMID: 35841079 PMCID: PMC9284869 DOI: 10.1186/s13287-022-03001-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/13/2022] [Indexed: 11/11/2022] Open
Abstract
Liver fibrosis is a wound-healing process that occurs in response to severe injuries and is hallmarked by the excessive accumulation of extracellular matrix or scar tissues within the liver. Liver fibrosis can be either acute or chronic and is induced by a variety of hepatotoxic causes, including lipid deposition, drugs, viruses, and autoimmune reactions. In advanced fibrosis, liver cirrhosis develops, a condition for which there is no successful therapy other than liver transplantation. Although liver transplantation is still a viable option, numerous limitations limit its application, including a lack of donor organs, immune rejection, and postoperative complications. As a result, there is an immediate need for a different kind of therapeutic approach. Recent research has shown that the administration of mesenchymal stromal cells (MSCs) is an attractive treatment modality for repairing liver injury and enhancing liver regeneration. This is accomplished through the cell migration into liver sites, immunoregulation, hepatogenic differentiation, as well as paracrine mechanisms. MSCs can also release a huge variety of molecules into the extracellular environment. These molecules, which include extracellular vesicles, lipids, free nucleic acids, and soluble proteins, exert crucial roles in repairing damaged tissue. In this review, we summarize the characteristics of MSCs, representative clinical study data, and the potential mechanisms of MSCs-based strategies for attenuating liver cirrhosis. Additionally, we examine the processes that are involved in the MSCs-dependent modulation of the immune milieu in liver cirrhosis. As a result, our findings lend credence to the concept of developing a cell therapy treatment for liver cirrhosis that is premised on MSCs. MSCs can be used as a candidate therapeutic agent to lengthen the survival duration of patients with liver cirrhosis or possibly reverse the condition in the near future.
Collapse
Affiliation(s)
- Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Kai Dai
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Pingji Liu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Qiuling Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
14
|
Tang Y, Wu P, Li L, Xu W, Jiang J. Mesenchymal Stem Cells and Their Small Extracellular Vesicles as Crucial Immunological Efficacy for Hepatic Diseases. Front Immunol 2022; 13:880523. [PMID: 35603168 PMCID: PMC9121380 DOI: 10.3389/fimmu.2022.880523] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cell small extracellular vesicles (MSC-sEVs) are a priority for researchers because of their role in tissue regeneration. sEVs act as paracrine factors and carry various cargos, revealing the state of the parent cells and contributing to cell–cell communication during both physiological and pathological circumstances. Hepatic diseases are mainly characterized by inflammatory cell infiltration and hepatocyte necrosis and fibrosis, bringing the focus onto immune regulation and other regulatory mechanisms of MSCs/MSC-sEVs. Increasing evidence suggests that MSCs and their sEVs protect against acute and chronic liver injury by inducing macrophages (MΦ) to transform into the M2 subtype, accelerating regulatory T/B (Treg/Breg) cell activation and promoting immunosuppression. MSCs/MSC-sEVs also prevent the proliferation and differentiation of T cells, B cells, dendritic cells (DCs), and natural killer (NK) cells. This review summarizes the potential roles for MSCs/MSC-sEVs, including immunomodulation and tissue regeneration, in various liver diseases. There is also a specific focus on the use of MSC-sEVs for targeted drug delivery to treat hepatitis.
Collapse
Affiliation(s)
- Yuting Tang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Peipei Wu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Linli Li
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Wenrong Xu, ; Jiajia Jiang,
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Wenrong Xu, ; Jiajia Jiang,
| |
Collapse
|
15
|
Sun X, Guo S. Effectiveness of cell- and colony stimulating factor-based therapy for liver cirrhosis: a network meta-analysis of randomized controlled trials. Cytotherapy 2022; 24:516-525. [PMID: 35227600 DOI: 10.1016/j.jcyt.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AIMS Cirrhosis is the 11th leading cause of death worldwide. Because of the limitations of liver transplantation, cell- and granulocyte colony-stimulating factor (G-CSF)-based therapies are considered potential treatment methods. This work analyzes the effectiveness of cell- and G-CSF-based therapies by network meta-analysis. METHODS A literature search was performed in four databases from inception to September 10, 2021. Registered randomized controlled trials (RCTs) evaluating cell-based therapies and/or G-CSF-based therapies for cirrhosis patients were included. Traditional and network meta-analyses were analyzed in terms of survival, model for end-stage liver disease (MELD) score, Child-Turcotte-Pugh (CTP) score, alanine aminotransferase levels and aspartate aminotransferase levels. RESULTS Twenty-four studies were included in this analysis. The results showed that G-CSF-based therapies (odds ratio [OR], 2.38, 95% confidence interval [CI], 1.49-3.79, P < 0.01) and cell-based therapies (OR, 1.54, 95% CI, 1.00-2.40, P = 0.048) improved the transplantation-free survival rate compared with standard medical treatment. Network analysis results showed that G-CSF combined with erythropoietin (EPO) and growth hormone (GH) had a therapeutic advantage, and cell-based therapy with mononuclear cell (MNC) hepatic artery injection and intravenous mesenchymal stem cells (MSCs) combined with G-CSF also had a relative advantage in terms of survival outcome. For the MELD score, G-CSF plus GH and MSC portal vein injection had relative advantages. G-CSF plus GH and G-CSF plus EPO had advantages in terms of CTP scores. The included strategies demonstrated no obvious improvement in liver injury indicators. CONCLUSIONS Cell-based therapy has potential therapeutic effects for liver cirrhosis. Among cell-based therapies, intravenous MSCs and hepatic artery injection of MNCs have advantageous therapeutic effects. The use of G-CSF was also noted in regimens that improved survival outcomes. However, more well-designed, large-scale RCTs are needed to confirm this conclusion.
