1
|
Yuan F, Li M, Wei X, Fu Y. Co-transplantation of umbilical cord mesenchymal stem cells and peripheral blood stem cells in children and adolescents with refractory or relapsed severe aplastic anemia. Pediatr Hematol Oncol 2024; 41:322-335. [PMID: 38436082 DOI: 10.1080/08880018.2024.2324394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
To evaluate the co-transplantation efficacy of umbilical cord mesenchymal stem cells (UC-MSCs) and peripheral blood stem cells (PBSCs) as a novel approach for refractory or relapsed severe aplastic anemia (R/R SAA) in children and adolescents, thirty-two children and adolescents diagnosed with R/R SAA underwent a retrospective chart review. The patients were categorized into two groups based on the source of PBSCs: the matched sibling donor (MSD) group and the unrelated donor (UD) group. No adverse events related to UC-MSC infusion occurred in any of the patients. The median time for neutrophil engraftment was 13 days (range: 10-23 days), and for platelets, it was 15 days (range: 11-28 days). Acute GVHD of Grade I-II and moderate chronic GVHD were observed in 21.8 and 12.5% of cases, respectively. No statistically significant differences were found between the MSD and UD groups in terms of engraftment, GVHD, and complications, including infection and hemorrhagic cystitis. The median follow-up time was 38.6 months (range: 1.4-140.8 months). As of October 31, 2021, five patients had succumbed, while 27 (84.4%) survived. The 5-year OS rate showed no statistically significant difference between the MSD and UD groups (84.8 ± 10.0 vs. 82.4 ± 9.2%, p = 0.674). In conclusion, the application of UC-MSCs in the treatment of R/R SAA in PBSC transplantation is reliable and safe, they had no graft rejection, low incidence of severe GVHD which may have been contributed by the co-infusion of MSC.
Collapse
Affiliation(s)
- Fangfang Yuan
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Minghui Li
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Xudong Wei
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yuewen Fu
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Pérez-Torres Lobato M, Benitez-Carabante MI, Alonso L, Torrents S, Castillo Flores N, Uria Oficialdegui ML, Panesso M, Alonso-Martínez C, Oliveras M, Renedo-Miró B, Vives J, Diaz-de-Heredia C. Mesenchymal stromal cells in the treatment of pediatric hematopoietic cell transplantation-related complications (graft vs. host disease, hemorrhagic cystitis, graft failure and poor graft function): a single center experience. Front Pediatr 2024; 12:1375493. [PMID: 38783918 PMCID: PMC11112085 DOI: 10.3389/fped.2024.1375493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/28/2024] [Indexed: 05/25/2024] Open
Abstract
Objectives To describe mesenchymal stromal cells (MSCs) in the treatment of hematopoietic stem cell transplantation (HSCT) complications and to assess its safety and efficacy. Methods Single-center retrospective study (2016-2023). Patients under 20 years who received MSCs for the treatment of HSCT-related complications were included. Results Thirty patients (53.7% boys), median age at transplant 11 years (range 2-19) were included. MSCs indications were: graft-vs.-host disease (GVHD) in 18 patients (60%), of them 13 had acute GVHD (43.3%) and 5 chronic GVHD (16.7%); Grade 3-4 hemorrhagic cystitis (HC) in 4 (13.3%); poor graft function (PGF) in 6 (20%), 5 of them receiving MSCs with a CD34 stem cell-boost coinfusion; graft failure (GF) in 2 (6.7%), to enhance engraftment after a subsequent HSCT. Infusion-related-adverse-events were not reported. Overall response (OR) was 83% (25/30); 44% of responders (11/25) showed complete response (CR). OR for GVHD, HC, PGF and GF was 83.3%, 100%, 66.7% and 100% respectively. Response rate was 40% (95% CI: 20-55) and 79% (95% CI: 57-89) at 15 and 30 days. With a median follow-up of 21 months (IQR11-52.5), overall survival (OS) was 86% (95% CI: 74-100) and 79% (95% CI: 65-95) at 6 and 12 months post-MSCs infusion. Conclusion In our study, the most frequent indication of MSCs was refractory aGVHD (43.3%). Response rates were high (OR 83%) and safety profile was good.
