1
|
Harrell CR, Volarevic A, Arsenijevic A, Djonov V, Volarevic V. Targeted Therapy for Severe Sjogren's Syndrome: A Focus on Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:13712. [PMID: 39769474 PMCID: PMC11677171 DOI: 10.3390/ijms252413712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune disease characterized by the infiltration of lymphocytes on salivary and lacrimal glands, resulting in their dysfunction. Patients suffering from severe pSS have an increased risk of developing multi-organ dysfunction syndrome due to the development of systemic inflammatory response, which results in immune cell-driven injury of the lungs, kidneys, liver, and brain. Therapeutic agents that are used for the treatment of severe pSS encounter various limitations and challenges that can impact their effectiveness. Accordingly, there is a need for targeted, personalized therapy that could address the underlying detrimental immune response while minimizing side effects. Results obtained in a large number of recently published studies have demonstrated the therapeutic efficacy of mesenchymal stem cells (MSCs) in the treatment of severe pSS. MSCs, in a juxtacrine and paracrine manner, suppressed the generation of inflammatory Th1 and Th17 lymphocytes, induced the expansion of immunosuppressive cells, impaired the cross-talk between auto-reactive T and B cells, and prevented the synthesis and secretion of auto-antibodies. Additionally, MSC-derived growth and trophic factors promoted survival and prevented apoptosis of injured cells in inflamed lacrimal and salivary glands, thereby enhancing their repair and regeneration. In this review article, we summarized current knowledge about the molecular mechanisms that are responsible for the beneficial effects of MSCs in the suppression of immune cell-driven injury of exocrine glands and vital organs, paving the way for a better understanding of their therapeutic potential in the targeted therapy of severe pSS.
Collapse
Affiliation(s)
- Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, FL 34684, USA;
| | - Ana Volarevic
- Department of Psychology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia;
| | - Aleksandar Arsenijevic
- Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia;
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland;
| | - Vladislav Volarevic
- Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia;
- Faculty of Pharmacy Novi Sad, Heroja Pinkija 4, 21000 Novi Sad, Serbia
| |
Collapse
|
2
|
Wen S, Zheng X, Yin W, Liu Y, Wang R, Zhao Y, Liu Z, Li C, Zeng J, Rong M. Dental stem cell dynamics in periodontal ligament regeneration: from mechanism to application. Stem Cell Res Ther 2024; 15:389. [PMID: 39482701 PMCID: PMC11526537 DOI: 10.1186/s13287-024-04003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
Periodontitis, a globally prevalent chronic inflammatory disease is characterized by the progressive degradation of tooth-supporting structures, particularly the periodontal ligament (PDL), which can eventually result in tooth loss. Despite the various clinical interventions available, most focus on symptomatic relief and lack substantial evidence of supporting the functional regeneration of the PDL. Dental stem cells (DSCs), with their homology and mesenchymal stem cell (MSC) properties, have gained significant attention as a potential avenue for PDL regeneration. Consequently, multiple therapeutic strategies have been developed to enhance the efficacy of DSC-based treatments and improve clinical outcomes. This review examines the mechanisms by which DSCs and their derivatives promote PDL regeneration, and explores the diverse applications of exogenous implantation and endogenous regenerative technology (ERT) aimed at amplifying the regenerative capacity of endogenous DSCs. Additionally, the persistent challenges and controversies surrounding DSC therapies are discussed, alongside an evaluation of the limitations in current research on the underlying mechanisms and innovative applications of DSCs in PDL regeneration with the aim of providing new insights for future development. Periodontitis, a chronic inflammatory disease, represents a major global public health concern, affecting a significant proportion of the population and standing as the leading cause tooth loss in adults. The functional periodontal ligament (PDL) plays an indispensable role in maintaining periodontal health, as its structural and biological integrity is crucial for the long-term prognosis of periodontal tissues. It is widely recognized as the cornerstone of periodontal regeneration Despite the availability of various treatments, ranging from nonsurgical interventions to guided tissue regeneration (GTR) techniques, these methods have shown limited success in achieving meaningful PDL regeneration. As a result, the inability to fully restore PDL function underscores the urgent need for innovative therapeutic strategies at reconstructing this essential structure. Stem cell therapy, known for its regenerative and immunomodulatory potential, offers a promising approach for periodontal tissue repair. Their application marks a significant paradigm shift in the treatment of periodontal diseases, opening new avenues for functional PDL regeneration. However, much of the current research has primarily focused on the regeneration of alveolar bone and gingiva, as these hard and soft tissues can be more easily evaluated through visual assessment. The complexity of PDL structure, coupled with the intricate interactions among cellular and molecular components, presents significant scientific and clinical hurdles in translating DSC research into practical therapeutic applications. This review provides a thorough exploration of DSC dynamics in periodontal regeneration, detailing their origins, properties, and derived products, while also examining their potential mechanisms and applications in PDL regeneration. It offers an in-depth analysis of the current research, landscape, acknowledging both the progress made and the challenges that remain in bridging the gap between laboratory findings and clinical implementation. Finally, the need for continued investigation into the intricate mechanisms governing DSC behavior and the optimization of their use in regenerative therapies for periodontal diseases is also emphasized.
Collapse
Affiliation(s)
- Shuyi Wen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Xiao Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Wuwei Yin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yushan Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Ruijie Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yaqi Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Ziyi Liu
- Department of Stomatology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, 528308, China
| | - Cong Li
- Dongguan Key Laboratory of Metabolic Immunology and Oral Diseases, Dongguan Maternal and Child Health Care Hospital, Dongguan, Guangdong, 523000, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, 523808, China.
| | - Mingdeng Rong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China.
| |
Collapse
|
3
|
Liu H, Qiu L, Li H, Tang Y, Wang F, Song Y, Pan Y, Li R, Yan X. A 3D-printed acinar-mimetic silk fibroin-collagen-astragalus polysaccharide scaffold for tissue reconstruction and functional repair of damaged parotid glands. Int J Biol Macromol 2024; 277:134427. [PMID: 39097050 DOI: 10.1016/j.ijbiomac.2024.134427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Salivary glands are the principal organs responsible for secreting saliva in the oral cavity. Tumors, trauma, inflammation, and other factors can cause functional or structural damage to the glands, leading to reduced saliva secretion. In this study, we innovatively prepared a acinar-mimetic silk fibroin-collagen-astragalus polysaccharide (SCA) scaffold using low-temperature three-dimensional (3D) printing and freeze-drying techniques. We evaluated the material properties and cell compatibility of the scaffold in vitro and implanted it into the damaged parotid glands (PG) of rats to assess its efficacy in tissue reconstruction and functional repair. The results demonstrated that the SCA scaffold featured a porous structure resembling natural acini, providing an environment conducive to cell growth and orderly aggregation. It exhibited excellent porosity, water absorption, mechanical properties, and biocompatibility, fulfilling the requirements for tissue engineering scaffolds. In vitro, the scaffold facilitated adhesion, proliferation, orderly polarization, and spherical aggregation of PG cells. In vivo, the SCA scaffold effectively recruited GECs locally, forming gland-like acinar structures that matured gradually, promoting the regeneration of damaged PGs. The SCA scaffold developed in this study supports tissue reconstruction and functional repair of damaged PGs, making it a promising implant material for salivary gland regeneration.
Collapse
Affiliation(s)
- Han Liu
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China
| | - Lin Qiu
- Central Laboratory, Peking University School and Hospital of Stomatology, China
| | - Haoyuan Li
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China
| | - Yanli Tang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China
| | - Fang Wang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China
| | - Yangyang Song
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China
| | - Yiwei Pan
- Eye Hospital China Academy of Chinese Medicine Sciences, China
| | - Ruixin Li
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, China.
| | - Xing Yan
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China.
| |
Collapse
|
4
|
Fu J, Li W, Mao T, Chen Z, Lai L, Lin J, Nie Z, Sun Y, Chen Y, Zhang Q, Li X. The potential therapeutic roles of dental pulp stem cells in spinal cord injury. Front Mol Biosci 2024; 11:1363838. [PMID: 38741719 PMCID: PMC11089131 DOI: 10.3389/fmolb.2024.1363838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/04/2024] [Indexed: 05/16/2024] Open
Abstract
Spinal cord injury (SCI) can lead to serious functional disorders, which have serious impacts on patients and society. The current traditional treatments of SCI are not effective the injured spinal cord is difficult to repair and regenerate. In recent years, stem cell transplantation for the treatment of SCI has been a hot research topic. Dental pulp stem cells have strong abilities of self-renewal and multi-directional differentiation, and have been applied for tissue engineering and regenerative medicine. And dental pulp stem cells have certain advantages in neuro-regenetation, bringing new hope to biotherapy for SCI. This article reviews the characteristics of dental pulp stem cells and their research progress in the treatment of SCI.
