1
|
Dutta M, Qamar T, Kushavah U, Siddiqi MI, Kar S. Exploring host epigenetic enzymes as targeted therapies for visceral leishmaniasis: in silico design and in vitro efficacy of KDM6B and ASH1L inhibitors. Mol Divers 2024; 28:4403-4424. [PMID: 38522046 DOI: 10.1007/s11030-024-10824-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/18/2024] [Indexed: 03/25/2024]
Abstract
In order to combat various infectious diseases, the utilization of host-directed therapies as an alternative to chemotherapy has gained a lot of attention in the recent past, since it bypasses the existing limitations of conventional therapies. The use of host epigenetic enzymes like histone lysine methyltransferases and lysine demethylases as potential drug targets has successfully been employed for controlling various inflammatory diseases like rheumatoid arthritis and acute leukemia. In our earlier study, we have already shown that the functional knockdown of KDM6B and ASH1L in the experimental model of visceral leishmaniasis has resulted in a significant reduction of organ parasite burden. Herein, we performed a high throughput virtual screening against KDM6B and ASH1L using > 53,000 compounds that were obtained from the Maybridge library and PubChem Database, followed by molecular docking to evaluate their docking score/Glide Gscore. Based on their docking scores, the selected inhibitors were later assessed for their in vitro anti-leishmanial efficacy. Out of all inhibitors designed against KDM6B and ASH1L, HTS09796, GSK-J4 and AS-99 particularly showed promising in vitro activity with IC50 < 5 µM against both extracellular promastigote and intracellular amastigote forms of L. donovani. In vitro drug interaction studies of these inhibitors further demonstrated their synergistic interaction with amphotericin-B and miltefosine. However, GSK-J4 makes an exception by displaying an in different mode of interaction with miltefosine. Collectively, our in silico and in vitro studies acted as a platform to identify the applicability of these inhibitors targeted against KDM6B and ASH1L for anti-leishmanial therapy.
Collapse
Affiliation(s)
- Mukul Dutta
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
- Molecular Microbiology & Immunology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tooba Qamar
- Molecular Microbiology & Immunology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, 226014, India
| | - Unnati Kushavah
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohammad Imran Siddiqi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Susanta Kar
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India.
- Molecular Microbiology & Immunology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Feng S, Feng Q, Dong L, Lv Q, Mei S, Zhang Y. Periostin/Bone Morphogenetic Protein 1 axis axis regulates proliferation and osteogenic differentiation of sutured mesenchymal stem cells and affects coronal suture closure in the TWIST1 +/- mouse model of craniosynostosis. J Orthop Surg Res 2024; 19:146. [PMID: 38369459 PMCID: PMC10875791 DOI: 10.1186/s13018-024-04604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND AND OBJECTIVE The pathogenesis of coronal suture craniosynostosis is often attributed to the dysregulated cellular dynamics, particularly the excessive proliferation and abnormal osteogenic differentiation of suture cells. Despite its clinical significance, the molecular mechanims of this condition remain inadequately understood. This study is dedicated to exploring the influence of the Periostin/Bone Morphogenetic Protein 1 (BMP1) axis on the growth and osteogenic maturation of Suture Mesenchymal Stem Cells (SMSCs), which are pivotal in suture homeostasis. METHODS Neonatal TWIST Basic Helix-Loop-Helix Transcription Factor 1 heterozygous (TWIST1+/-) mice, aged one day, were subjected to adenoviral vector-mediated Periostin upregulation. To modulate Periostin/BMP1 levels in SMSCs, we employed siRNA and pcDNA 3.1 vectors. Histological and molecular characterizations, including