Collapse
Affiliation(s)
- Maria Pérez-Torres Lobato
- Department of Paediatric Oncology and Haematology, Vall D'Hebron University Hospital, Barcelona, Spain
- Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Maria Isabel Benitez-Carabante
- Department of Paediatric Oncology and Haematology, Vall D'Hebron University Hospital, Barcelona, Spain
- Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Laura Alonso
- Department of Paediatric Oncology and Haematology, Vall D'Hebron University Hospital, Barcelona, Spain
- Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
| | | | | | - Maria Luz Uria Oficialdegui
- Department of Paediatric Oncology and Haematology, Vall D'Hebron University Hospital, Barcelona, Spain
- Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Melissa Panesso
- Department of Paediatric Oncology and Haematology, Vall D'Hebron University Hospital, Barcelona, Spain
- Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
| | | | - Maria Oliveras
- Department of Pharmacy, Vall D'Hebron University Hospital, Barcelona, Spain
| | - Berta Renedo-Miró
- Department of Pharmacy, Vall D'Hebron University Hospital, Barcelona, Spain
| | - Joaquim Vives
- Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
- Banc de Sang I Teixits, Barcelona, Spain
- Department of Medicine, Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Cristina Diaz-de-Heredia
- Department of Paediatric Oncology and Haematology, Vall D'Hebron University Hospital, Barcelona, Spain
- Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
| |
Collapse
|
3
|
Pignatti E, Maccaferri M, Pisciotta A, Carnevale G, Salvarani C. A comprehensive review on the role of mesenchymal stromal/stem cells in the management of rheumatoid arthritis. Expert Rev Clin Immunol 2024; 20:463-484. [PMID: 38163928 DOI: 10.1080/1744666x.2023.2299729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease with systemic manifestations. Although the success of immune modulatory drug therapy is considerable, about 40% of patients do not respond to treatment. Mesenchymal stromal/stem cells (MSCs) have been demonstrated to have therapeutic potential for inflammatory diseases. AREAS COVERED This review provides an update on RA disease and on pre-clinical and clinical studies using MSCs from bone marrow, umbilical cord, adipose tissue, and dental pulp, to regulate the immune response. Moreover, the clinical use, safety, limitations, and future perspective of MSCs in RA are discussed. Using the PubMed database and ClincalTrials.gov, peer-reviewed full-text papers, abstracts and clinical trials were identified from 1985 through to April 2023. EXPERT OPINION MSCs demonstrated a satisfactory safety profile and potential for clinical efficacy. However, it is mandatory to deepen the investigations on how MSCs affect the proinflammatory deregulated RA patients' cells. MSCs are potentially good candidates for severe RA patients not responding to conventional therapies but a long-term follow-up after stem cells treatment and standardized protocols are needed. Future research should focus on well-designed multicenter randomized clinical trials with adequate sample sizes and properly selected patients satisfying RA criteria for a valid efficacy evaluation.
Collapse
Affiliation(s)
- Elisa Pignatti
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Monia Maccaferri
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Pisciotta
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Salvarani
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Rheumatology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
4
|
Iban-Arias R, Yang EJ, Griggs E, Soares Dias Portela A, Osman A, Trageser KJ, Shahed M, Maria Pasinetti G. Ad-derived bone marrow transplant induces proinflammatory immune peripheral mechanisms accompanied by decreased neuroplasticity and reduced gut microbiome diversity affecting AD-like phenotype in the absence of Aβ neuropathology. Brain Behav Immun 2024; 118:252-272. [PMID: 38461954 DOI: 10.1016/j.bbi.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Immune system dysfunction is increasingly recognized as a significant feature that contributes to Alzheimer's disease (AD) pathogenesis, reflected by alterations in central and peripheral responses leading to detrimental mechanisms that can contribute to the worsening of the disease. The damaging alterations in the peripheral immune system may disrupt the peripheral-central immune crosstalk, implicating the gut microbiota in this complex interaction. The central hypothesis posits that the immune signature inherently harbored in bone marrow (BM) cells can be transferred through allogeneic transplantation, influencing the recipient's immune system and modulating peripheral, gut, and brain immune responses. Employing a genetically modified mouse model to develop AD-type pathology we found that recipient wild-type (WT) mice engrafted with AD-derived BM, recapitulated the peripheral immune inflammatory donor phenotype, associated with a significant acceleration of cognitive deterioration in the absence of any overt change in AD-type amyloid neuropathology. Moreover, transcriptomic and phylogenetic 16S microbiome analysis evidence on these animals revealed a significantly impaired expression of genes associated with synaptic plasticity and neurotransmission in the brain and reduced bacteria diversity, respectively, compared to mice engrafted with WT BM. This investigation sheds light on the pivotal role of the peripheral immune system in the brain-gut-periphery axis and its profound potential to shape the trajectory of AD. In summary, this study advances our understanding of the complex interplay among the peripheral immune system, brain functionality, and the gut microbiome, which collectively influence AD onset and progression.
Collapse
Affiliation(s)
- Ruth Iban-Arias
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elizabeth Griggs
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Aya Osman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kyle J Trageser
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahadi Shahed
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Molecular Integrative Neuroresilience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Geriatrics Research, Education and Clinical Center, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA.
| |
Collapse
|
5
|
Shirdare M, Amiri F, Samiee MP, Safari A. Influential factors for optimizing and strengthening mesenchymal stem cells and hematopoietic stem cells co-culture. Mol Biol Rep 2024; 51:189. [PMID: 38270694 DOI: 10.1007/s11033-023-09041-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/13/2023] [Indexed: 01/26/2024]
Abstract
Mesenchymal stem cells (MSCs) and Hematopoietic stem cells (HSCs) are two types of bone marrow stem cells that can proliferate and differentiate into different cell lineages. HSCs interact with MSCs under protective conditions, called niche. Numerous studies have indicated supportive effects of MSCs on HSCs proliferation and differentiation. Furthermore, HSCs have many clinical applications and could treat different hematologic and non-hematologic diseases. For this purpose, there is a need to perform in vitro studies to optimize their expansion. Therefore, various methods including co-culture with MSCs are used to address the limitations of HSCs culture. Some parameters that might be effective for improving the MSC/ HSC co-culture systems. Manipulating culture condition to enhance MSC paracrine activity, scaffolds, hypoxia, culture medium additives, and the use of various MSC sources, have been examined in different studies. In this article, we investigated the potential factors for optimizing HSCs/ MSCs co-culture. It might be helpful to apply a suitable approach for providing high-quality HSCs and improving their therapeutic applications.