Collapse
Affiliation(s)
- Jing Fu
- Department of Stomatology, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenjie Li
- Department of Anesthesiology and Surgery, Qingdao Municipal Hospital Group, Qingdao, China
| | - Tengfei Mao
- Yuncheng Central Hospital Affiliated to Shanxi Medical University, Yuncheng, China
| | - Zaipeng Chen
- College of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Lili Lai
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiachen Lin
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhiqiang Nie
- College of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yunkai Sun
- The Eighth Clinical Medical College of Shanxi Medical University, Yuncheng, China
| | - Yanqin Chen
- College of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Qin Zhang
- Yuncheng Central Hospital Affiliated to Shanxi Medical University, Yuncheng, China
| | - Xigong Li
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Wang SY, Zhang SJ, Meng HF, Xu HQ, Guo ZX, Yan JF, Gao JL, Niu LN, Wang SL, Jiao K. DPSCs regulate epithelial-T cell interactions in oral submucous fibrosis. Stem Cell Res Ther 2024; 15:113. [PMID: 38650025 PMCID: PMC11036714 DOI: 10.1186/s13287-024-03720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/07/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Oral submucous fibrosis (OSF) is a precancerous lesion characterized by fibrous tissue deposition, the incidence of which correlates positively with the frequency of betel nut chewing. Prolonged betel nut chewing can damage the integrity of the oral mucosal epithelium, leading to chronic inflammation and local immunological derangement. However, currently, the underlying cellular events driving fibrogenesis and dysfunction are incompletely understood, such that OSF has few treatment options with limited therapeutic effectiveness. Dental pulp stem cells (DPSCs) have been recognized for their anti-inflammatory and anti-fibrosis capabilities, making them promising candidates to treat a range of immune, inflammatory, and fibrotic diseases. However, the application of DPSCs in OSF is inconclusive. Therefore, this study aimed to explore the pathogenic mechanism of OSF and, based on this, to explore new treatment options. METHODS A human cell atlas of oral mucosal tissues was compiled using single-cell RNA sequencing to delve into the underlying mechanisms. Epithelial cells were reclustered to observe the heterogeneity of OSF epithelial cells and their communication with immune cells. The results were validated in vitro, in clinicopathological sections, and in animal models. In vivo, the therapeutic effect and mechanism of DPSCs were characterized by histological staining, immunohistochemical staining, scanning electron microscopy, and atomic force microscopy. RESULTS A unique epithelial cell population, Epi1.2, with proinflammatory and profibrotic functions, was predominantly found in OSF. Epi1.2 cells also induced the fibrotic process in fibroblasts by interacting with T cells through receptor-ligand crosstalk between macrophage migration inhibitory factor (MIF)-CD74 and C-X-C motif chemokine receptor 4 (CXCR4). Furthermore, we developed OSF animal models and simulated the clinical local injection process in the rat buccal mucosa using DPSCs to assess their therapeutic impact and mechanism. In the OSF rat model, DPSCs demonstrated superior therapeutic effects compared with the positive control (glucocorticoids), including reducing collagen deposition and promoting blood vessel regeneration. DPSCs mediated immune homeostasis primarily by regulating the numbers of KRT19 + MIF + epithelial cells and via epithelial-stromal crosstalk. CONCLUSIONS Given the current ambiguity surrounding the cause of OSF and the limited treatment options available, our study reveals that epithelial cells and their crosstalk with T cells play an important role in the mechanism of OSF and suggests the therapeutic promise of DPSCs.
Collapse
Affiliation(s)
- S Y Wang
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, 169 West Changle Road, Xincheng District, 710032, Xi'an, Shaanxi, P. R. China
| | - S J Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, 169 West Changle Road, Xincheng District, 710032, Xi'an, Shaanxi, P. R. China
| | - H F Meng
- Beijing SH Bio-tech Co., 100071, Beijing, P.R. China
| | - H Q Xu
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, 169 West Changle Road, Xincheng District, 710032, Xi'an, Shaanxi, P. R. China
- The College of Life Science, Northwest University, 710032, Xi'an, Shaanxi, P.R. China
| | - Z X Guo
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, 169 West Changle Road, Xincheng District, 710032, Xi'an, Shaanxi, P. R. China
| | - J F Yan
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, 169 West Changle Road, Xincheng District, 710032, Xi'an, Shaanxi, P. R. China
| | - J L Gao
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, 169 West Changle Road, Xincheng District, 710032, Xi'an, Shaanxi, P. R. China
| | - L N Niu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, 169 West Changle Road, Xincheng District, 710032, Xi'an, Shaanxi, P. R. China.
| | - S L Wang
- Beijing Laboratory of Oral Health, Capital Medical University, 10 Xitoutiao, Fengtai District, 100069, Beijing, P.R. China.
- Laboratory of Homeostatic Medicine, School of Medicine, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, 518055, Shenzhen, P.R. China.
| | - K Jiao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, 169 West Changle Road, Xincheng District, 710032, Xi'an, Shaanxi, P. R. China.
| |
Collapse
|
6
|
Chen H, Yamaguchi S, Wang Y, Kaminogo K, Sakai K, Hibi H. Cytoprotective role of human dental pulp stem cell-conditioned medium in chemotherapy-induced alopecia. Stem Cell Res Ther 2024; 15:84. [PMID: 38500206 PMCID: PMC10949570 DOI: 10.1186/s13287-024-03695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Chemotherapy-induced alopecia (CIA) is a distressing adverse effect of chemotherapy, with an estimated incidence of 65% and limited treatment options. Cyclophosphamide (CYP) is a common alopecia-inducing chemotherapy agent. Human dental pulp stem cells (DPSCs) secrete several paracrine factors that up-regulate hair growth. Conditioned medium (CM) collected from DPSCs (DPSC-CM) promotes hair growth; culturing mesenchymal stem cells under hypoxic conditions can enhance this effect. METHODS The effect of DPSC-CM cultured under normoxic (N-) and hypoxic (H-) conditions against CYP-mediated cytotoxicity in keratinocytes was examined using cell viability assay, lactate dehydrogenase (LDH) cytotoxicity assay, and apoptosis detection. The damage-response pathway was determined in a well-established CIA mouse model by analyzing macroscopic effects, histology, and apoptosis. Reverse transcription-quantitative PCR and Caspase-3/7 activity assay were used to investigate the impact of DPSC-CM on the molecular damage-response pathways in CYP-treated mice. The effect of post-CIA DPSC-CM application on post-CIA hair regrowth was analyzed by macroscopic effects and microstructure observation of the hair surface. Furthermore, to investigate the safety of DPSC-CM as a viable treatment option, the effect of DPSC-CM on carcinoma cell lines was examined by cell viability assay and a subcutaneous tumor model. RESULTS In the cell viability assay, DPSC-CM was observed to increase the number of keratinocytes over varying CYP concentrations. Furthermore, it reduced the LDH activity level and suppressed apoptosis in CYP-treated keratinocytes. DPSC-CM exhibited the cytoprotective role in vivo via the dystrophic anagen damage-response pathway. While both N-CM and H-CM downregulated the Caspase-3/7 activity level, H-CM downregulated Caspase-3 mRNA expression. The proportion of post-CIA H-CM-treated mice with > 90% normal hair was nearly twice that of vehicle- or N-CM-treated mice between days 50 and 59 post-depilation, suggesting that post-CIA H-CM application may accelerate hair regrowth and improve hair quality. Furthermore, DPSC-CM suppressed proliferation in vitro in certain carcinoma cell lines and did not promote the squamous cell carcinoma (SCC-VII) tumor growth rate in mice. CONCLUSIONS The potentiality of DPSC-CM and H-CM as a promising cytoprotective agent and hair regrowth stimulant, respectively, for CIA needs in-depth exploration.
Collapse
Affiliation(s)
- Hui Chen
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Yamaguchi
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Yilin Wang
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kento Kaminogo
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyoshi Sakai
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
7
|
Liu Z, Luo X, Xu R. Interaction between immuno-stem dual lineages in jaw bone formation and injury repair. Front Cell Dev Biol 2024; 12:1359295. [PMID: 38510177 PMCID: PMC10950953 DOI: 10.3389/fcell.2024.1359295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The jawbone, a unique structure in the human body, undergoes faster remodeling than other bones due to the presence of stem cells and its distinct immune microenvironment. Long-term exposure of jawbones to an oral environment rich in microbes results in a complex immune balance, as shown by the higher proportion of activated macrophage in the jaw. Stem cells derived from the jawbone have a higher propensity to differentiate into osteoblasts than those derived from other bones. The unique immune microenvironment of the jaw also promotes osteogenic differentiation of jaw stem cells. Here, we summarize the various types of stem cells and immune cells involved in jawbone reconstruction. We describe the mechanism relationship between immune cells and stem cells, including through the production of inflammatory bodies, secretion of cytokines, activation of signaling pathways, etc. In addition, we also comb out cellular interaction of immune cells and stem cells within the jaw under jaw development, homeostasis maintenance and pathological conditions. This review aims to eclucidate the uniqueness of jawbone in the context of stem cell within immune microenvironment, hopefully advancing clinical regeneration of the jawbone.
Collapse
Affiliation(s)
| | | | - Ruoshi Xu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Song W, Liu H, Su Y, Zhao Q, Wang X, Cheng P, Wang H. Current developments and opportunities of pluripotent stem cells-based therapies for salivary gland hypofunction. Front Cell Dev Biol 2024; 12:1346996. [PMID: 38313227 PMCID: PMC10834761 DOI: 10.3389/fcell.2024.1346996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Salivary gland hypofunction (SGH) caused by systemic disease, drugs, aging, and radiotherapy for head and neck cancer can cause dry mouth, which increases the risk of disorders such as periodontitis, taste disorders, pain and burning sensations in the mouth, dental caries, and dramatically reduces the quality of life of patients. To date, the treatment of SGH is still aimed at relieving patients' clinical symptoms and improving their quality of life, and is not able to repair and regenerate the damaged salivary glands. Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and extended pluripotent stem cells (EPSCs), are an emerging source of cellular therapies that are capable of unlimited proliferation and differentiation into cells of all three germ layers. In recent years, the immunomodulatory and tissue regenerative effects of PSCs, their derived cells, and paracrine products of these cells have received increasing attention and have demonstrated promising therapeutic effects in some preclinical studies targeting SGH. This review outlined the etiologies and available treatments for SGH. The existing efficacy and potential role of PSCs, their derived cells and paracrine products of these cells for SGH are summarized, with a focus on PSC-derived salivary gland stem/progenitor cells (SGS/PCs) and PSC-derived mesenchymal stem cells (MSCs). In this Review, we provide a conceptual outline of our current understanding of PSCs-based therapy and its importance in SGH treatment, which may inform and serve the design of future studies.