hematoxylin and eosin staining, Western blot, and immunohistochemistry were employed to study suture closure phenotypes and protein expression patterns. Cellular assays, encompassing colony formation, 5-ethynyl-2'deoxyuridine, and wound healing tests were conducted to analyze SMSC proliferation and migration. Osteogenic differentiation was quantified using Alkaline Phosphatase (ALP) and Alizarin Red S (ARS) staining, while protein markers of proliferation and differentiation were evaluated by Western blotting. The direct interaction between Periostin and BMP1 was validated through co-immunoprecipitation assays. RESULTS In the TWIST1+/- model, an upregulation of Periostin coupled with a downregulation of BMP1 was observed. Augmenting Periostin expression mitigated craniosynostosis. In vitro, overexpression of Periostin or BMP1 knockdown suppressed SMSC proliferation, migration, and osteogenic differentiation. Periostin knockdown manifested an inverse biological impact. Notably, the suppressive influence of Periostin overexpression on SMSCs was effectively counteracted by upregulating BMP1. There was a direct interaction between Periostin and BMP1. CONCLUSION These findings underscore the significance of the Periostin/BMP1 axis in regulating craniosynostosis and SMSC functions, providing new insights into the molecular mechanisms of craniosynostosis and potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- ShuBin Feng
- Department of Neurosurgery, Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, Zhengzhou City, 450018, Henan Province, China
| | - Qiang Feng
- Department of Neurosurgery, Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, Zhengzhou City, 450018, Henan Province, China
| | - LiuJian Dong
- Department of Neurosurgery, Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, Zhengzhou City, 450018, Henan Province, China
| | - Qiang Lv
- Department of Neurosurgery, Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, Zhengzhou City, 450018, Henan Province, China
| | - ShiYue Mei
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, No.33, Longhu Outer Ring East Road, Zhengdong New District, Zhengzhou City, 450018, Henan Province, China
| | - YaoDong Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, No.33, Longhu Outer Ring East Road, Zhengdong New District, Zhengzhou City, 450018, Henan Province, China.
| |
Collapse
|
3
|
Gao CW, Lin W, Riddle RC, Kushwaha P, Boukas L, Björnsson HT, Hansen KD, Fahrner JA. A mouse model of Weaver syndrome displays overgrowth and excess osteogenesis reversible with KDM6A/6B inhibition. JCI Insight 2024; 9:e173392. [PMID: 38015625 PMCID: PMC10906465 DOI: 10.1172/jci.insight.173392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Weaver syndrome is a Mendelian disorder of the epigenetic machinery (MDEM) caused by germline pathogenic variants in EZH2, which encodes the predominant H3K27 methyltransferase and key enzymatic component of Polycomb repressive complex 2 (PRC2). Weaver syndrome is characterized by striking overgrowth and advanced bone age, intellectual disability, and distinctive facies. We generated a mouse model for the most common Weaver syndrome missense variant, EZH2 p.R684C. Ezh2R684C/R684C mouse embryonic fibroblasts (MEFs) showed global depletion of H3K27me3. Ezh2R684C/+ mice had abnormal bone parameters, indicative of skeletal overgrowth, and Ezh2R684C/+ osteoblasts showed increased osteogenic activity. RNA-Seq comparing osteoblasts differentiated from Ezh2R684C/+, and Ezh2+/+ BM-mesenchymal stem cells (BM-MSCs) indicated collective dysregulation of the BMP pathway and osteoblast differentiation. Inhibition of the opposing H3K27 demethylases KDM6A and KDM6B substantially reversed the excessive osteogenesis in Ezh2R684C/+ cells both at the transcriptional and phenotypic levels. This supports both the ideas that writers and erasers of histone marks exist in a fine balance to maintain epigenome state and that epigenetic modulating agents have therapeutic potential for the treatment of MDEMs.