Collapse
Affiliation(s)
- Mandana Shirdare
- Central Medical Laboratory, Vice Chancellor for Public Health, Hamadan University of Medical Science, Hamadan, Iran
| | - Fatemeh Amiri
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mohammad Pouya Samiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Armita Safari
- Student Research Committee, Hamadan University of Medical Science, Hamadan, Iran
| |
Collapse
|
6
|
Hasan T, Pasala AR, Hassan D, Hanotaux J, Allan DS, Maganti HB. Homing and Engraftment of Hematopoietic Stem Cells Following Transplantation: A Pre-Clinical Perspective. Curr Oncol 2024; 31:603-616. [PMID: 38392038 PMCID: PMC10888387 DOI: 10.3390/curroncol31020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Hematopoietic stem-cell (HSC) transplantation (HSCT) is used to treat various hematologic disorders. Use of genetically modified mouse models of hematopoietic cell transplantation has been critical in our fundamental understanding of HSC biology and in developing approaches for human patients. Pre-clinical studies in animal models provide insight into the journey of transplanted HSCs from infusion to engraftment in bone-marrow (BM) niches. Various signaling molecules and growth factors secreted by HSCs and the niche microenvironment play critical roles in homing and engraftment of the transplanted cells. The sustained equilibrium of these chemical and biologic factors ensures that engrafted HSCs generate healthy and durable hematopoiesis. Transplanted healthy HSCs compete with residual host cells to repopulate stem-cell niches in the marrow. Stem-cell niches, in particular, can be altered by the effects of previous treatments, aging, and the paracrine effects of leukemic cells, which create inhospitable bone-marrow niches that are unfavorable for healthy hematopoiesis. More work to understand how stem-cell niches can be restored to favor normal hematopoiesis may be key to reducing leukemic relapses following transplant.
Collapse
Affiliation(s)
- Tanvir Hasan
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, ON K1G 4J5, Canada; (T.H.); (A.R.P.); (D.H.); (J.H.)
| | - Ajay Ratan Pasala
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, ON K1G 4J5, Canada; (T.H.); (A.R.P.); (D.H.); (J.H.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Dhuha Hassan
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, ON K1G 4J5, Canada; (T.H.); (A.R.P.); (D.H.); (J.H.)
| | - Justine Hanotaux
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, ON K1G 4J5, Canada; (T.H.); (A.R.P.); (D.H.); (J.H.)
| | - David S. Allan
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, ON K1G 4J5, Canada; (T.H.); (A.R.P.); (D.H.); (J.H.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Clinical Epidemiology & Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Harinad B. Maganti
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, ON K1G 4J5, Canada; (T.H.); (A.R.P.); (D.H.); (J.H.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
7
|
Liu Y, Song S, Liu Y, Fu T, Guo Y, Liu R, Chen J, Lin Y, Cheng Y, Li Y, Guan T, Ling S, Zeng H. MSCohi-O lenses for long-term retention of mesenchymal stem cells on ocular surface as a therapeutic approach for chronic ocular graft-versus-host disease. Stem Cell Reports 2023; 18:2356-2369. [PMID: 37949071 PMCID: PMC10724054 DOI: 10.1016/j.stemcr.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023] Open
Abstract
Chronic ocular graft-versus-host disease (oGVHD) is a common complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT) and can lead to vision loss if not diagnosed and treated promptly. Currently, no approved drugs exist for oGVHD treatment. However, umbilical cord-derived mesenchymal stem cells (UCMSCs) have known immunoregulatory properties and have been employed in clinical trials for immune-mediated diseases. To address oGVHD, the application of UCMSCs to the ocular surface is a logical approach. Intravenous administration of UCMSCs poses risks, necessitating topical and local delivery. Retaining UCMSCs on the ocular surface remains a challenge. To overcome this, we invented mesenchymal stem cell-coating high oxygen-permeable hydrogel lenses combining UCMSCs and machinery to enable the long-term retention of UCMSCs on the ocular surface. Animal model experiments demonstrated that these lenses effectively retained UCMSCs, providing therapeutic benefits by decreasing corneal inflammation and damage, and inhibiting immune rejection and response, all crucial aspects in oGVHD treatment.