Collapse
Affiliation(s)
- Wenpeng Song
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huan Liu
- Beijing Laboratory of Oral Health, School of Basic Medicine, School of Stomatology, Capital Medical University, Beijing, China
| | - Yingying Su
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qian Zhao
- Research and Development Department, Allife Medicine Inc., Beijing, China
| | - Xiaoyan Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Oral Health, School of Basic Medicine, School of Stomatology, Capital Medical University, Beijing, China
- Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing, China
| | - Pengfei Cheng
- Department of Stomatology, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Ogata K, Moriyama M, Kawado T, Yoshioka H, Yano A, Matsumura-Kawashima M, Nakamura S, Kawano S. Extracellular vesicles of iPS cells highly capable of producing HGF and TGF-β1 can attenuate Sjögren's syndrome via innate immunity regulation. Cell Signal 2024; 113:110980. [PMID: 37981065 DOI: 10.1016/j.cellsig.2023.110980] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/13/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Previous studies have demonstrated that extracellular vesicles (EVs) from dental pulp stem cells (DPSCs), which release abundant hepatocyte growth factor (HGF) and transforming growth factor-β1 (TGF-β1), contribute to the pathogenesis of Sjögren's syndrome (SS). However, depending on the condition of DPSCs, this effect is often not achieved. In this study, we established induced pluripotent stem (iPS) cells highly capable of releasing HGF and TGF-β1 and iPS cells barely capable of releasing them, and administered each EV to SS model mice to see if there was a difference in therapeutic effect. EVs were collected from each iPS cell and their characteristics and shapes were examined. When they were administered to SS model mice, the EVs from iPS cells with higher concentrations of HGF and TGF-β1 showed significantly reduced inflammatory cell infiltration in salivary gland tissues, increased saliva volume, and decreased anti-SS-A and anti-SS-B antibodies. A comprehensive search of microRNA arrays for differences among those EVs revealed that EVs from iPS cells with higher concentrations of HGF and TGF-β1 contained more of the let-7 family. Thereafter, we examined the expression of toll-like receptors (TLRs), which are said to be regulated by the let-7 family, by qPCR, and found decreased TLR4 expression. Focusing on MAPK, a downstream signaling pathway, we examined cytokine concentrations in mouse macrophage culture supernatants and Western blotting of murine splenic tissues and found higher concentrations of anti-inflammatory cytokines in the EVs-treated group and decreased TLR4, NF-κB and phosphorylation (p)-p-38 MAPK expression by Western blotting. Alternatively, p-Smad2/3 was upregulated in the EVs-treated group. Our findings suggest that the let-7 family in EVs may suppress the expression of TLR4 and NF-κB, which may be involved in the suppression of MAPK-mediated pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Kenichi Ogata
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Dent-craniofacial Development and Regeneration Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Dentistry and Oral Surgery, Karatsu Red Cross Hospital, 2430 Watada, Karatsu, Saga 847-8588, Japan.
| | - Masafumi Moriyama
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tatsuya Kawado
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroki Yoshioka
- Department of Pharmacy Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu 509-0293, Japan
| | - Aiko Yano
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mayu Matsumura-Kawashima
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shintaro Kawano
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
10
|
Howlader MSI, Prateeksha P, Hansda S, Naidu P, Das M, Barthels D, Das H. Secretory products of DPSC mitigate inflammatory effects in microglial cells by targeting MAPK pathway. Biomed Pharmacother 2024; 170:115971. [PMID: 38039760 DOI: 10.1016/j.biopha.2023.115971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
Activated microglial cells in the central nervous system (CNS) are the main contributors to neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Inhibiting their activation will help in reducing inflammation and oxidative stress during pathogenesis, potentially limiting the progression of the diseases. The immunomodulation properties of dental pulp-derived stem cells (DPSC) make it a promising therapy for neurodegenerative disorders. This study aims to determine whether secretory factors of DPSC (DPSC℗) inhibit inflammation and proliferation of microglial cells and define the molecular mechanisms. Our quantitative RT-PCR analysis showed that the DPSC℗ reduced the markers of the inflammation and induced anti-inflammatory molecules in microglial cells. DPSC ℗ reduced the intracellular and mitochondrial reactive oxygen species (ROS) production and mitochondrial membrane potential in microglial cells. In addition, DPSC ℗ decreased the cellular bioenergetics parameters related to oxygen consumption rate (OCAR) and extracellular acidification rate (ECAR). We found that DPSC℗ inhibited microglial cell proliferation by activating a checkpoint molecule, Chk1 leading an arrest at the G1 phase of the cell cycle. To define the mechanism, we performed the western blot analysis and observed that the MAPK P38 pathway was inhibited by DPSC℗. Furthermore, a System biology analysis revealed that the BDNF and GDNF, secretory factors of DPSC, blocked at the phosphorylation site (Tyr 182) of the P38 molecule resulting in the inhibition of downstream signaling of inflammation. These data suggest that the DPSC℗ may be a potential therapeutic agent for neurodegenerative diseases.
Collapse
Affiliation(s)
- Md Sariful Islam Howlader
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Prateeksha Prateeksha
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Surajit Hansda
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Prathyusha Naidu
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Manjusri Das
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Derek Barthels
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Hiranmoy Das
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
| |
Collapse
|
11
|
Li F, Wang X, Shi J, Wu S, Xing W, He Y. Anti-inflammatory effect of dental pulp stem cells. Front Immunol 2023; 14:1284868. [PMID: 38077342 PMCID: PMC10701738 DOI: 10.3389/fimmu.2023.1284868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Dental pulp stem cells (DPSCs) have received a lot of attention as a regenerative medicine tool with strong immunomodulatory capabilities. The excessive inflammatory response involves a variety of immune cells, cytokines, and has a considerable impact on tissue regeneration. The use of DPSCs for controlling inflammation for the purpose of treating inflammation-related diseases and autoimmune disorders such as supraspinal nerve inflammation, inflammation of the pulmonary airways, systemic lupus erythematosus, and diabetes mellitus is likely to be safer and more regenerative than traditional medicines. The mechanism of the anti-inflammatory and immunomodulatory effects of DPSCs is relatively complex, and it may be that they themselves or some of the substances they secrete regulate a variety of immune cells through inflammatory immune-related signaling pathways. Most of the current studies are still at the laboratory cellular level and animal model level, and it is believed that through the efforts of more researchers, DPSCs/SHED are expected to be transformed into excellent drugs for the clinical treatment of related diseases.
Collapse
Affiliation(s)
- FenYao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - XinXin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Jin Shi
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - ShuTing Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - WenBo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Yuan W, Ferreira LDAQ, Yu B, Ansari S, Moshaverinia A. Dental-derived stem cells in tissue engineering: the role of biomaterials and host response. Regen Biomater 2023; 11:rbad100. [PMID: 38223292 PMCID: PMC10786679 DOI: 10.1093/rb/rbad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 01/16/2024] Open
Abstract
Dental-derived stem cells (DSCs) are attractive cell sources due to their easy access, superior growth capacity and low immunogenicity. They can respond to multiple extracellular matrix signals, which provide biophysical and biochemical cues to regulate the fate of residing cells. However, the direct transplantation of DSCs suffers from poor proliferation and differentiation toward functional cells and low survival rates due to local inflammation. Recently, elegant advances in the design of novel biomaterials have been made to give promise to the use of biomimetic biomaterials to regulate various cell behaviors, including proliferation, differentiation and migration. Biomaterials could be tailored with multiple functionalities, e.g., stimuli-responsiveness. There is an emerging need to summarize recent advances in engineered biomaterials-mediated delivery and therapy of DSCs and their potential applications. Herein, we outlined the design of biomaterials for supporting DSCs and the host response to the transplantation.