Collapse
Affiliation(s)
- Christine W. Gao
- Department of Genetic Medicine
- Department of Molecular Biology and Genetics, and
| | | | - Ryan C. Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| | - Priyanka Kushwaha
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leandros Boukas
- Department of Genetic Medicine
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
| | - Hans T. Björnsson
- Department of Genetic Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Landspítali University Hospital, Reykjavík, Iceland
| | - Kasper D. Hansen
- Department of Genetic Medicine
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jill A. Fahrner
- Department of Genetic Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Dashti P, Thaler R, Hawse JR, Galvan ML, van der Eerden BJ, van Wijnen AJ, Dudakovic A. G-protein coupled receptor 5C (GPRC5C) is required for osteoblast differentiation and responds to EZH2 inhibition and multiple osteogenic signals. Bone 2023; 176:116866. [PMID: 37558192 PMCID: PMC10962865 DOI: 10.1016/j.bone.2023.116866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
Osteoblast differentiation is epigenetically suppressed by the H3K27 methyltransferase EZH2, and induced by the morphogen BMP2 and transcription factor RUNX2. These factors also regulate distinct G protein coupled receptors (GPRCs; e.g., PTH1R, GPR30/GPER1). Because GPRCs transduce many physiological stimuli, we examined whether BMP2 or EZH2 inhibition (i.e., GSK126) regulates other GPRC genes in osteoblasts. RNA-seq screening of >400 mouse GPRC-related genes showed that many GPRCs are downregulated during osteogenic differentiation. The orphan receptor GPRC5C, along with a small subset of other GPRCs, is induced by BMP2 or GSK126 during Vitamin C dependent osteoblast differentiation, but not by all-trans retinoic acid. ChIP-seq analysis revealed that GSK126 reduces H3K27me3 levels at the GPRC5C gene locus in differentiating MC3T3-E1 osteoblasts, consistent with enhanced GPRC5C mRNA expression. Loss of function analyses revealed that shRNA-mediated depletion of GPRC5C decreases expression of bone markers (e.g., BGLAP and IBSP) and mineral deposition in response to BMP2 or GSK126. GPRC5C mRNA was found to be reduced in the osteopenic bones of KLF10 null mice which have compromised BMP2 signaling. GPRC5C mRNA is induced by the bone-anabolic activity of 17β-estradiol in trabecular but not cortical bone following ovariectomy. Collectively, these findings suggest that GPRC5C protein is a key node in a pro-osteogenic axis that is normally suppressed by EZH2-mediated H3K27me3 marks and induced during osteoblast differentiation by GSK126, BMP2, and/or 17β-estradiol. Because GPRC5C protein is an understudied orphan receptor required for osteoblast differentiation, identification of ligands that induce GPRC5C signaling may support therapeutic strategies to mitigate bone-related disorders.
Collapse
Affiliation(s)
- Parisa Dashti
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - John R Hawse
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Bram J van der Eerden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Andre J van Wijnen
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Biochemistry, University of Vermont, Burlington, VT, USA.
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Transcriptomic Signatures of Single-Suture Craniosynostosis Phenotypes. Int J Mol Sci 2023; 24:ijms24065353. [PMID: 36982425 PMCID: PMC10049207 DOI: 10.3390/ijms24065353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Craniosynostosis is a birth defect where calvarial sutures close prematurely, as part of a genetic syndrome or independently, with unknown cause. This study aimed to identify differences in gene expression in primary calvarial cell lines derived from patients with four phenotypes of single-suture craniosynostosis, compared to controls. Calvarial bone samples (N = 388 cases/85 controls) were collected from clinical sites during reconstructive skull surgery. Primary cell lines were then derived from the tissue and used for RNA sequencing. Linear models were fit to estimate covariate adjusted associations between gene expression and four phenotypes of single-suture craniosynostosis (lambdoid, metopic, sagittal, and coronal), compared to controls. Sex-stratified analysis was also performed for each phenotype. Differentially expressed genes (DEGs) included 72 genes associated with coronal, 90 genes associated with sagittal, 103 genes associated with metopic, and 33 genes associated with lambdoid craniosynostosis. The sex-stratified analysis revealed more DEGs in males (98) than females (4). There were 16 DEGs that were homeobox (HOX) genes. Three TFs (SUZ12, EZH2, AR) significantly regulated expression of DEGs in one or more phenotypes. Pathway analysis identified four KEGG pathways associated with at least one phenotype of craniosynostosis. Together, this work suggests unique molecular mechanisms related to craniosynostosis phenotype and fetal sex.