Collapse
Affiliation(s)
- Yuanyue Liu
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Siqi Song
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Youyu Liu
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Ting Fu
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Yanzheng Guo
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Ruoqing Liu
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Jiexing Chen
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Yanchun Lin
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Yaqi Cheng
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yun Li
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Tian Guan
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Shiqi Ling
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.
| | - Haoyu Zeng
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China.
| |
Collapse
|
8
|
Mendiratta M, Mendiratta M, Mohanty S, Sahoo RK, Prakash H. Breaking the graft-versus-host-disease barrier: Mesenchymal stromal/stem cells as precision healers. Int Rev Immunol 2023; 43:95-112. [PMID: 37639700 DOI: 10.1080/08830185.2023.2252007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Mesenchymal Stromal/Stem Cells (MSCs) are multipotent, non-hematopoietic progenitor cells with a wide range of immune modulation and regenerative potential which qualify them as a potential component of cell-based therapy for various autoimmune/chronic inflammatory ailments. Their immunomodulatory properties include the secretion of immunosuppressive cytokines, the ability to suppress T-cell activation and differentiation, and the induction of regulatory T-cells. Considering this and our interest, we here discuss the significance of MSC for the management of Graft-versus-Host-Disease (GvHD), one of the autoimmune manifestations in human. In pre-clinical models, MSCs have been shown to reduce the severity of GvHD symptoms, including skin and gut damage, which are the most common and debilitating manifestations of this disease. While initial clinical studies of MSCs in GvHD cases were promising, the results were variable in randomized studies. So, further studies are warranted to fully understand their potential benefits, safety profile, and optimal dosing regimens. Owing to these inevitable issues, here we discuss various mechanisms, and how MSCs can be employed in managing GvHD, as a cellular therapeutic approach for this disease.
Collapse
Affiliation(s)
- Mohini Mendiratta
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | | | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Ranjit Kumar Sahoo
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Hridayesh Prakash
- Amity Centre for Translational Research, Amity University, Noida, India
| |
Collapse
|
9
|
Río C, Jahn AK, Martin-Medina A, Calvo Bota AM, De Francisco Casado MT, Pont Antona PJ, Gigirey Castro O, Carvajal ÁF, Villena Portella C, Gómez Bellvert C, Iglesias A, Calvo Benito J, Gayà Puig A, Ortiz LA, Sala-Llinàs E. Mesenchymal Stem Cells from COPD Patients Are Capable of Restoring Elastase-Induced Emphysema in a Murine Experimental Model. Int J Mol Sci 2023; 24:ijms24065813. [PMID: 36982887 PMCID: PMC10054868 DOI: 10.3390/ijms24065813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
COPD is a chronic lung disease that affects millions of people, declining their lung function and impairing their life quality. Despite years of research and drug approvals, we are still not capable of halting progression or restoring normal lung function. Mesenchymal stem cells (MSC) are cells with extraordinary repair capacity, and MSC-based therapy brings future hope for COPD treatment, although the best source and route of administration are unclear. MSC from adipose tissue (AD-MSC) represents an option for autologous treatment; however, they could be less effective than donor MSC. We compared in vitro behavior of AD-MSC from COPD and non-COPD individuals by migration/proliferation assay, and tested their therapeutic potential in an elastase mouse model. In addition, we tested intravenous versus intratracheal routes, inoculating umbilical cord (UC) MSC and analyzed molecular changes by protein array. Although COPD AD-MSC have impaired migratory response to VEGF and cigarette smoke, they were as efficient as non-COPD in reducing elastase-induced lung emphysema. UC-MSC reduced lung emphysema regardless of the administration route and modified the inflammatory profile in elastase-treated mice. Our data demonstrate equal therapeutic potential of AD-MSC from COPD and non-COPD subjects in the pre-clinical model, thus supporting their autologous use in disease.
Collapse
Affiliation(s)
- Carlos Río
- Inflammation, Repair and Cancer of Respiratory Diseases (i-Respire), Fundació Institut d’ Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
| | - Andreas K. Jahn
- Inflammation, Repair and Cancer of Respiratory Diseases (i-Respire), Fundació Institut d’ Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
| | - Aina Martin-Medina
- Inflammation, Repair and Cancer of Respiratory Diseases (i-Respire), Fundació Institut d’ Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
| | - Alba Marina Calvo Bota
- Inflammation, Repair and Cancer of Respiratory Diseases (i-Respire), Fundació Institut d’ Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
| | | | - Pere Joan Pont Antona
- Estabulary, Scientific-Technical Services, Universitat de les Illes Balears (UIB), 07122 Palma, Spain
| | | | | | - Cristina Villena Portella
- Inflammation, Repair and Cancer of Respiratory Diseases (i-Respire), Fundació Institut d’ Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBERES Pulmonary Biobank Consortium, Hospital Universitari Son Espases, 07120 Palma, Spain
| | | | - Amanda Iglesias
- Inflammation, Repair and Cancer of Respiratory Diseases (i-Respire), Fundació Institut d’ Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Calvo Benito