Collapse
Affiliation(s)
- Weihao Yuan
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Luiza de Almeida Queiroz Ferreira
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bo Yu
- Section of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sahar Ansari
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alireza Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Du Z, Wei P, Jiang N, Wu L, Ding C, Yu G. SHED-derived exosomes ameliorate hyposalivation caused by Sjögren's syndrome via Akt/GSK-3β/Slug-mediated ZO-1 expression. Chin Med J (Engl) 2023; 136:2596-2608. [PMID: 37052137 PMCID: PMC10617935 DOI: 10.1097/cm9.0000000000002610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Sjögren's syndrome (SS) is an autoimmune disorder characterized by sicca syndrome and/or systemic manifestations. The treatment is still challenging. This study aimed to explore the therapeutic role and mechanism of exosomes obtained from the supernatant of stem cells derived from human exfoliated deciduous teeth (SHED-exos) in sialadenitis caused by SS. METHODS SHED-exos were administered to the submandibular glands (SMGs) of 14-week-old non-obese diabetic (NOD) mice, an animal model of the clinical phase of SS, by local injection or intraductal infusion. The saliva flow rate was measured after pilocarpine intraperitoneal injection in 21-week-old NOD mice. Protein expression was examined by western blot analysis. Exosomal microRNA (miRNAs) were identified by microarray analysis. Paracellular permeability was evaluated by transepithelial electrical resistance measurement. RESULTS SHED-exos were injected into the SMG of NOD mice and increased saliva secretion. The injected SHED-exos were taken up by glandular epithelial cells, and further increased paracellular permeability mediated by zonula occluden-1 (ZO-1). A total of 180 exosomal miRNAs were identified from SHED-exos, and Kyoto Encyclopedia of Genes and Genomes analysis suggested that the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathway might play an important role. SHED-exos treatment down-regulated phospho-Akt (p-Akt)/Akt, phospho-glycogen synthase kinase 3β (p-GSK-3β)/GSK-3β, and Slug expressions and up-regulated ZO-1 expression in SMGs and SMG-C6 cells. Both the increased ZO-1 expression and paracellular permeability induced by SHED-exos were abolished by insulin-like growth factor 1, a PI3K agonist. Slug bound to the ZO-1 promoter and suppressed its expression. For safer and more effective clinical application, SHED-exos were intraductally infused into the SMGs of NOD mice, and saliva secretion was increased and accompanied by decreased levels of p-Akt/Akt, p-GSK-3β/GSK-3β, and Slug and increased ZO-1 expression. CONCLUSION Local application of SHED-exos in SMGs can ameliorate Sjögren syndrome-induced hyposalivation by increasing the paracellular permeability of glandular epithelial cells through Akt/GSK-3β/Slug pathway-mediated ZO-1 expression.
Collapse
Affiliation(s)
- Zhihao Du
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Pan Wei
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Nan Jiang
- Center Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Liling Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Chong Ding
- Center Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Guangyan Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| |
Collapse
|
14
|
Wang W, Sun J, Aarabi G, Peters U, Fischer F, Klatt J, Gosau M, Smeets R, Beikler T. Effect of tetracycline hydrochloride application on dental pulp stem cell metabolism-booster or obstacle for tissue engineering? Front Pharmacol 2023; 14:1277075. [PMID: 37841936 PMCID: PMC10568071 DOI: 10.3389/fphar.2023.1277075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: Stem cells and scaffolds are an important foundation and starting point for tissue engineering. Human dental pulp stem cells (DPSC) are mesenchymal stem cells with self-renewal and multi-directional differentiation potential, and are ideal candidates for tissue engineering due to their excellent biological properties and accessibility without causing major trauma at the donor site. Tetracycline hydrochloride (TCH), a broad-spectrum antibiotic, has been widely used in recent years for the synthesis of cellular scaffolds to reduce the incidence of postoperative infections. Methods: In order to evaluate the effects of TCH on DPSC, the metabolism of DPSC in different concentrations of TCH environment was tested. Moreover, cell morphology, survival rates, proliferation rates, cell migration rates and differentiation abilities of DPSC at TCH concentrations of 0-500 μg/ml were measured. Phalloidin staining, live-dead staining, MTS assay, cell scratch assay and real-time PCR techniques were used to detect the changes in DPSC under varies TCH concentrations. Results: At TCH concentrations higher than 250 μg/ml, DPSC cells were sequestered, the proportion of dead cells increased, and the cell proliferation capacity and cell migration capacity decreased. The osteogenic and adipogenic differentiation abilities of DPSC, however, were already inhibited at TCH con-centrations higher than 50 μg/ml. Here, the expression of the osteogenic genes, runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN), the lipogenic genes lipase (LPL), as well as the peroxisome proliferator-activated receptor-γ (PPAR-γ) expression were found to be down-regulated. Discussion: The results of the study indicated that TCH in concentrations above 50 µg/ml negatively affects the differentiation capability of DPSC. In addition, TCH at concentrations above 250 µg/ml adversely affects the growth status, percentage of living cells, proliferation and migration ability of cells.
Collapse
Affiliation(s)
- Wang Wang
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jiangling Sun
- Department of Science and Education, Guiyang Stomatological Hospital, Guiyang, Guizhou, China
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ghazal Aarabi
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrike Peters
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Fischer
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Klatt
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Wang Z, Huang M, Zhang Y, Jiang X, Xu L. Comparison of Biological Properties and Clinical Application of Mesenchymal Stem Cells from the Mesoderm and Ectoderm. Stem Cells Int 2023; 2023:4547875. [PMID: 37333060 PMCID: PMC10276766 DOI: 10.1155/2023/4547875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Since the discovery of mesenchymal stem cells (MSCs) in the 1970s, they have been widely used in the treatment of a variety of diseases because of their wide sources, strong differentiation potential, rapid expansion in vitro, low immunogenicity, and so on. At present, most of the related research is on mesoderm-derived MSCs (M-MSCs) such as bone marrow MSCs and adipose-derived MSCs. As a type of MSC, ectoderm-derived MSCs (E-MSCs) have a stronger potential for self-renewal, multidirectional differentiation, and immunomodulation and have more advantages than M-MSCs in some specific conditions. This paper analyzes the relevant research development of E-MSCs compared with that of M-MSCs; summarizes the extraction, discrimination and culture, biological characteristics, and clinical application of E-MSCs; and discusses the application prospects of E-MSCs. This summary provides a theoretical basis for the better application of MSCs from both ectoderm and mesoderm in the future.
Collapse
Affiliation(s)
- Zhenning Wang
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthodontics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Meng Huang
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthodontics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Zhang
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthodontics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Lulu Xu
- Department of Orthodontics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
16
|
Hu S, Chen B, Zhou J, Liu F, Mao T, Pathak JL, Watanabe N, Li J. Dental pulp stem cell-derived exosomes revitalize salivary gland epithelial cell function in NOD mice via the GPER-mediated cAMP/PKA/CREB signaling pathway. J Transl Med 2023; 21:361. [PMID: 37268950 DOI: 10.1186/s12967-023-04198-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/14/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Restoration of salivary gland function in Sjogren's syndrome (SS) is still a challenge. Dental pulp stem cells (DPSCs) derived exosomes had shown anti-inflammatory, anti-oxidative, immunomodulatory, and tissue function restorative abilities. However, the salivary gland function restoration potential of DPSCs-derived exosomes (DPSC-Exos) during SS has not been investigated yet. METHODS DPSC-Exos was isolated by ultracentrifugation methods and characterized. Salivary gland epithelial cells (SGEC) were treated with interferon-gamma (IFN-γ) to mimic SS in vitro and cultured with or without DPSC-Exos. SGEC survival and aquaporin 5 (AQP5) expression were analyzed. mRNA sequencing and bioinformatics analysis were performed in IFN-γ vs. DPSC-Exos+ IFN-γ treated SGEC. Non-obese diabetic (NOD)/ltj female mice (SS model), were intravenously administered with DPSC-Exos, and salivary gland functions and SS pathogenicity were analyzed. Furthermore, the mRNA sequencing and bioinformatics predicted mechanism of the therapeutic effect of DPSC-Exos was further investigated both in vitro and in vivo using RT-qPCR, Western blot, immunohistochemistry, immunofluorescence, flowcytometry analysis. RESULTS DPSC-Exos partially rescued IFN-γ triggered SGEC death. IFN-γ inhibited AQP5 expression in SGEC and DPSC-Exos reversed this effect. Transcriptome analysis showed GPER was the upregulated DEG in DPSC-Exos-treated SGEC with a positive correlation with salivary secretion-related DEGs. Pathway enrichment analysis revealed that DEGs were mainly attributed to estrogen 16 alpha-hydroxylase activity, extracellular exosome function, cAMP signaling, salivary secretion, and estrogen signaling. Intravenous injection of DPSC-Exos in NOD/ltj mice alleviated the SS syndrome as indicated by the increased salivary flow rate, attenuated glandular inflammation, and increased AQP5 expression. GPER was also upregulated in the salivary gland of DPSC-Exos-treated NOD/ltj mice compared with the PBS-treated NOD/ltj mice. IFN-γ+DPSC-Exos-treated SGEC showed higher expression of AQP5, p-PKA, cAMP, and intracellular Ca2+ levels compared with IFN-γ-treated SGEC. These effects were reversed by the inhibition of GPER. CONCLUSIONS Our results showed that DPSC-Exos revitalize salivary gland epithelial cell function during SS via the GPER-mediated cAMP/PKA/CREB pathway suggesting the possible therapeutic potential of DPSC-Exos in SS-treatment.