Collapse
|
6
|
Abstract
Histone lysine methylation plays a key role in gene activation and repression. The trimethylation of histone H3 on lysine-27 (H3K27me3) is a critical epigenetic event that is controlled by Jumonji domain-containing protein-3 (JMJD3). JMJD3 is a histone demethylase that specifically removes methyl groups. Previous studies have suggested that JMJD3 has a dual role in cancer cells. JMJD3 stimulates the expression of proliferative-related genes and increases tumor cell growth, propagation, and migration in various cancers, including neural, prostate, ovary, skin, esophagus, leukemia, hepatic, head and neck, renal, lymphoma, and lung. In contrast, JMJD3 can suppress the propagation of tumor cells, and enhance their apoptosis in colorectal, breast, and pancreatic cancers. In this review, we summarized the recent advances of JMJD3 function in cancer cells.
Collapse
|
7
|
Stanton E, Urata M, Chen JF, Chai Y. The clinical manifestations, molecular mechanisms and treatment of craniosynostosis. Dis Model Mech 2022; 15:dmm049390. [PMID: 35451466 PMCID: PMC9044212 DOI: 10.1242/dmm.049390] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Craniosynostosis is a major congenital craniofacial disorder characterized by the premature fusion of cranial suture(s). Patients with severe craniosynostosis often have impairments in hearing, vision, intracranial pressure and/or neurocognitive functions. Craniosynostosis can result from mutations, chromosomal abnormalities or adverse environmental effects, and can occur in isolation or in association with numerous syndromes. To date, surgical correction remains the primary treatment for craniosynostosis, but it is associated with complications and with the potential for re-synostosis. There is, therefore, a strong unmet need for new therapies. Here, we provide a comprehensive review of our current understanding of craniosynostosis, including typical craniosynostosis types, their clinical manifestations, cranial suture development, and genetic and environmental causes. Based on studies from animal models, we present a framework for understanding the pathogenesis of craniosynostosis, with an emphasis on the loss of postnatal suture mesenchymal stem cells as an emerging disease-driving mechanism. We evaluate emerging treatment options and highlight the potential of mesenchymal stem cell-based suture regeneration as a therapeutic approach for craniosynostosis.
Collapse
Affiliation(s)
- Eloise Stanton
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mark Urata
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90033, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
8
|
Bah I, Youssef D, Yao ZQ, McCall CE, El Gazzar M. Inhibiting KDM6A Demethylase Represses Long Non-Coding RNA Hotairm1 Transcription in MDSC During Sepsis. Front Immunol 2022; 13:823660. [PMID: 35185915 PMCID: PMC8851568 DOI: 10.3389/fimmu.2022.823660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) prolong sepsis by promoting immunosuppression. We reported that sepsis MDSC development requires long non-coding RNA Hotairm1 interactions with S100A9. Using a mouse model that simulates the immunobiology of sepsis, we find that histone demethylase KDM6A promotes Hotairm1 transcription by demethylating transcription repression H3K27me3 histone mark. We show that chemical targeting of KDM6A by GSK-J4 represses Hotairm1 transcription, which coincides with decreases in transcription activation H3K4me3 histone mark and transcription factor PU.1 binding to the Hotairm1 promoter. We further show that immunosuppressive IL-10 cytokine promotes KDM6A binding at the Hotairm1 promoter. IL-10 knockdown repletes H3K27me3 and reduces Hotairm1 transcription. GSK-J4 treatment also relocalizes nuclear S100A9 protein to the cytosol. To support translation to human sepsis, we demonstrate that inhibiting H3K27me3 demethylation by KDM6A ex vivo in MDSCs from patients with protracted sepsis decreases Hotairm1 transcription. These findings suggest that epigenetic targeting of MDSCs in human sepsis might resolve post-sepsis immunosuppression and improve sepsis survival.