- Banc de Teixits, Blood and Tissue Bank of the Balearic Islands (FBSTIB), 07120 Palma, Spain
- Cell Therapy and Tissue Engineering Group (TERCIT), Institut d’ Investigació Sanitària Illes Balears (IdISBa), 07004 Palma, Spain
| | - Antoni Gayà Puig
- Banc de Teixits, Blood and Tissue Bank of the Balearic Islands (FBSTIB), 07120 Palma, Spain
- Cell Therapy and Tissue Engineering Group (TERCIT), Institut d’ Investigació Sanitària Illes Balears (IdISBa), 07004 Palma, Spain
| | - Luis A. Ortiz
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ernest Sala-Llinàs
- Inflammation, Repair and Cancer of Respiratory Diseases (i-Respire), Fundació Institut d’ Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Pulmonary Medicine, Hospital Universitari Son Espases, 07120 Palma, Spain
- Correspondence: ; Tel.: +34-871-206-507
| |
Collapse
|
10
|
Doglio M, Crossland RE, Alho AC, Penack O, Dickinson AM, Stary G, Lacerda JF, Eissner G, Inngjerdingen M. Cell-based therapy in prophylaxis and treatment of chronic graft-versus-host disease. Front Immunol 2022; 13:1045168. [PMID: 36466922 PMCID: PMC9714556 DOI: 10.3389/fimmu.2022.1045168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 08/31/2023] Open
Abstract
Hematopoietic allogeneic stem cell transplantation (allo-SCT) is a curative option for patients with hematological malignancies. However, due to disparities in major and minor histocompatibility antigens between donor and recipient, severe inflammatory complications can occur, among which chronic graft-versus-host disease (cGVHD) can be life-threatening. A classical therapeutic approach to the prevention and treatment of cGVHD has been broad immunosuppression, but more recently adjuvant immunotherapies have been tested. This review summarizes and discusses immunomodulatory approaches with T cells, including chimeric antigen receptor (CAR) and regulatory T cells, with natural killer (NK) cells and innate lymphoid cells (ILCs), and finally with mesenchymal stromal cells (MSC) and extracellular vesicles thereof. Clinical studies and pre-clinical research results are presented likewise.
Collapse
Affiliation(s)
- Matteo Doglio
- Experimental Haematology Unit, Division of Immunology Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, Milan, Italy
| | - Rachel E. Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana C. Alho
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Olaf Penack
- Department of Hematology, Oncology, and Cancer Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anne M. Dickinson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Alcyomics Ltd, Newcastle upon Tyne, United Kingdom
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - João F. Lacerda
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Marit Inngjerdingen
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
11
|
Autologous Stem Cells Transplants in the Treatment of Temporomandibular Joints Disorders: A Systematic Review and Meta-Analysis of Clinical Trials. Cells 2022; 11:cells11172709. [PMID: 36078117 PMCID: PMC9454527 DOI: 10.3390/cells11172709] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
This systematic review aims to analyze the outcomes of the treatment of temporomandibular joint (TMJ) articular pain (AP) and restricted maximum mouth opening (MMO) with intra-articular administration of mesenchymal stem cells (MSCs). The inclusion criteria allowed primary studies involving AP and/or MMO pre-treatment and post-intervention values. Medical databases that were covered by ACM Digital, BASE, EBSCOhost, Google Scholar, PubMed, Scopus, and Web of Science engines were searched. The risk of bias was assessed with RoB 2 and ROBINS-I tools. The results were tabulated, plotted, and analyzed for regression. A total of 5 studies involving 51 patients/69 TMJs were identified, and 4 studies on 50 patients/67 TMJs were synthesized. Interventions were each time effective in decreasing AP and increasing MMO in a 6-month follow-up period by an average of about 85% and over 40%, respectively. Regression analysis showed a good fit of the logarithmic model for AP relief (5.8 − 0.8 ln x; R2 = 0.90) and MMO increase (33.5 + 2.4 ln x; R2 = 0.89). The results for AP and MMO were based on 3 studies in 39 patients and 4 studies in 50 patients, respectively, all at high risk of bias. The intra-articular administration of MSCs to TMJs, based on weak evidence, may be highly effective in reducing AP and improving MMO. This study received no funding.
Collapse
|
12
|
Garrigós MM, de Oliveira FA, Nucci MP, Nucci LP, Alves ADH, Dias OFM, Gamarra LF. How mesenchymal stem cell cotransplantation with hematopoietic stem cells can improve engraftment in animal models. World J Stem Cells 2022; 14:658-679. [PMID: 36157912 PMCID: PMC9453272 DOI: 10.4252/wjsc.v14.i8.658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Bone marrow transplantation (BMT) can be applied to both hematopoietic and nonhematopoietic diseases; nonetheless, it still comes with a number of challenges and limitations that contribute to treatment failure. Bearing this in mind, a possible way to increase the success rate of BMT would be cotransplantation of mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) to improve the bone marrow niche and secrete molecules that enhance the hematopoietic engraftment.
AIM To analyze HSC and MSC characteristics and their interactions through cotransplantation in murine models.
METHODS We searched for original articles indexed in PubMed and Scopus during the last decade that used HSC and MSC cotransplantation and in vivo BMT in animal models while evaluating cell engraftment. We excluded in vitro studies or studies that involved graft versus host disease or other hematological diseases and publications in languages other than English. In PubMed, we initially identified 555 articles and after selection, only 12 were chosen. In Scopus, 2010 were identified, and six were left after the screening and eligibility process.
