1
|
Nabigol M, Hajipirloo LK, Kuhestani-Dehaghi B, Farsani MA. Effect of AML-exosomes on the cellular and molecular properties of bone marrow mesenchymal stromal cells: Expression of JAK/STAT signaling genes. Curr Res Transl Med 2024; 73:103474. [PMID: 39366080 DOI: 10.1016/j.retram.2024.103474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/23/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024]
Abstract
PURPOSE OF STUDY Despite the various therapeutic options introduced for AML treatment, therapy resistance and relapse are still the main obstacles. It is well known that alterations in the bone marrow microenvironment (BMM) play a crucial role in leukemia growth and the treatment failure of AML. Evidence shows that exosomes alter the components of BMM in a way that support leukemia survival, leading to chemoresistance. In this study, we evaluated the effect of AML exosomes on the biological functions of human bone marrow mesenchymal stromal cells (h BM-MSCs), especially alteration in the expression of the JAK/STAT signaling genes, as a leukemia-favoring pathway. METHOD Exosomes were isolated from the HL-60 cell line and characterized using flow cytometry, Transmission Electron Microscopy (TEM), and Dynamic Light Scattering (DLS) technique. The exosome protein content was assessed using a bicinchoninic acid (BCA) protein assay kit in order to determine the concentration of exosomes. Subsequently, MSCs were treated with varying concentrations of AML exosomes, and data was obtained using MTT, cell cycle, apoptosis, and ki67 assays. Additionally, gene expression analysis was conducted through qRT-PCR. RESULT AML exosomes regulated the viability and survival of MSCs in a concentration-dependent manner. The qRT-PCR data revealed that treatment with AML exosomes at a concentration of 50 μg/mL led to a significant upregulation of JAK2, STAT3, and STAT5 genes in MSCs. CONCLUSION Because the JAK/STAT signaling pathway has been shown to play a role in the proliferation and survival of leukemic cells, our results suggest that AML exosomes stimulate MSCs to activate this pathway. This activation may impede AML cell apoptosis, potentially leading to chemoresistance and relapse.
Collapse
Affiliation(s)
- Maryam Nabigol
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laya Khodayi Hajipirloo
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bentolhoda Kuhestani-Dehaghi
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Allahbakhshian Farsani
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Wang Z, Wei H, Li Y, Chen W, Lin Z, Lai Y, Ding L, Zhang L, Zeng H. Bone marrow mesenchymal stem cell-derived exosomes effectively ameliorate the outcomes of rats with acute graft-versus-host disease. FASEB J 2024; 38:e23751. [PMID: 38923701 DOI: 10.1096/fj.202302590rrrrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Mesenchymal stem cells (MSCs) reveal multifaceted immunoregulatory properties, which can be applied for diverse refractory and recurrent disease treatment including acute graft-versus-host disease (aGVHD). Distinguishing from MSCs with considerable challenges before clinical application, MSCs-derived exosomes (MSC-Exos) are cell-free microvesicles with therapeutic ingredients and serve as advantageous alternatives for ameliorating the outcomes of aGVHD. MSC-Exos were enriched and identified by western blotting analysis, NanoSight, and transmission electron microscopy (TEM). Bone marrow-derived MSCs (denoted as MSCs) and exosomes (denoted as MSC-Exos) were infused into the aGVHD SD-Wister rat model via tail vein, and variations in general growth and survival of rats were observed. The level of inflammatory factors in serum was quantized by enzyme-linked immunosorbent assay (ELISA). The pathological conditions of the liver and intestine of rats were observed by frozen sectioning. The ratios of CD4+/CD8+ and Treg cell proportions in peripheral blood, together with the autophagy in the spleen and thymus, were analyzed by flow cytometry. After treatment with MSC-Exos, the survival time of aGVHD rats was prolonged, the clinical manifestations of aGVHD in rats were improved, whereas the pathological damage of aGVHD in the liver and intestine was reduced. According to ELISA, we found that MSC-Exos revealed ameliorative effect upon aGVHD inflammation (e.g., TNF-α, IL-2, INF-γ, IL-4, and TGF-β) compared to the MSC group. After MSC-Exo treatment, the ratio of Treg cells in peripheral blood was increased, whereas the ratio of CD4+/CD8+ in peripheral blood and the autophagy in the spleen and thymus was decreased. MSC-Exos effectively suppressed the activation of immune cells and the manifestation of the inflammatory response in the aGVHD rat model. Our data would supply new references for MSC-Exo-based "cell-free" biotherapy for aGVHD in future.