Collapse
Affiliation(s)
- Xiaojun Sun
- Inpatients Department, Nanjing Qi-xia Xi-gang Community Health Service Centers, Nanjing, China
| | - Shilei Guo
- Research and Development Department, Nanjing Regenerative Medicine Engineering and Technology Research Center, Nanjing, China.
| |
Collapse
|
16
|
Zhu Y, Luo M, Bai X, Lou Y, Nie P, Jiang S, Li J, Li B, Luo P. Administration of mesenchymal stem cells in diabetic kidney disease: mechanisms, signaling pathways, and preclinical evidence. Mol Cell Biochem 2022; 477:2073-2092. [PMID: 35469057 DOI: 10.1007/s11010-022-04421-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Diabetic kidney disease (DKD) is a serious microvascular complication of diabetes. Currently, the prevalence and mortality of DKD are increasing annually. However, with no effective drugs to prevent its occurrence and development, the primary therapeutic option is to control blood sugar and blood pressure. Therefore, new and effective drugs/methods are imperative to prevent the development of DKD in patients with diabetes. Mesenchymal stem cells (MSCs) with multi-differentiation potential and paracrine function have received extensive attention as a new treatment option for DKD. However, their role and mechanism in the treatment of DKD remain unclear, and clinical applications are still being explored. Given this, we here provide an unbiased review of recent advances in MSCs for the treatment of DKD in the last decade from the perspectives of the pathogenesis of DKD, biological characteristics of MSCs, and different molecular and signaling pathways. Furthermore, we summarize information on combination therapy strategies using MSCs. Finally, we discuss the challenges and prospects for clinical application.
Collapse
Affiliation(s)
- Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Manyu Luo
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Yan Lou
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Shan Jiang
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Jicui Li
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China.
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China.
| |
Collapse
|
17
|
Wang Y, Huang B, Jin T, Ocansey DKW, Jiang J, Mao F. Intestinal Fibrosis in Inflammatory Bowel Disease and the Prospects of Mesenchymal Stem Cell Therapy. Front Immunol 2022; 13:835005. [PMID: 35370998 PMCID: PMC8971815 DOI: 10.3389/fimmu.2022.835005] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal fibrosis is an important complication of inflammatory bowel disease (IBD). In the course of the development of fibrosis, certain parts of the intestine become narrowed, significantly destroying the structure and function of the intestine and affecting the quality of life of patients. Chronic inflammation is an important initiating factor of fibrosis. Unfortunately, the existing anti-inflammatory drugs cannot effectively prevent and alleviate fibrosis, and there is no effective anti-fibrotic drug, which makes surgical treatment the mainstream treatment for intestinal fibrosis and stenosis. Mesenchymal stem cells (MSCs) are capable of tissue regeneration and repair through their self-differentiation, secretion of cytokines, and secretion of extracellular vesicles. MSCs have been shown to play an important therapeutic role in the fibrosis of many organs. However, the role of MSC in intestinal fibrosis largely remained unexplored. This review summarizes the mechanism of intestinal fibrosis, including the role of immune cells, TGF-β, and the gut microbiome and metabolites. Available treatment options for fibrosis, particularly, MSCs are also discussed.
Collapse
Affiliation(s)
- Yifei Wang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Bin Huang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- General Surgery Department, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
| | - Tao Jin
- Department of Gastrointestinal and Endoscopy, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Jiajia Jiang, ; Fei Mao,
| | - Fei Mao
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Jiajia Jiang, ; Fei Mao,
| |
Collapse
|
18
|
Challenges and advances in clinical applications of mesenchymal stromal cells. J Hematol Oncol 2021; 14:24. [PMID: 33579329 PMCID: PMC7880217 DOI: 10.1186/s13045-021-01037-x] [Citation(s) in RCA: 295] [Impact Index Per Article: 98.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, have been intensely investigated for clinical applications within the last decades. However, the majority of registered clinical trials applying MSC therapy for diverse human diseases have fallen short of expectations, despite the encouraging pre-clinical outcomes in varied animal disease models. This can be attributable to inconsistent criteria for MSCs identity across studies and their inherited heterogeneity. Nowadays, with the emergence of advanced biological techniques and substantial improvements in bio-engineered materials, strategies have been developed to overcome clinical challenges in MSC application. Here in this review, we will discuss the major challenges of MSC therapies in clinical application, the factors impacting the diversity of MSCs, the potential approaches that modify MSC products with the highest therapeutic potential, and finally the usage of MSCs for COVID-19 pandemic disease.
Collapse
|