RESULTS Of the 2565 articles found in the databases, only 18 original studies met the eligibility criteria. HSC distribution by source showed similar ratios, with human umbilical cord blood or animal bone marrow being administered mainly with a dose of 1 × 107 cells by intravenous or intrabone routes. However, MSCs had a high prevalence of human donors with a variety of sources (umbilical cord blood, bone marrow, tonsil, adipose tissue or fetal lung), using a lower dose, mainly 106 cells and ranging 104 to 1.5 × 107 cells, utilizing the same routes. MSCs were characterized prior to administration in almost every experiment. The recipient used was mostly immunodeficient mice submitted to low-dose irradiation or chemotherapy. The main technique of engraftment for HSC and MSC cotransplantation evaluation was chimerism, followed by hematopoietic reconstitution and survival analysis. Besides the engraftment, homing and cellularity were also evaluated in some studies.
CONCLUSION The preclinical findings validate the potential of MSCs to enable HSC engraftment in vivo in both xenogeneic and allogeneic hematopoietic cell transplantation animal models, in the absence of toxicity.
Collapse
Affiliation(s)
- Murilo Montenegro Garrigós
- Hospital Israelita Albert Einstein, São Paulo 05652-900, São Paulo, Brazil
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | | | - Mariana Penteado Nucci
- Hospital Israelita Albert Einstein, São Paulo 05652-900, São Paulo, Brazil
- LIM44-Hospital das Clínicas, Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Leopoldo Penteado Nucci
- Centro Universitário do Planalto Central, Área Especial para Industria nº 02 Setor Leste - Gama-DF, Brasília 72445-020, Distrito Federal, Brazil
| | | | | | | |
Collapse
|
13
|
Man Y, Lu Z, Yao X, Gong Y, Yang T, Wang Y. Recent Advancements in Poor Graft Function Following Hematopoietic Stem Cell Transplantation. Front Immunol 2022; 13:911174. [PMID: 35720412 PMCID: PMC9202575 DOI: 10.3389/fimmu.2022.911174] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/06/2022] [Indexed: 01/05/2023] Open
Abstract
Poor graft function (PGF) is a life-threatening complication that occurs after transplantation and has a poor prognosis. With the rapid development of haploidentical hematopoietic stem cell transplantation, the pathogenesis of PGF has become an important issue. Studies of the pathogenesis of PGF have resulted in some success in CD34+-selected stem cell boosting. Mesenchymal stem cells, N-acetyl-l-cysteine, and eltrombopag have also been investigated as therapeutic strategies for PGF. However, predicting and preventing PGF remains challenging. Here, we propose that the seed, soil, and insect theories of aplastic anemia also apply to PGF; CD34+ cells are compared to seeds; the bone marrow microenvironment to soil; and virus infection, iron overload, and donor-specific anti-human leukocyte antigen antibodies to insects. From this perspective, we summarize the available information on the common risk factors of PGF, focusing on its potential mechanism. In addition, the safety and efficacy of new strategies for treating PGF are discussed to provide a foundation for preventing and treating this complex clinical problem.
Collapse
Affiliation(s)
- Yan Man
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Zhixiang Lu
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xiangmei Yao
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Yuemin Gong
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Tonghua Yang
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China,*Correspondence: Tonghua Yang, ; Yajie Wang,
| | - Yajie Wang
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China,*Correspondence: Tonghua Yang, ; Yajie Wang,
| |
Collapse
|
14
|
Watt SM. The long and winding road: homeostatic and disordered haematopoietic microenvironmental niches: a narrative review. BIOMATERIALS TRANSLATIONAL 2022; 3:31-54. [PMID: 35837343 PMCID: PMC9255786 DOI: 10.12336/biomatertransl.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
Haematopoietic microenvironmental niches have been described as the 'gatekeepers' for the blood and immune systems. These niches change during ontogeny, with the bone marrow becoming the predominant site of haematopoiesis in post-natal life under steady state conditions. To determine the structure and function of different haematopoietic microenvironmental niches, it is essential to clearly define specific haematopoietic stem and progenitor cell subsets during ontogeny and to understand their temporal appearance and anatomical positioning. A variety of haematopoietic and non-haematopoietic cells contribute to haematopoietic stem and progenitor cell niches. The latter is reported to include endothelial cells and mesenchymal stromal cells (MSCs), skeletal stem cells and/or C-X-C motif chemokine ligand 12-abundant-reticular cell populations, which form crucial components of these microenvironments under homeostatic conditions. Dysregulation or deterioration of such cells contributes to significant clinical disorders and diseases worldwide and is associated with the ageing process. A critical appraisal of these issues and of the roles of MSC/C-X-C motif chemokine ligand 12-abundant-reticular cells and the more recently identified skeletal stem cell subsets in bone marrow haematopoietic niche function under homeostatic conditions and during ageing will form the basis of this research review. In the context of haematopoiesis, clinical translation will deal with lessons learned from the vast experience garnered from the development and use of MSC therapies to treat graft versus host disease in the context of allogeneic haematopoietic transplants, the recent application of these MSC therapies to treating emerging and severe coronavirus disease 2019 (COVID-19) infections, and, given that skeletal stem cell ageing is one proposed driver for haematopoietic ageing, the potential contributions of these stem cells to haematopoiesis in healthy bone marrow and the benefits and challenges of using this knowledge for rejuvenating the age-compromised bone marrow haematopoietic niches and restoring haematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