Collapse
Affiliation(s)
- Zhihong Wang
- Department of Hematology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Hong Wei
- Department of Cadres Health, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yunfei Li
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Weimin Chen
- Department of Hematology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Zhifeng Lin
- Department of Hematology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yiting Lai
- Department of Hematology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Lingling Ding
- Department of Hematology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Leisheng Zhang
- National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Huake Zeng
- Department of Ophthalmology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
Thandar M, Yang X, Zhu Y, Huang Y, Zhang X, Huang S, Zhang L, Chi P. Mesenchymal stem cells derived from adipose tissue and umbilical cord reveal comparable efficacy upon radiation-induced colorectal fibrosis in rats. Am J Cancer Res 2024; 14:1594-1608. [PMID: 38726273 PMCID: PMC11076260 DOI: 10.62347/drae5818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/02/2024] [Indexed: 05/12/2024] Open
Abstract
Chemoradiotherapy (CRT) and radiotherapy (RT) have served as anticancer treatments and neoadjuvant therapies for conquering multimodal rectal cancers including colorectal carcinoma (CRC), yet the concomitant radiation-induced colorectal fibrosis (RICF) has caused chronic toxicity and stenosis in the colorectal mucosa of patients. Mesenchymal stem/stromal cells (MSCs) with unique bidirectional immunoregulation and anti-fibrotic effect have been recognized as splendid sources for regenerative purposes including intestinal diseases. Herein, we are aiming to verify the feasibility and variations of MSC-based cytotherapy for the remission of RICF from the pathological features and the potential impact upon the transcriptomic signatures of RICF rats. For the purpose, we utilized our well-established RICF Sprague-Dawley (SD) rats by radiation for five weeks, and conducted consecutive intraperitoneal injection of two distinct MSCs for treatment, including MSCs derived from adult adipose tissue (AD-MSCs) and perinatal umbilical cord (UC-MSCs). On the one hand, the efficacy of AD-MSCs and UC-MSCs was assessed by diverse indicators, including weight change, pathological detections (e.g., H&E staining, Masson staining, EVG staining, IF staining, and IHC staining), and proinflammatory and fibrotic factor expression. On the other hand, we turned to RNA-sequencing (RNA-SEQ) and multifaceted bioinformatics analyses (e.g., GOBP, Venn Map, KEGG, and GSEA) to compare the impact of AD-MSC and UC-MSC treatment upon the gene expression profiling and genetic variations. RICF rats after consecutive AD-MSC and UC-MSC administration revealed comparable remission in histopathogenic features and significant suppression of diverse proinflammatory and fibrotic factors expression. Meanwhile, RICF rats after both MSC treatment revealed decrease and variations in the alterations in diverse gene expression and somatic mutations compared to RICF rats. Collectively, our data indicated the comparable therapeutic effect of AD-MSCs and UC-MSCs upon RICF in SD rats, together with the conservations in gene expression profiling and the diverse variations in genetic mutations. Our findings indicated the multifaceted impact of MSC infusion for the supervision of RICF both at the therapeutic and transcriptomic levels, which would provide novel references for the further evaluation and development of MSC-based regimens in future.