Collapse
Affiliation(s)
- Isatou Bah
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, TN, United States
| | - Dima Youssef
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, TN, United States
| | - Zhi Q. Yao
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, TN, United States
| | - Charles E. McCall
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Mohamed El Gazzar
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, TN, United States,*Correspondence: Mohamed El Gazzar,
| |
Collapse
|
9
|
High glucose mediates apoptosis and osteogenesis of MSCs via downregulation of AKT-Sirt1-TWIST. Mol Biol Rep 2022; 49:2723-2733. [PMID: 35037196 DOI: 10.1007/s11033-021-07082-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Mesenchymal stem cells have been widely used in the treatment of diabetes mellitus. However, hyperglycemia associated with DM promotes cell apoptosis and affects osteogenic differentiation of MSCs in varying degrees, leading to osteoporosis in DM patients. Therefore, in this paper, the effect of high glucose on apoptosis and osteogenesis of MSCs was investigated and underlying mechanism was further determined. METHODS AND RESULTS Intracellular ROS levels were determined using probe DCFH-DA. MMP was detected using JC-1 staining. Cell apoptosis was detected using Annexin V-FITC/PI and Flow Cytometer. The expression of genes and protein was detected by qRT-PCR and Western blot respectively. The results showed high glucose induced MSC apoptosis but promoted its osteogenesis. Western blot analysis revealed that high glucose downregulated AKT-Sirt1-TWIST pathway. Activation of Sirt1 via SRT1720 increased TWIST expression, alleviated MSC apoptosis and promoted osteogenesis of MSCs. TWIST knockdown studies demonstrated that inhibition of TWIST intensified high glucose-induced apoptosis but promoted osteogenesis differentiation of MSCs. TWIST is likely to be a new regulator for cross talk between Sirt1 and its downstream targets. CONCLUSION Our data demonstrates that high glucose induces MSC apoptosis and enhances osteogenesis differentiation via downregulation of AKT-Sirt1-TWIST.
Collapse
|
10
|
Ding Y, Yao Y, Gong X, Zhuo Q, Chen J, Tian M, Farzaneh M. JMJD3: a critical epigenetic regulator in stem cell fate. Cell Commun Signal 2021; 19:72. [PMID: 34217316 PMCID: PMC8254972 DOI: 10.1186/s12964-021-00753-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
The Jumonji domain-containing protein-3 (JMJD3) is a histone demethylase that regulates the trimethylation of histone H3 on lysine 27 (H3K27me3). H3K27me3 is an important epigenetic event associated with transcriptional silencing. JMJD3 has been studied extensively in immune diseases, cancer, and tumor development. There is a comprehensive epigenetic transformation during the transition of embryonic stem cells (ESCs) into specialized cells or the reprogramming of somatic cells to induced pluripotent stem cells (iPSCs). Recent studies have illustrated that JMJD3 plays a major role in cell fate determination of pluripotent and multipotent stem cells (MSCs). JMJD3 has been found to enhance self-renewal ability and reduce the differentiation capacity of ESCs and MSCs. In this review, we will focus on the recent advances of JMJD3 function in stem cell fate. Video Abstract
Collapse
Affiliation(s)
- Yuanjie Ding
- School of Medicine, Jishou University, Jishou, 416000, China.,Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, 427000, China
| | - Yuanchun Yao
- School of Medicine, Jishou University, Jishou, 416000, China
| | - Xingmu Gong
- School of Medicine, Jishou University, Jishou, 416000, China
| | - Qi Zhuo
- School of Medicine, Jishou University, Jishou, 416000, China.
| | - Jinhua Chen
- School of Medicine, Jishou University, Jishou, 416000, China
| | - Miao Tian
- School of Medicine, Jishou University, Jishou, 416000, China
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
11
|
Tatullo M, Spagnuolo G. Evidence of Stem Cell Efficacy on Developmental and Functional Alterations in Craniofacial Diseases. J Clin Med 2021; 10:jcm10020302. [PMID: 33467553 PMCID: PMC7829811 DOI: 10.3390/jcm10020302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022] Open
Abstract
Stem cells have improved the treatment of several diseases [...].
Collapse
Affiliation(s)
- Marco Tatullo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs-University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|