15
|
Li L, Yi H, Liu Z, Long P, Pan T, Huang Y, Li Y, Li Q, Ma Y. Genetic correction of concurrent α- and β-thalassemia patient-derived pluripotent stem cells by the CRISPR-Cas9 technology. Stem Cell Res Ther 2022; 13:102. [PMID: 35255977 PMCID: PMC8900422 DOI: 10.1186/s13287-022-02768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Thalassemia is a genetic blood disorder characterized by decreased hemoglobin production. Severe anemia can damage organs and severe threat to life safety. Allogeneic transplantation of bone marrow-derived hematopoietic stem cell (HSCs) at present represents a promising therapeutic approach for thalassemia. However, immune rejection and lack of HLA-matched donors limited its clinical application. In recent years, human-induced pluripotent stem cells (hiPSCs) technology offers prospects for autologous cell-based therapy since it could avoid the immunological problems mentioned above. METHODS In the present study, we established a new hiPSCs line derived from amniotic cells of a fetus with a homozygous β41-42 (TCTT) deletion mutation in the HBB gene and a heterozygous Westmead mutation (C > G) in the HBA2 gene. We designed a CRISPR-Cas9 to target these casual mutations and corrected them. Gene-corrected off-target analysis was performed by whole-exome capture sequencing. The corrected hiPSCs were analyzed by teratoma formation and erythroblasts differentiation assays. RESULTS These mutations were corrected with linearized donor DNA through CRISPR/Cas9-mediated homology-directed repair. Corrections of hiPSCs were validated by sequences. The corrected hiPSCs retain normal pluripotency. Moreover, they could be differentiated into hematopoietic progenitors, which proves that they maintain the multilineage differentiation potential. CONCLUSIONS We designed sgRNAs and demonstrated that these sgRNAs facilitating the CRISPR-Cas9 genomic editing system could be applied to correct concurrent α- and β-thalassemia in patient-derived hiPSCs. In the future, these corrected hiPSCs can be applied for autologous transplantation in patients with concurrent α- and β-thalassemia.
Collapse
Affiliation(s)
- Lingli Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, 570102, Hainan, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China.,Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Hongyan Yi
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, 570102, Hainan, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China.,Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Zheng Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi, China
| | - Ping Long
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, 570102, Hainan, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China.,Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Tao Pan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China.,College of Biomedical Information and Engineering, Hainan Medical University, Haikou, 571199, China
| | - Yuanhua Huang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, 570102, Hainan, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China.,Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Yongsheng Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China. .,College of Biomedical Information and Engineering, Hainan Medical University, Haikou, 571199, China.
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, 570102, Hainan, China. .,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China. .,Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, 570102, Hainan, China. .,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China. .,Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
16
|
Kim YH, Lee HJ, Cho KA, Kim J, Park JW, Woo SY, Ryu KH. Promotion of Platelet Production by Co-Transplantation of Mesenchymal Stem Cells in Bone Marrow Transplantation. Tissue Eng Regen Med 2022; 19:131-139. [PMID: 35013919 PMCID: PMC8782979 DOI: 10.1007/s13770-021-00401-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Therapeutic strategies that can promote platelet production are in demand to enhance clinical outcomes of bone marrow transplantation (BMT). Our research group has studied human tonsil-derived mesenchymal stem cells (T-MSCs) and their effectiveness in promoting bone marrow (BM) engraftment. Here, we analyzed the effects of T-MSCs on platelet production and hemostasis. METHODS Donor BM cells (BMCs) were isolated from C57BL/6 mice and transplanted with or without T-MSCs to BALB/c recipient mice. Mice were sacrificed and blood cells were counted using an Auto Hematology Analyzer. Femur sections were stained with CD41 antibody to analyze megakaryocytes in the BM. Growth factor secretion from MSCs was analyzed using the Quantibody Array. Effects of T-MSC conditioned medium (CM) on megakaryopoiesis were investigated using the MegaCult assay. In a mouse model of BMT, T-MSC CM was injected with or without anti-placental growth factor (α-PlGF) blocking antibody, and blood cell numbers and coagulation were analyzed. RESULTS T-MSC co-transplantation increased percent survival of BMT mice. Platelet numbers were significantly lower in the BMC-only group, whereas T-MSC co-transplantation restored circulating platelets to levels similar to those of the control group. Significantly reduced numbers of CD41 + megakaryocytes in Bu-Cy and BMC groups were increased by T-MSC co-transplantation. PlGF secretion from T-MSCs were detected and enhanced megakaryopoiesis, platelet production, and coagulation by T-MCS CM were disrupted in the presence of the α-PlGF blocking antibody. CONCLUSION We demonstrated the effectiveness of T-MSC co-transplantation in promoting platelet production and coagulation after BMT. These findings highlight the potential therapeutic relevance of T-MSCs for preventing thrombocytopenia after BMT.