Collapse
Affiliation(s)
- Shilin Hu
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, #195 Dongfeng West Road, Guangzhou, 510140, Guangdong, China
| | - Bo Chen
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, #195 Dongfeng West Road, Guangzhou, 510140, Guangdong, China
| | - Jiannan Zhou
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, #195 Dongfeng West Road, Guangzhou, 510140, Guangdong, China
| | - Fangqi Liu
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, #195 Dongfeng West Road, Guangzhou, 510140, Guangdong, China
| | - Tianjiao Mao
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, #195 Dongfeng West Road, Guangzhou, 510140, Guangdong, China
| | - Janak L Pathak
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, #195 Dongfeng West Road, Guangzhou, 510140, Guangdong, China.
| | - Nobumoto Watanabe
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
- Bio-Active Compounds Discovery Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Jiang Li
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, #195 Dongfeng West Road, Guangzhou, 510140, Guangdong, China.
| |
Collapse
|
17
|
Muallah D, Matschke J, Kappler M, Kroschwald LM, Lauer G, Eckert AW. Dental Pulp Stem Cells for Salivary Gland Regeneration-Where Are We Today? Int J Mol Sci 2023; 24:ijms24108664. [PMID: 37240009 DOI: 10.3390/ijms24108664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Xerostomia is the phenomenon of dry mouth and is mostly caused by hypofunction of the salivary glands. This hypofunction can be caused by tumors, head and neck irradiation, hormonal changes, inflammation or autoimmune disease such as Sjögren's syndrome. It is associated with a tremendous decrease in health-related quality of life due to impairment of articulation, ingestion and oral immune defenses. Current treatment concepts mainly consist of saliva substitutes and parasympathomimetic drugs, but the outcome of these therapies is deficient. Regenerative medicine is a promising approach for the treatment of compromised tissue. For this purpose, stem cells can be utilized due to their ability to differentiate into various cell types. Dental pulp stem cells are adult stem cells that can be easily harvested from extracted teeth. They can form tissues of all three germ layers and are therefore becoming more and more popular for tissue engineering. Another potential benefit of these cells is their immunomodulatory effect. They suppress proinflammatory pathways of lymphocytes and could therefore probably be used for the treatment of chronic inflammation and autoimmune disease. These attributes make dental pulp stem cells an interesting tool for the regeneration of salivary glands and the treatment of xerostomia. Nevertheless, clinical studies are still missing. This review will highlight the current strategies for using dental pulp stem cells in the regeneration of salivary gland tissue.
Collapse
Affiliation(s)
- David Muallah
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Jan Matschke
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine "Carl Gustav Carus", Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Lysann Michaela Kroschwald
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine "Carl Gustav Carus", Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital "Carl Gustav Carus", Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Günter Lauer
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine "Carl Gustav Carus", Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Alexander W Eckert
- Department of Cranio Maxillofacial Surgery, Paracelsus Medical University, Breslauer Straße 201, 90471 Nuremberg, Germany
| |
Collapse
|
18
|
Min Q, Yang L, Tian H, Tang L, Xiao Z, Shen J. Immunomodulatory Mechanism and Potential Application of Dental Pulp-Derived Stem Cells in Immune-Mediated Diseases. Int J Mol Sci 2023; 24:ijms24098068. [PMID: 37175774 PMCID: PMC10178746 DOI: 10.3390/ijms24098068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are mesenchymal stem cells (MSCs) derived from dental pulp tissue, which have high self-renewal ability and multi-lineage differentiation potential. With the discovery of the immunoregulatory ability of stem cells, DPSCs have attracted much attention because they have similar or even better immunomodulatory effects than MSCs from other sources. DPSCs and their exosomes can exert an immunomodulatory ability by acting on target immune cells to regulate cytokines. DPSCs can also migrate to the lesion site to differentiate into target cells to repair the injured tissue, and play an important role in tissue regeneration. The aim of this review is to summarize the molecular mechanism and target cells of the immunomodulatory effects of DPSCs, and the latest advances in preclinical research in the treatment of various immune-mediated diseases, providing new reflections for their clinical application. DPSCs may be a promising source of stem cells for the treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Qi Min
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Liqiong Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Hua Tian
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Lu Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| |
Collapse
|
19
|
Ma D, Wu Z, Zhao X, Zhu X, An Q, Wang Y, Zhao J, Su Y, Yang B, Xu K, Zhang L. Immunomodulatory effects of umbilical mesenchymal stem cell-derived exosomes on CD4 + T cells in patients with primary Sjögren's syndrome. Inflammopharmacology 2023:10.1007/s10787-023-01189-x. [PMID: 37012581 DOI: 10.1007/s10787-023-01189-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Primary Sjögren's syndrome (pSS) is an autoimmune disease that leads to the destruction of exocrine glands and multisystem lesions. Abnormal proliferation, apoptosis, and differentiation of CD4+ T cells are key factors in the pathogenesis of pSS. Autophagy is one of the important mechanisms to maintain immune homeostasis and function of CD4+ T cells. Human umbilical cord mesenchymal stem cell-derived exosomes (UCMSC-Exos) may simulate the immunoregulation of MSCs while avoiding the risks of MSCs treatment. However, whether UCMSC-Exos can regulate the functions of CD4+ T cells in pSS, and whether the effects via the autophagy pathway remains unclear. METHODS The study analyzed retrospectively the peripheral blood lymphocyte subsets in pSS patients, and explored the relationship between lymphocyte subsets and disease activity. Next, peripheral blood CD4+ T cells were sorted using immunomagnetic beads. The proliferation, apoptosis, differentiation, and inflammatory factors of CD4+ T cells were determined using flow cytometry. Autophagosomes of CD4+ T cells were detected using transmission electron microscopy, autophagy-related proteins and genes were detected using western blotting or RT-qPCR. RESULTS The study demonstrated that the peripheral blood CD4+ T cells decreased in pSS patients, and negatively correlated with disease activity. UCMSC-Exos inhibited excessive proliferation and apoptosis of CD4+ T cells in pSS patients, blocked them in the G0/G1 phase, inhibited them from entering the S phase, reduced the Th17 cell ratio, elevated the Treg ratio, inhibited IFN-γ, TNF-α, IL-6, IL-17A, and IL-17F secretion, and promoted IL-10 and TGF-β secretion. UCMSC-Exos reduced the elevated autophagy levels in the peripheral blood CD4+ T cells of patients with pSS. Furthermore, UCMSC-Exos regulated CD4+ T cell proliferation and early apoptosis, inhibited Th17 cell differentiation, promoted Treg cell differentiation, and restored the Th17/Treg balance in pSS patients through the autophagy pathway. CONCLUSIONS The study indicated that UCMSC-Exos exerts an immunomodulatory effect on the CD4+ T cells, and maybe as a new treatment for pSS.
Collapse
Affiliation(s)
- Dan Ma
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Zewen Wu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Xingxing Zhao
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Xueqing Zhu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Qi An
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Yajing Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Jingwen Zhao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Yazhen Su
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Baoqi Yang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Ke Xu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Liyun Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China.
| |
Collapse
|
20
|
Li P, Ou Q, Shi S, Shao C. Immunomodulatory properties of mesenchymal stem cells/dental stem cells and their therapeutic applications. Cell Mol Immunol 2023; 20:558-569. [PMID: 36973490 PMCID: PMC10040934 DOI: 10.1038/s41423-023-00998-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are widely distributed in the body and play essential roles in tissue regeneration and homeostasis. MSCs can be isolated from discarded tissues, expanded in vitro and used as therapeutics for autoimmune diseases and other chronic disorders. MSCs promote tissue regeneration and homeostasis by primarily acting on immune cells. At least six different types of MSCs have been isolated from postnatal dental tissues and have remarkable immunomodulatory properties. Dental stem cells (DSCs) have been demonstrated to have therapeutic effects on several systemic inflammatory diseases. Conversely, MSCs derived from nondental tissues such as the umbilical cord exhibit great benefits in the management of periodontitis in preclinical studies. Here, we discuss the main therapeutic uses of MSCs/DSCs, their mechanisms, extrinsic inflammatory cues and the intrinsic metabolic circuitries that govern the immunomodulatory functions of MSCs/DSCs. Increased understanding of the mechanisms underpinning the immunomodulatory functions of MSCs/DSCs is expected to aid in the development of more potent and precise MSC/DSC-based therapeutics.
Collapse
Affiliation(s)
- Peishan Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, PR China
| | - Qianmin Ou
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, PR China.
| |
Collapse
|
21
|
Song WP, Jin LY, Zhu MD, Wang H, Xia DS. Clinical trials using dental stem cells: 2022 update. World J Stem Cells 2023; 15:31-51. [PMID: 37007456 PMCID: PMC10052340 DOI: 10.4252/wjsc.v15.i3.31] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
For nearly 20 years, dental stem cells (DSCs) have been successfully isolated from mature/immature teeth and surrounding tissue, including dental pulp of permanent teeth and exfoliated deciduous teeth, periodontal ligaments, dental follicles, and gingival and apical papilla. They have several properties (such as self-renewal, multidirectional differentiation, and immunomodulation) and exhibit enormous potential for clinical applications. To date, many clinical articles and clinical trials using DSCs have reported the treatment of pulpitis, periapical lesions, periodontitis, cleft lip and palate, acute ischemic stroke, and so on, and DSC-based therapies obtained satisfactory effects in most clinical trials. In these studies, no adverse events were reported, which suggested the safety of DSC-based therapy. In this review, we outline the characteristics of DSCs and summarize clinical trials and their safety as DSC-based therapies. Meanwhile, we also present the current limitations and perspectives of DSC-based therapy (such as harvesting DSCs from inflamed tissue, applying DSC-conditioned medium/DSC-derived extracellular vesicles, and expanding-free strategies) to provide a theoretical basis for their clinical applications.