Collapse
Affiliation(s)
- Mya Thandar
- Department of Colorectal Surgery, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Colorectal Surgery, Fujian Medical UniversityFuzhou 350001, Fujian, China
| | - Xiaojie Yang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Colorectal Surgery, Fujian Medical UniversityFuzhou 350001, Fujian, China
- Department of Thoracic Surgery, The Third Affiliated Hospital of Chongqing Medical UniversityChongqing 401100, China
| | - Yuanchang Zhu
- Department of Colorectal Surgery, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Colorectal Surgery, Fujian Medical UniversityFuzhou 350001, Fujian, China
| | - Ying Huang
- Department of Colorectal Surgery, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Training Center of Minimally Invasive Surgery, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
| | - Xueying Zhang
- Department of Colorectal Surgery, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Colorectal Surgery, Fujian Medical UniversityFuzhou 350001, Fujian, China
| | - Shenghui Huang
- Department of Colorectal Surgery, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Training Center of Minimally Invasive Surgery, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
| | - Leisheng Zhang
- Science and Technology Innovation Center, The Fourth People’s Hospital of Jinan (The Third Affiliated Hospital of Shandong First Medical University)Jinan 250031, Shandong, China
- National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial HospitalLanzhou 730000, Gansu, China
| | - Pan Chi
- Department of Colorectal Surgery, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Colorectal Surgery, Fujian Medical UniversityFuzhou 350001, Fujian, China
- Training Center of Minimally Invasive Surgery, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
| |
Collapse
|
4
|
Zhang L, Sun Y, Xue CE, Wang S, Xu X, Zheng C, Chen C, Kong D. Uncovering the cellular and omics characteristics of natural killer cells in the bone marrow microenvironment of patients with acute myeloid leukemia. Cancer Cell Int 2024; 24:106. [PMID: 38481242 PMCID: PMC10938822 DOI: 10.1186/s12935-024-03300-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/09/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a highly heterogeneous hematologic malignancy and the most frequently acute leukemia of stem cell precursors and the myeloid derivatives in adult. Longitudinal studies have indicated the therapeutic landscape and drug resistance for patients with AML are still intractable, which largely attribute to the deficiency of detailed information upon the pathogenesis. METHODS In this study, we compared the cellular phenotype of resident NK cells (rAML-NKs, rHD-NKs) and expanded NK cells (eAML-NKs, eHD-NKs) from bone marrow of AML patients (AML) and healthy donors (HD). Then, we took advantage of the co-culture strategy for the evaluation of the in vitro cytotoxicity of NK cells upon diverse tumor cell lines (e.g., K562, Nalm6, U937). With the aid of RNA-sequencing (RNA-SEQ) and bioinformatics analyses (e.g., GOBP analysis, KEGG analysis, GSEA, volcano plot), we verified the similarities and differences of the omics features between eAML-NKs and eHD-NKs. RESULTS Herein, we verified the sharp decline in the content of total resident NK cells (CD3-CD56+) in rAML-NKs compared to rHD-NKs. Differ from the expanded eHD-NKs, eAML-NKs revealed decline in diverse NK cell subsets (NKG2D+, CD25+, NKp44+, NKp46+) and alterations in cellular vitality but conservations in cytotoxicity. According to transcriptomic analysis, AML-NKs and HD-NKs showed multifaceted distinctions in gene expression profiling and genetic variations. CONCLUSIONS Collectively, our data revealed the variations in the cytobiological and transcriptomic features between AML-NKs and HD-NKs in bone marrow environment. Our findings would benefit the further development of novel biomarkers for AML diagnosis and NK cell-based cytotherapy in future.
Collapse
Affiliation(s)
- Leisheng Zhang
- Science and Technology Innovation Center, The Fourth People's Hospital of Jinan, The Teaching Hospital of Shandong First Medical University, 50 Shifan Road, Tianqiao District, Jinan, 250031, Shandong, China.
- National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.
| | - Yunyan Sun
- Department of Hematology, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Chun-E Xue
- Department of Hematology, Langfang City Hospital of Traditional Chinese Medicine, Langfang, 065000, China
| | - Shuling Wang
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xianghong Xu
- Department of Hematology, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Chengyun Zheng
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Cunrong Chen
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Dexiao Kong
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.