Collapse
Affiliation(s)
- Yu-Hee Kim
- Department of Microbiology, Ewha Womans University College of Medicine, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804 Republic of Korea ,Advanced Biomedical Research Institute, Ewha Womans University Seoul Hospital, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804 Republic of Korea
| | - Hyun-Ji Lee
- Department of Microbiology, Ewha Womans University College of Medicine, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804 Republic of Korea
| | - Kyung-Ah Cho
- Department of Microbiology, Ewha Womans University College of Medicine, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804 Republic of Korea
| | - Jungwoo Kim
- Department of Microbiology, Ewha Womans University College of Medicine, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804 Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, Ewha Womans University College of Medicine, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804 Republic of Korea
| | - So-Youn Woo
- Department of Microbiology, Ewha Womans University College of Medicine, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804 Republic of Korea
| | - Kyung-Ha Ryu
- Department of Pediatrics, Ewha Womans University College of Medicine, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804 Republic of Korea
| |
Collapse
|
17
|
Kiselevskii MV, Vlasenko RY, Stepanyan NG, Shubina IZ, Sitdikova SM, Kirgizov KI, Varfolomeeva SR. Secretome of Mesenchymal Bone Marrow Stem Cells: Is It Immunosuppressive or Proinflammatory? Bull Exp Biol Med 2021; 172:250-253. [PMID: 34855084 PMCID: PMC8636784 DOI: 10.1007/s10517-021-05371-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 11/30/2022]
Abstract
Mesenchymal stem cells (MSC) are characterized by tolerogenic potential and therefore, are used in the treatment of autoimmune diseases such as graft-versus-host disease (GVHD) reactions after allogeneic hematopoietic cell transplantation to improve the transplant functions, as well as for the therapy and prevention of cytokine storm in COVID-19 patients and some other conditions. However, MSC can exhibit proinflammatory activity, which causes risks for their clinical use. We studied the cytokine profile of bone marrow MSC culture and demonstrate intensive production of IL-6, IL-8, and chemokine MCP-1, which participate in the pathogenesis of cytokine storm and GVHD. At the same time, no anti-inflammatory IL-4 and IL-10 were detected. To reduce the risks of MSC application in the GVHD therapeutic protocols, further studies of the conditions promoting generation of MSC with tolerogenic potential and approved clinical standards of MSC use are required.
Collapse
Affiliation(s)
- M V Kiselevskii
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - R Ya Vlasenko
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N G Stepanyan
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I Zh Shubina
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - S M Sitdikova
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - K I Kirgizov
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - S R Varfolomeeva
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
18
|
Belyavsky A, Petinati N, Drize N. Hematopoiesis during Ontogenesis, Adult Life, and Aging. Int J Mol Sci 2021; 22:ijms22179231. [PMID: 34502137 PMCID: PMC8430730 DOI: 10.3390/ijms22179231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
In the bone marrow of vertebrates, two types of stem cells coexist-hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Hematopoiesis only occurs when these two stem cell types and their descendants interact. The descendants of HSCs supply the body with all the mature blood cells, while MSCs give rise to stromal cells that form a niche for HSCs and regulate the process of hematopoiesis. The studies of hematopoiesis were initially based on morphological observations, later extended by the use of physiological methods, and were subsequently augmented by massive application of sophisticated molecular techniques. The combination of these methods produced a wealth of new data on the organization and functional features of hematopoiesis in the ontogenesis of mammals and humans. This review summarizes the current views on hematopoiesis in mice and humans, discusses the development of blood elements and hematopoiesis in the embryo, and describes how the hematopoietic system works in the adult organism and how it changes during aging.
Collapse
Affiliation(s)
- Alexander Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | | | - Nina Drize
- National Research Center for Hematology, 125167 Moscow, Russia;
- Correspondence:
| |
Collapse
|
19
|
Yeo GEC, Ng MH, Nordin FB, Law JX. Potential of Mesenchymal Stem Cells in the Rejuvenation of the Aging Immune System. Int J Mol Sci 2021; 22:5749. [PMID: 34072224 PMCID: PMC8198707 DOI: 10.3390/ijms22115749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Rapid growth of the geriatric population has been made possible with advancements in pharmaceutical and health sciences. Hence, age-associated diseases are becoming more common. Aging encompasses deterioration of the immune system, known as immunosenescence. Dysregulation of the immune cell production, differentiation, and functioning lead to a chronic subclinical inflammatory state termed inflammaging. The hallmarks of the aging immune system are decreased naïve cells, increased memory cells, and increased serum levels of pro-inflammatory cytokines. Mesenchymal stem cell (MSC) transplantation is a promising solution to halt immunosenescence as the cells have excellent immunomodulatory functions and low immunogenicity. This review compiles the present knowledge of the causes and changes of the aging immune system and the potential of MSC transplantation as a regenerative therapy for immunosenescence.
Collapse
Affiliation(s)
| | | | | | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras 56000, Malaysia; (G.E.C.Y.); (M.H.N.); (F.B.N.)
| |
Collapse
|