Collapse
Affiliation(s)
- Wen-Peng Song
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Lu-Yuan Jin
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Meng-Di Zhu
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Hao Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Deng-Sheng Xia
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
22
|
Wen K, Li W, Cheng C, Weige X, Jiaqi C, Shiyu S, Lingyan H, Hongwei W, Sijing X. Human dental pulp stem cells ameliorate the imiquimod-induced psoriasis in mice. Heliyon 2023; 9:e13337. [PMID: 36816313 PMCID: PMC9932705 DOI: 10.1016/j.heliyon.2023.e13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 12/26/2022] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Psoriasis is an autoimmune disease, which has a significant impact on the quality of patient's life. And, there is still no cure for psoriasis. The human dental pulp stem cell (hDPSC) possesses the properties of immunoregulation. In this study, we aimed to determine the effect of hDPSC on the imiquimod (IMQ)-induced psoriasis in mice. The psoriasis model was established by topical application of IMQ cream in mice for 7 days. We found that subcutaneous injection of hDPSC could reduce the symptoms of skin lesions in IMQ-induced psoriasis and suppress the expression of keratin 16, S100A8, S100A9, which are associated with abnormal epidermal proliferation. Subepithelial inflammatory cytokines, CD4+ T lymphocytes and CD11c+ dendritic cells infiltrations were significantly inhibited in by hDPSC. The TNF-α, IFN-γ expressions in serum were decreased, and splenomegaly induced by IMQ was improved after hDPSC treatment. In summary, our study demonstrated that hDPSC could reduce the symptoms of skin lesions and suppress local and systemic immune responses of IMQ-induced psoriasis in mice, which might provide a new sight for the treatment of psoriasis.
Collapse
Affiliation(s)
- Kang Wen
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Wu Li
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Chen Cheng
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Xie Weige
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Chen Jiaqi
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Song Shiyu
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China
| | - Huang Lingyan
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Wang Hongwei
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China,Corresponding author.
| | - Xie Sijing
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China,Corresponding author.
| |
Collapse
|
23
|
Mattei V, Delle Monache S. Dental Pulp Stem Cells (DPSCs) and Tissue Regeneration: Mechanisms Mediated by Direct, Paracrine, or Autocrine Effects. Biomedicines 2023; 11:biomedicines11020386. [PMID: 36830923 PMCID: PMC9953448 DOI: 10.3390/biomedicines11020386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Among mesenchymal stem cells, dental pulp stem cells (DPSCs) were discovered most recently [...].
Collapse
Affiliation(s)
- Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy
- Correspondence: (V.M.); (S.D.M.)
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Correspondence: (V.M.); (S.D.M.)
| |
Collapse
|
24
|
Li J, Wu L, Chen Y, Yan Z, Fu J, Luo Z, Du J, Guo L, Xu J, Liu Y. Anticeramide Improves Sjögren's Syndrome by Blocking BMP6-Induced Th1. J Dent Res 2023; 102:93-102. [PMID: 36281063 DOI: 10.1177/00220345221119710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
T-cell dysfunction has been shown to play an important role in the pathogenesis of Sjögren's syndrome (SS). In recent studies, the increased expression of BMP6 has been reported to be related to SS. However, the roles that BMP6 plays in immune homeostasis in the development of SS as well as the downstream signals activated by BMP6 remain unclear. In this study, we investigated the effects and molecular mechanisms of BMP6 on naive CD4+ T cells, showing that BMP6 could upregulate interferon (IFN)-γ secretion from CD4+ T cells through a ceramide/nuclear factor-κB pathway, with no effect on T-cell activation or proliferation. Moreover, an in vivo study showed that anticeramide treatment (myriocin) for an SS animal model (NOD/LtJ mice) could significantly decrease the IFN-γ expression and Th1 frequency in the salivary glands and suppress the inflammation infiltration in salivary glands and maintain the salivary flow rates, both of which reflect SS-like symptoms. This study identifies a promising target that could effectively attenuate the abnormal state of CD4+ T cells and reverse the progression of SS.
Collapse
Affiliation(s)
- J Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, P.R. China
| | - L Wu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, P.R. China
| | - Y Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China
| | - Z Yan
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China
| | - J Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China
| | - Z Luo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China
| | - J Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China
| | - L Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, P.R. China
| | - J Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, P.R. China
| | - Y Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, P.R. China
| |
Collapse
|
25
|
Management of Sjogren's Dry Eye Disease-Advances in Ocular Drug Delivery Offering a New Hope. Pharmaceutics 2022; 15:pharmaceutics15010147. [PMID: 36678777 PMCID: PMC9861012 DOI: 10.3390/pharmaceutics15010147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Sjögren's syndrome is a chronic and insidious autoimmune disease characterized by lymphocyte infiltration of exocrine glands. Patients typically present with dry eye, dry mouth, and other systemic manifestations. Currently, the available molecules and drug-delivery systems for the treatment of Sjögren's syndrome dry eye (SSDE) have limited efficacy since they are not specific to SSDE but to dry eye disease (DED) in general. The current treatment modalities are based on a trial-and-error approach using primarily topical agents. However, this approach gives time for the vicious cycle of DED to develop which eventually causes permanent damage to the lacrimal functional unit. Thus, there is a need for more individualized, specific, and effective treatment modalities for SSDE. The purpose of this article is to describe the current conventional SSDE treatment modalities and to expose new advances in ocular drug delivery for treating SSDE. A literature review of the pre-clinical and clinical studies published between 2016 and 2022 was conducted. Our current understanding of SSDE pathophysiology combined with advances in ocular drug delivery and novel therapeutics will allow the translation of innovative molecular therapeutics from the bench to the bedside.
Collapse
|
26
|
Sun T, Liu S, Yang G, Zhu R, Li Z, Yao G, Chen H, Sun L. Mesenchymal stem cell transplantation alleviates Sjögren's syndrome symptoms by modulating Tim-3 expression. Int Immunopharmacol 2022; 111:109152. [PMID: 36007392 DOI: 10.1016/j.intimp.2022.109152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
Mesenchymal stem cell (MSC) transplantation has been proven to be an effective treatment for Sjögren's syndrome (SS) to improve salivary gland pathology and exocrine function, but the mechanism remains unclear. A recently reported inhibitory receptor, Tim-3, also appears to be closely related to autoimmune diseases. Here, we aimed to explore the roles of Tim-3 in the pathogenesis of SS and MSC treatment. The results showed that Tim-3 was downregulated in T cells of SS patients and nonobese diabetic (NOD) mice, which is correlated with SS pathogenesis. MSC transplantation ameliorated SS-like symptoms and pathological changes in the submandibular glands with modulated Tim-3 expression, resulting in attenuation of localized inflammation, fibrosis, and epithelial-mesenchymal transition. Furthermore, Tim-3 is crucial for the inhibitory effect of MSCs on PBMC proliferation in vitro. Therefore, our work has demonstrated that MSC transplantation effectively mitigates the pathological changes of SS by regulating Tim-3 expression, which provides a novel mechanism of MSC treatment and indicates a brand-new perspective of the combination of inhibitory-receptor-targeted treatment and MSC therapy in SS.
Collapse
Affiliation(s)
- Tian Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Shanshan Liu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Guangxia Yang
- Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, China
| | - Rujie Zhu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, China
| | - Zutong Li
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Genhong Yao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Hongwei Chen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China.
| |
Collapse
|
27
|
Arora S, Cooper PR, Friedlander LT, Seo B, Rizwan SB, Rich AM, Hussaini HM. Potentiality and Inflammatory Marker Expression Are Maintained in Dental Pulp Cell Cultures from Carious Teeth. Int J Mol Sci 2022; 23:9425. [PMID: 36012689 PMCID: PMC9409171 DOI: 10.3390/ijms23169425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES This investigation aimed to isolate and culture human dental pulp cells from carious teeth (cHDPCs) and compare their growth characteristics, colony-forming efficiency, mineralization potential and gene expression of Toll-like receptors (TLR)-2, TLR-4, TLR-9, tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, IL-17A, 1L-17R, IL-23A, nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK1), dentin matrix protein (DMP)-1, dentin sialophospho protein (DSPP), sex determining region Y-box 2 (SOX2) and marker of proliferation Ki-67 (MKi67) with cells isolated from healthy or non-carious teeth (ncHDPCs). METHODS Pulp tissues were obtained from both healthy and carious teeth (n = 5, each) to generate primary cell lines using the explant culture technique. Cell cultures studies were undertaken by generating growth curves, a colony forming unit and a mineralization assay analysis. The expression of vimentin was assessed using immunocytochemistry (ICC), and the gene expression of above-mentioned genes was determined using quantitative real-time reverse-transcription polymerase chain reaction. RESULTS ncHDPCs and cHDPCs were successfully isolated and cultured from healthy and inflamed human dental pulp tissue. At passage 4, both HDPC types demonstrated a typical spindle morphology with positive vimentin expression. No statistical difference was observed between ncHDPCs and cHDPCs in their growth characteristics or ability to differentiate into a mineralizing phenotype. ncHDPCs showed a statistically significant higher colony forming efficiency than cHDPCs. The gene expression levels of TLR-2, TLR-4, TLR-9, TNF-α, IL-6, IL-8, IL-17R, IL-23A, NF-κB, MAPK1, DMP1, DSPP and SOX2 were significantly higher in cHDPCs compared with ncHDPC cultures. CONCLUSION cHDPCs retain their differentiation potential and inflammatory phenotype in vitro. The inflamed tooth pulp contains viable stem/progenitor cell populations which have the potential for expansion, proliferation and differentiation into a mineralizing lineage, similar to cells obtained from healthy pulp tissue. These findings have positive implications for regenerative endodontic procedures.