| |
Collapse
|
5
|
Kou R, Li T, Fu C, Jiang D, Wang Y, Meng J, Zhong R, Liang C, Dong M. Exosome-shuttled FTO from BM-MSCs contributes to cancer malignancy and chemoresistance in acute myeloid leukemia by inducing m6A-demethylation: A nano-based investigation. ENVIRONMENTAL RESEARCH 2024; 244:117783. [PMID: 38048862 DOI: 10.1016/j.envres.2023.117783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023]
Abstract
Although bone marrow mesenchymal stem cells (BM-MSCs)-derived exosomes have been reported to be closely associated with acute myeloid leukemia (AML) progression and chemo-resistance, but its detailed functions and molecular mechanisms have not been fully delineated. Besides, serum RNA m6A demethylase fat mass and obesity-associated protein (FTO)-containing exosomes are deemed as important indicators for cancer progression, and this study aimed to investigate the role of BM-MSCs-derived FTO-exosomes in regulating the malignant phenotypes of AML cells. Here, we verified that BM-MSCs-derived exosomes delivered FTO to promote cancer aggressiveness, stem cell properties and Cytosine arabinoside (Ara-C)-chemoresistance in AML cells, and the underlying mechanisms were also uncovered. Our data suggested that BM-MSCs-derived FTO-exo demethylated m6A modifications in the m6A-modified LncRNA GLCC1 to facilitate its combination with the RNA-binding protein Hu antigen R (HuR), which further increased the stability and expression levels of LncRNA GLCC1. In addition, LncRNA GLCC1 was verified as an oncogene to facilitate cell proliferation and enhanced Ara-C-chemoresistance in AML cells. Further experiments confirmed that demethylated LncRNA GLCC1 served as scaffold to facilitate the formation of the IGF2 mRNA binding protein 1 (IGF2BP1)-c-Myc complex, which led to the activation of the downstream tumor-promoting c-Myc-associated signal pathways. Moreover, our rescuing experiments validated that the promoting effects of BM-MSCs-derived FTO-exo on cancer aggressiveness and drug resistance in AML cells were abrogated by silencing LncRNA GLCC1 and c-Myc. Thus, the present firstly investigated the functions and underlying mechanisms by which BM-MSCs-derived FTO-exo enhanced cancer aggressiveness and chemo-resistance in AML by modulating the LncRNA GLCC1-IGF2BP1-c-Myc signal pathway, and our work provided novel biomarkers for the diagnosis, treatment and therapy of AML in clinic.
Collapse
Affiliation(s)
- Ruirui Kou
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical College, Yehai Road No. 368, Longhua District, Haikou, 570000, Hainan Province, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Caizhu Fu
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical College, Yehai Road No. 368, Longhua District, Haikou, 570000, Hainan Province, China.
| | - Duanfeng Jiang
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical College, Yehai Road No. 368, Longhua District, Haikou, 570000, Hainan Province, China.
| | - Yue Wang
- Department of Pharmacology and Toxicology, Wright State University, USA.
| | - Jie Meng
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical College, Yehai Road No. 368, Longhua District, Haikou, 570000, Hainan Province, China.
| | - Ruilan Zhong
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical College, Yehai Road No. 368, Longhua District, Haikou, 570000, Hainan Province, China.
| | - Changjiu Liang
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical College, Yehai Road No. 368, Longhua District, Haikou, 570000, Hainan Province, China.
| | - Min Dong
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical College, Yehai Road No. 368, Longhua District, Haikou, 570000, Hainan Province, China.
| |
Collapse
|
6
|
Zhang Y, He Y, Deng R, Jiang Z, Zhang L, Zeng Y, Zou L. Multifaceted Characterization of Human Embryonic Stem Cell-Derived Mesenchymal Stem/Stromal Cells Revealed Amelioration of Acute Liver Injury in NOD-SCID Mice. Cell Transplant 2024; 33:9636897231218383. [PMID: 38173232 PMCID: PMC10768578 DOI: 10.1177/09636897231218383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 01/05/2024] Open
Abstract
Human embryonic stem cells (hESCs) are advantaged sources for large-scale and homogeneous mesenchymal stem/stromal cells (MSCs) generation. However, due to the limitations in high-efficiency procedures for hESC-MSCs induction, the systematic and detailed information of mesengenesis and early MSC development are largely obscure. In this study, we took advantage of the well-established twist-related protein 1 (TWIST1)-overexpressing hESCs and two small molecular cocktails (CHIR99021, decitabine) for high-efficient MSC induction. To assess the multidimensional biological and transcriptomic characteristics, we turned to cellular and molecular methods, such as flow cytometry (FCM), quantitative reverse transcription-polymerase chain reaction (qRT-PCR), in vitro tri-lineage differentiation, cytokine secretion analysis, in vivo transplantation for acute liver injury (ALI) management, and bioinformatics analyses (eg, gene ontology-biological processes [GO-BP], Kyoto Encyclopedia of Genes and Genomes [KEGG], HeatMap, and principal component analysis [PCA]). By combining TWIST1 overexpression (denoted as T) and the indicated small molecular cocktails (denoted as S), hESCs high-efficiently differentiated into MSCs (denoted as TS-MSCs, induced by T and S combination) within 2 weeks. TS-MSCs satisfied the criteria for MSC definition and revealed comparable tri-lineage differentiation potential and ameliorative efficacy upon ALI mice. According to RNA-sequencing (SEQ) analysis, we originally illuminated the gradual variations in gene expression pattern and the concomitant biofunctions of the programmed hESC-MSCs. Overall, our data indicated the feasibility of high-efficient generation of hESC-MSCs by TWIST1 and cocktail-based programming. The generated hESC-MSCs revealed multifaceted in vivo and in vitro biofunctions as adult BM-MSCs, which collectively suggested promising prospects in ALI management in future.
Collapse
Affiliation(s)
- Youlai Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying He
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rufei Deng
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenyu Jiang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Leisheng Zhang
- National Health Commission Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- Central Laboratory, The Fourth People’s Hospital of Jinan, The Teaching Hospital of Shandong First Medical University, Jinan, China
| | - Yuanlin Zeng
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lijin Zou
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Singh AK, Prasad P, Cancelas JA. Mesenchymal stromal cells, metabolism, and mitochondrial transfer in bone marrow normal and malignant hematopoiesis. Front Cell Dev Biol 2023; 11:1325291. [PMID: 38169927 PMCID: PMC10759248 DOI: 10.3389/fcell.2023.1325291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Hematopoietic stem cell (HSC) transplantation-based treatments are in different phases of clinical development, ranging from current therapies to a promise in the repair and regeneration of diseased tissues and organs. Mesenchymal stromal/stem cells (MSCs), which are fibroblast-like heterogeneous progenitors with multilineage differentiation (osteogenic, chondrogenic, and adipogenic) and self-renewal potential, and exist in the bone marrow (BM), adipose, and synovium, among other tissues, represent one of the most widely used sources of stem cells in regenerative medicine. MSCs derived from bone marrow (BM-MSCs) exhibit a variety of traits, including the potential to drive HSC fate and anti-inflammatory and immunosuppressive capabilities via paracrine activities and interactions with the innate and adaptive immune systems. The role of BM-MSC-derived adipocytes is more controversial and may act as positive or negative regulators of benign or malignant hematopoiesis based on their anatomical location and functional crosstalk with surrounding cells in the BM microenvironment. This review highlights the most recent clinical and pre-clinical findings on how BM-MSCs interact with the surrounding HSCs, progenitors, and immune cells, and address some recent insights on the mechanisms that mediate MSCs and adipocyte metabolic control through a metabolic crosstalk between BM microenvironment cells and intercellular mitochondrial transfer in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Abhishek K. Singh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Parash Prasad
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jose A. Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
8
|
Sun W, Lv J, Guo S, Lv M. Cellular microenvironment: a key for tuning mesenchymal stem cell senescence. Front Cell Dev Biol 2023; 11:1323678. [PMID: 38111850 PMCID: PMC10725964 DOI: 10.3389/fcell.2023.1323678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Mesenchymal stem cells (MSCs) possess the ability to self-renew and differentiate into multiple cell types, making them highly suitable for use as seed cells in tissue engineering. These can be derived from various sources and have been found to play crucial roles in several physiological processes, such as tissue repair, immune regulation, and intercellular communication. However, the limited capacity for cell proliferation and the secretion of senescence-associated secreted phenotypes (SASPs) pose challenges for the clinical application of MSCs. In this review, we provide a comprehensive summary of the senescence characteristics of MSCs and examine the different features of cellular microenvironments studied thus far. Additionally, we discuss the mechanisms by which cellular microenvironments regulate the senescence process of MSCs, offering insights into preserving their functionality and enhancing their effectiveness.