Collapse
Affiliation(s)
- Shelly Arora
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Paul R. Cooper
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Lara T. Friedlander
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Benedict Seo
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Shakila B. Rizwan
- School of Pharmacy, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Alison M. Rich
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Haizal Mohd Hussaini
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- Faculty of Dental Medicine, Airlangga University, Surabaya 60132, Jawa Timur, Indonesia
| |
Collapse
|
28
|
Luo L, Xing Z, Liao X, Li Y, Luo Y, Ai Y, He Y, Ye Q. Dental pulp stem cells-based therapy for the oviduct injury via immunomodulation and angiogenesis in vivo. Cell Prolif 2022; 55:e13293. [PMID: 35822247 PMCID: PMC9528759 DOI: 10.1111/cpr.13293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES As a result of the current limitation of therapeutic strategies, the repair and regeneration of oviduct injuries required an alternative treatment. We present a novel approach to treat oviduct injuries through a dental pulp stem cells (DPSCs)-based therapy. MATERIALS AND METHODS In vitro and in vivo models have been established. Immunofluorescence staining, flow cytometry and enzyme-linked immunosorbent assay (ELISA) analysis were used to investigate the features and angiogenic properties of DPSCs, as well as their impact on macrophages, in vitro. For the in vivo experiment with female SD rat model, immunohistochemical staining and ELISA analysis were used to assess the effects of DPSCs on the repair and regeneration of damaged oviducts. RESULTS The present data showed that intraperitoneal injection of DPSCs reduced the expression of IL-6 and TNF-α to inhibit the immunoreaction in injured sites, as well as increased the expression of VEGF to promote the in situ formation of vessel-like structures, thus the repair and recovery process could be initiated. CONCLUSIONS We concluded that DPSCs-based therapy could be a novel potential technique for restoring the structure and function of damaged oviduct by enhancing immuno-regulated effect and promoting angiogenic property.
Collapse
Affiliation(s)
- Lihua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhenjie Xing
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xiangyan Liao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yejian Li
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yu Luo
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China.,Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yilong Ai
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, China
| | - Yan He
- Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Lei Q, Liang Z, Lei Q, Liang F, Ma J, Wang Z, He S. Analysis of circRNAs profile in TNF-α treated DPSC. BMC Oral Health 2022; 22:269. [PMID: 35786385 PMCID: PMC9251952 DOI: 10.1186/s12903-022-02267-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/21/2022] [Indexed: 12/28/2022] Open
Abstract
Background Pulpitis often are characterized as sustained inflammation and impaired pulp self-repair. Circular RNAs (circRNAs) have been reported to be involved in the development of inflammation, but their influence in pulpitis is still unidentified, which was examined in our research. Methods In this study, TNF-α (20 ng/mL) was used to treat DPSCs, then MTS identified cell proliferation. The circRNAs profile in DPSCs with or without TNF-α treatment was evaluated using RNA sequencing and subsequently by bioinformatics analysis. After that, the circular structure was assessed using agarose gel electrophoresis, followed by Sanger sequencing. And the circRNAs expression was ratified using quantitative real-time polymerase chain reaction in cell and tissues samples. Additionally, the plausible mechanism of circRNAs was envisaged, and the circRNA-miRNA-mRNA linkage was plotted using Cytoscape. Results The treatment of TNF-α inhibited cell proliferation capabilities in DPSCs, which also made 1195 circRNA expressions undergo significant alterations. Among these changes, 11 circRNAs associated with inflammation were chosen for circular structure verification, and only seven circRNAs (hsa_circ_0001658, hsa_circ_0001978, hsa_circ_0003910, hsa_circ_0004314, hsa_circ_0004417, hsa_circ_0035915, and hsa_circ_0002545) had circular structure. Additionally, five circRNAs expressions (hsa_circ_0001978, hsa_circ_0003910, hsa_circ_0004314, hsa_circ_0004417, and hsa_circ_0035915) had significantly altered between with or without TNF-α treated DPSCs. Furthermore, hsa_circ_0001978 and hsa_circ_0004417 were increased in patients suffering from pulpitis. Furthermore, their ceRNA linkage and Kyoto Encyclopedia of Genes and Genomes analysis suggested that these two circRNAs may participate in the inflammation development of pulpitis via mitogen-activated protein kinase and the Wnt signaling pathway. Conclusion This study revealed that the circRNAs profile was altered in TNF-α treated DPSCs. Also, hsa_circ_0001978 and hsa_circ_0004417 may be involved in the inflammation progress of pulpitis. These outcomes provided the latest information for additional research on pulpitis. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02267-2.
Collapse
Affiliation(s)
- Qiyin Lei
- Stomatology and Cosmetic Dentistry Center, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Zezi Liang
- Stomatology and Cosmetic Dentistry Center, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Qiaoling Lei
- Stomatology and Cosmetic Dentistry Center, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Fuying Liang
- Stomatology and Cosmetic Dentistry Center, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Jing Ma
- Stomatology and Cosmetic Dentistry Center, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Zhongdong Wang
- Stomatology and Cosmetic Dentistry Center, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China.
| | - Shoudi He
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Technology Union Shenzhen Hospital, No.89 Taoyuan Road, Nanshan District, Shenzhen, 518052, Guangdong, China.
| |
Collapse
|
30
|
Genç D, Bulut O, Günaydin B, Göksu M, Düzgün M, Dere Y, Sezgin S, Aladağ A, Bülbül A. Dental follicle mesenchymal stem cells ameliorated glandular dysfunction in Sjögren's syndrome murine model. PLoS One 2022; 17:e0266137. [PMID: 35511824 PMCID: PMC9070867 DOI: 10.1371/journal.pone.0266137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Dental mesenchymal stem cells (MSCs) are potential for use in tissue regeneration in inflammatory diseases due to their rapid proliferating, multilineage differentiation, and strong anti-inflammatory features. In the present study, immunoregulatory and glandular tissue regeneration effects of the dental follicle (DF)MSCs in Sjögren's Syndrome (SS) were investigated. METHODS Dental follicle (DF) tissues were obtained from healthy individuals during tooth extraction, tissues were digested enzymatically and DFMSCs were cultured until the third passage. DFMSCs were labeled with Quantum dot 655 for cell tracking analysis. The induction of the SS mouse model was performed by the injection of Ro60-273-289 peptide intraperitoneally. DFMSCs were injected intraperitoneally, or into submandibular, or lacrimal glands. Splenocytes were analyzed for intracellular cytokine (IFN-γ, IL-17, IL-10) secretion in T helper cells, lymphocyte proliferation, and B lymphocyte subsets. Histologic analysis was done for submandibular and lacrimal glands with hematoxylin-eosin staining for morphologic examination. RESULTS The systemic injection of DFMSCs significantly reduced intracellular IFN-γ and IL-17 secreting CD4+ T cells in splenocytes (p<0.05), and decreased inflammatory cell deposits and fibrosis in the glandular tissues. DFMSCs differentiated to glandular epithelial cells in submandibular and lacrimal injections with a significant reduction in lymphocytic foci. The results showed that few amounts of DFMSCs were deposited in glandular tissues when applied intraperitoneally, while high amounts of DFMSCs were located in glandular tissues and differentiated to glandular epithelial cells when applied locally in SS murine model. CONCLUSION DFMSCs have the potential for the regulation of Th1, Th17, and Treg balance in SS, and ameliorate glandular dysfunction. DFMSCs can be a beneficial therapeutic application for SS.
Collapse
Affiliation(s)
- Deniz Genç
- Faculty of Health Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
- Research Laboratories Center, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Osman Bulut
- Milas Veterinary Medicine Faculty, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Burcu Günaydin
- Department of Histology and Embryology, Institute of Health Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Mizgin Göksu
- Faculty of Science, Department of Molecular Biology and Genetics, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Mert Düzgün
- Faculty of Science, Department of Molecular Biology and Genetics, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Yelda Dere
- Faculty of Medicine, Department of Pathology, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Serhat Sezgin
- Faculty of Dentistry, Muğla Sıtkı Koçman Üniversity, Muğla, Turkey
| | - Akın Aladağ
- Faculty of Dentistry, Muğla Sıtkı Koçman Üniversity, Muğla, Turkey
| | - Aziz Bülbül
- Milas Veterinary Medicine Faculty, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
31
|
Ogata K, Moriyama M, Matsumura-Kawashima M, Kawado T, Yano A, Nakamura S. The Therapeutic Potential of Secreted Factors from Dental Pulp Stem Cells for Various Diseases. Biomedicines 2022; 10:biomedicines10051049. [PMID: 35625786 PMCID: PMC9138802 DOI: 10.3390/biomedicines10051049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
An alternative source of mesenchymal stem cells has recently been discovered: dental pulp stem cells (DPSCs), including deciduous teeth, which can thus comprise potential tools for regenerative medicine. DPSCs derive from the neural crest and are normally implicated in dentin homeostasis. The clinical application of mesenchymal stem cells (MSCs) involving DPSCs contains various limitations, such as high cost, low safety, and cell handling issues, as well as invasive sample collection procedures. Although MSCs implantation offers favorable outcomes on specific diseases, implanted MSCs cannot survive for a long period. It is thus considered that their mediated mechanism of action involves paracrine effects. It has been recently reported that secreted molecules in DPSCs-conditioned media (DPSC-CM) contain various trophic factors and cytokines and that DPSC-CM are effective in models of various diseases. In the current study, we focus on the characteristics of DPSC-CM and their therapeutic potential against various disorders.