Collapse
Affiliation(s)
| | | | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengzhu Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Ning J, Zhang L, Xie H, Chai L, Yao J. Decoding the multifaceted signatures and transcriptomic characteristics of stem cells derived from apical papilla and dental pulp of human supernumerary teeth. Cell Biol Int 2023; 47:1976-1986. [PMID: 37641425 DOI: 10.1002/cbin.12088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/07/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Supernumerary teeth are advantaged sources for high-quality stem cell preparation from both apical papilla (SCAP-Ss) and dental pulp (DPSCs). However, the deficiency of the systematic and detailed comparison of the biological and transcriptomic characteristics of the aforementioned stem cells largely hinders their application in regenerative medicine. Herein, we collected supernumerary teeth for SCAP-S and DPSC isolation and identification by utilizing multiple biological tests (e.g., growth curve, cell cycle and apoptosis, adipogenic and osteogenic differentiation, and quantitative real-time polymerase chain reaction). Furthermore, we took advantage of transcriptome sequencing and multifaceted bioinformatic analyses to dissect the similarities and diversities between them. In this study, we found that SCAP-Ss and DPSCs showed indistinctive signatures in morphology and immunophenotypes, whereas with diversity in cell vitality and multi-lineage differentiation as well as gene expression profiling and differentially expressed genes-associated gene ontology and signaling pathways. Collectively, our data indicated the diversity of the multifaceted signatures of human supernumerary teeth-derived stem cells both at the cellular and molecular levels, which also supplied new references for SCAP-Ss serving as splendid alternative stem cell sources for regenerative medicine purposes.
Collapse
Affiliation(s)
- Juan Ning
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Leisheng Zhang
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor & Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, China
- Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Jiangxi Research Center of Stem Cell Engineering, Shangrao, China
| | - Hanjing Xie
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Lian Chai
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jun Yao
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
10
|
Giallongo S, Duminuco A, Dulcamare I, Zuppelli T, La Spina E, Scandura G, Santisi A, Romano A, Di Raimondo F, Tibullo D, Palumbo GA, Giallongo C. Engagement of Mesenchymal Stromal Cells in the Remodeling of the Bone Marrow Microenvironment in Hematological Cancers. Biomolecules 2023; 13:1701. [PMID: 38136573 PMCID: PMC10741414 DOI: 10.3390/biom13121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are a subset of heterogeneous, non-hematopoietic fibroblast-like cells which play important roles in tissue repair, inflammation, and immune modulation. MSCs residing in the bone marrow microenvironment (BMME) functionally interact with hematopoietic stem progenitor cells regulating hematopoiesis. However, MSCs have also emerged in recent years as key regulators of the tumor microenvironment. Indeed, they are now considered active players in the pathophysiology of hematologic malignancies rather than passive bystanders in the hematopoietic microenvironment. Once a malignant event occurs, the BMME acquires cellular, molecular, and epigenetic abnormalities affecting tumor growth and progression. In this context, MSC behavior is affected by signals coming from cancer cells. Furthermore, it has been shown that stromal cells themselves play a major role in several hematological malignancies' pathogenesis. This bidirectional crosstalk creates a functional tumor niche unit wherein tumor cells acquire a selective advantage over their normal counterparts and are protected from drug treatment. It is therefore of critical importance to unveil the underlying mechanisms which activate a protumor phenotype of MSCs for defining the unmasked vulnerabilities of hematological cancer cells which could be pharmacologically exploited to disrupt tumor/MSC coupling. The present review focuses on the current knowledge about MSC dysfunction mechanisms in the BMME of hematological cancers, sustaining tumor growth, immune escape, and cancer progression.