Collapse
|
32
|
Huldani H, Abdalkareem Jasim S, Olegovich Bokov D, Abdelbasset WK, Nader Shalaby M, Thangavelu L, Margiana R, Qasim MT. Application of extracellular vesicles derived from mesenchymal stem cells as potential therapeutic tools in autoimmune and rheumatic diseases. Int Immunopharmacol 2022; 106:108634. [PMID: 35193053 DOI: 10.1016/j.intimp.2022.108634] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have been proven to have superior potential to be used astherapeutic candidates in various disorders. Nevertheless, the clinical application of these cells have been restricted because of their tumorigenic properties. Increasing evidence has established that the valuable impacts of MSCs are mainly attributable to the paracrine factors including extracellular vesicles (EVs). EVs are nanosized double-layer phospholipid membrane vesicles contain various proteins, lipids and miRNAs which mediate cell-to-cell communications. Due to their inferior immunogenicity and tumorigenicity, as well as easier management, EVs have drawn attention as potential cell-free replacement therapy to MSCs. For that reason, herein, we reviewed the recent findings of researches on different MSC-EVs and their effectiveness in the treatment of several autoimmune and rheumatic diseases including multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis, osteoarthritis, osteoporosis, and systemic lupus erythematosus as well as Sjogren's syndrome, systemic sclerosis and other autoimmune diseases.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Lambung Mangkurat University, Banjarmasin, South Borneo, Indonesia.
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-anbar-Ramadi, Iraq
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Egypt
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| |
Collapse
|
33
|
Novello S, Tricot-Doleux S, Novella A, Pellen-Mussi P, Jeanne S. Influence of Periodontal Ligament Stem Cell-Derived Conditioned Medium on Osteoblasts. Pharmaceutics 2022; 14:pharmaceutics14040729. [PMID: 35456563 PMCID: PMC9028528 DOI: 10.3390/pharmaceutics14040729] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem cells (MSC) are involved in the regeneration of various missing or compromised periodontal tissues, including bone. MSC-derived conditioned medium (CM) has recently been explored as a favorable surrogate for stem cell therapy, as it is capable of producing comparable therapeutic effects. This study aimed to evaluate the influence of periodontal ligament stem cells (PDLSC)-CM on osteoblasts (OB) and its potential as a therapeutic tool for periodontal regeneration. Human PDLSC were isolated and characterized, and CM from these cells was collected. The presence of exosomes in the culture supernatant was observed by immunofluorescence and by transmission electron microscopy. CM was added to a cultured osteoblastic cell line (Saos-2 cells) and viability (MTT assay) and gene expression analysis (real-time PCR) were examined. A cell line derived from the periodontal ligament and showing all the characteristics of MSC was successfully isolated and characterized. The addition of PDLSC-CM to Saos-2 cells led to an enhancement of their proliferation and an increased expression of some osteoblastic differentiation markers, but this differentiation was not complete. Saos-2 cells were involved in the initial inflammation process by releasing IL-6 and activating COX2. The effects of PDLSC-CM on Saos-2 appear to arise from a cumulative effect of different effective components rather than a few factors present at high levels.
Collapse
Affiliation(s)
- Solen Novello
- ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Université de Rennes, 35000 Rennes, France; (S.T.-D.); (A.N.); (P.P.-M.); (S.J.)
- Unité de Formation et de Recherche d’Odontologie, Université de Rennes, 35000 Rennes, France
- UF Parodontologie, Pôle d’Odontologie, Centre Hospitalier Universitaire de Rennes, 35000 Rennes, France
- Correspondence:
| | - Sylvie Tricot-Doleux
- ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Université de Rennes, 35000 Rennes, France; (S.T.-D.); (A.N.); (P.P.-M.); (S.J.)
| | - Agnès Novella
- ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Université de Rennes, 35000 Rennes, France; (S.T.-D.); (A.N.); (P.P.-M.); (S.J.)
| | - Pascal Pellen-Mussi
- ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Université de Rennes, 35000 Rennes, France; (S.T.-D.); (A.N.); (P.P.-M.); (S.J.)
| | - Sylvie Jeanne
- ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Université de Rennes, 35000 Rennes, France; (S.T.-D.); (A.N.); (P.P.-M.); (S.J.)
- Unité de Formation et de Recherche d’Odontologie, Université de Rennes, 35000 Rennes, France
- UF Parodontologie, Pôle d’Odontologie, Centre Hospitalier Universitaire de Rennes, 35000 Rennes, France
| |
Collapse
|
34
|
Chihaby N, Orliaguet M, Le Pottier L, Pers JO, Boisramé S. Treatment of Sjögren's Syndrome with Mesenchymal Stem Cells: A Systematic Review. Int J Mol Sci 2021; 22:10474. [PMID: 34638813 PMCID: PMC8508641 DOI: 10.3390/ijms221910474] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 01/10/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are ubiquitous in the human body. Mesenchymal stem cells were initially isolated from bone marrow and later from other organs such as fatty tissues, umbilical cords, and gingiva. Their secretory capacities give them interesting immunomodulatory properties in cell therapy. Some studies have explored the use of MSCs to treat Sjögren's syndrome (SS), a chronic inflammatory autoimmune disease that mainly affects exocrine glands, including salivary and lacrimal glands, although current treatments are only palliative. This systematic review summarizes the current data about the application of MSCs in SS. Reports show improvements in salivary secretions and a decrease in lymphocytic infiltration in salivary glands in patients and mice with SS after intravenous or infra-peritoneal injections of MSCs. MSC injections led to a decrease in inflammatory cytokines and an increase in anti-inflammatory cytokines. However, the intrinsic mechanism of action of these MSCs currently remains unknown.
Collapse
Affiliation(s)
- Najwa Chihaby
- UFR d’Odontologie, University of Western Brittany, 29200 Brest, France; (N.C.); (M.O.); (L.L.P.); (S.B.)
| | - Marie Orliaguet
- UFR d’Odontologie, University of Western Brittany, 29200 Brest, France; (N.C.); (M.O.); (L.L.P.); (S.B.)
- CHU de Brest, 29609 Brest, France
| | - Laëtitia Le Pottier
- UFR d’Odontologie, University of Western Brittany, 29200 Brest, France; (N.C.); (M.O.); (L.L.P.); (S.B.)
- Inserm, LBAI, University of Western Brittany, UMR1227, 29609 Brest, France
| | - Jacques-Olivier Pers
- UFR d’Odontologie, University of Western Brittany, 29200 Brest, France; (N.C.); (M.O.); (L.L.P.); (S.B.)
- CHU de Brest, 29609 Brest, France
- Inserm, LBAI, University of Western Brittany, UMR1227, 29609 Brest, France
| | - Sylvie Boisramé
- UFR d’Odontologie, University of Western Brittany, 29200 Brest, France; (N.C.); (M.O.); (L.L.P.); (S.B.)
- CHU de Brest, 29609 Brest, France
| |
Collapse
|
35
|
Li N, Li L, Wu M, Li Y, Yang J, Wu Y, Xu H, Luo D, Gao Y, Fei X, Jiang L. Integrated Bioinformatics and Validation Reveal Potential Biomarkers Associated With Progression of Primary Sjögren's Syndrome. Front Immunol 2021; 12:697157. [PMID: 34367157 PMCID: PMC8343000 DOI: 10.3389/fimmu.2021.697157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Background Primary Sjögren's syndrome (pSS) is a chronic systemic autoimmune disease of the exocrine glands characterized by specific pathological features. Previous studies have pointed out that salivary glands from pSS patients express a unique profile of cytokines, adhesion molecules, and chemokines compared to those from healthy controls. However, there is limited evidence supporting the utility of individual markers for different stages of pSS. This study aimed to explore potential biomarkers associated with pSS disease progression and analyze the associations between key genes and immune cells. Methods We combined our own RNA sequencing data with pSS datasets from the NCBI Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) via bioinformatics analysis. Salivary gland biopsies were collected from 14 pSS patients, 6 non-pSS patients, and 6 controls. Histochemical staining and transmission electron micrographs (TEM) were performed to macroscopically and microscopically characterize morphological features of labial salivary glands in different disease stages. Then, we performed quantitative PCR to validate hub genes. Finally, we analyzed correlations between selected hub genes and immune cells using the CIBERSORT algorithm. Results We identified twenty-eight DEGs that were upregulated in pSS patients compared to healthy controls. These were mainly involved in immune-related pathways and infection-related pathways. According to the morphological features of minor salivary glands, severe interlobular and periductal lymphocytic infiltrates, acinar atrophy and collagen in the interstitium, nuclear shrinkage, and microscopic organelle swelling were observed with pSS disease progression. Hub genes based on above twenty-eight DEGs, including MS4A1, CD19, TCL1A, CCL19, CXCL9, CD3G, and CD3D, were selected as potential biomarkers and verified by RT-PCR. Expression of these genes was correlated with T follicular helper cells, memory B cells and M1 macrophages. Conclusion Using transcriptome sequencing and bioinformatics analysis combined with our clinical data, we identified seven key genes that have potential value for evaluating pSS severity.
Collapse
Affiliation(s)
- Ning Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyao Wu
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yusi Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Yang
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yicheng Wu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haimin Xu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danyang Luo
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Gao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaochun Fei
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liting Jiang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|