Collapse
Affiliation(s)
- Sebastiano Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (G.A.P.); (C.G.)
| | - Andrea Duminuco
- Division of Hematology, AOU Policlinico, 95123 Catania, Italy; (A.D.); (A.S.)
| | - Ilaria Dulcamare
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
| | - Tatiana Zuppelli
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (T.Z.); (E.L.S.)
| | - Enrico La Spina
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (T.Z.); (E.L.S.)
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; (G.S.); (A.R.); (F.D.R.)
| | - Annalisa Santisi
- Division of Hematology, AOU Policlinico, 95123 Catania, Italy; (A.D.); (A.S.)
| | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; (G.S.); (A.R.); (F.D.R.)
| | - Francesco Di Raimondo
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; (G.S.); (A.R.); (F.D.R.)
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (T.Z.); (E.L.S.)
| | - Giuseppe A. Palumbo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (G.A.P.); (C.G.)
| | - Cesarina Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (G.A.P.); (C.G.)
| |
Collapse
|
11
|
Zhang X, Sang X, Chen Y, Yu H, Sun Y, Liang X, Zheng X, Wang X, Yang H, Bi J, Zhang L, Wang P. VCAM-1 + hUC-MSCs Exert Considerable Neuroprotection Against Cerebral Infarction in Rats by Suppression of NLRP3-Induced Pyroptosis. Neurochem Res 2023; 48:3084-3098. [PMID: 37336824 DOI: 10.1007/s11064-023-03968-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) are spindle-like heterogeneous cell populations with advantageous bidirectional immunomodulatory and hematopoietic support effects. Vascular cellular adhesion molecule-1 (VCAM-1)+ MSCs have been reported to exhibit immunoregulatory and proangiogenic capacities. Here, we studied the effects of VCAM-1+ human umbilical cord (hUC)-MSCs on neuroprotection against cerebral infarction. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO), and VCAM-1- and VCAM-1+ hUC-MSCs were intravenously injected into the rat 4 h post-MCAO surgery. Thereafter, modified neurological severity scores (mNSS) were determined, and the Morris water maze test, 2,3,5-triphenyltetrazolium chloride (TTC), hematoxylin and eosin (H&E), Nissl, TUNEL staining, and qRT-PCR were conducted. Following induction of oxygen-glucose deprivation/reoxygenation (OGD/R), SH-SY5Y cells were co-cultured with VCAM-1- and VCAM-1+ hUC-MSCs. CCK-8, flow cytometry, ELISA, and western blot analyses were performed in vitro. Compared with VCAM-1- hUC-MSCs, administration of VCAM-1+ hUC-MSCs revealed improved therapeutic efficacy against cerebral infarction in rats, as confirmed by lower mNSS scores and infarct volumes, as well as improved learning and memory capacities. In addition, VCAM-1+ hUC-MSCs exhibited improved efficacy against neurological defects in rats with cerebral infarction, accompanied by inhibition of the NLRP3-mediated inflammatory response. VCAM-1+ hUC-MSC co-culture improved the viability and diminished NLRP3-mediated inflammatory response in OGD/R-treated SH-SY5Y cells. Moreover, NLRP3 overexpression in SH-SY5Y cells prevented the beneficial effects of VCAM-1+ hUC-MSC co-culture. Overall, our findings demonstrated the relevance of VCAM-1+ hUC-MSC-based cytotherapy for preclinical neuroprotection against cerebral infarction.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Xiaoyu Sang
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Yanting Chen
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Hao Yu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yuan Sun
- The Second Hospital of Shandong University, Jinan, 250033, China
| | - Xilong Liang
- Department of Biostatistics, School of Public Health, Yale University, 38 Crown Street, APT 203, New Haven, CT, 06510, USA
| | - Xiaolei Zheng
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Xiao Wang
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Hui Yang
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Jianzhong Bi
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Leisheng Zhang
- Department of Neurosurgery, Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China.
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province and NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.
- Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Ping Wang
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China.
| |
Collapse
|
12
|
Pan C, Hu T, Liu P, Ma D, Cao S, Shang Q, Zhang L, Chen Q, Fang Q, Wang J. BM-MSCs display altered gene expression profiles in B-cell acute lymphoblastic leukemia niches and exert pro-proliferative effects via overexpression of IFI6. J Transl Med 2023; 21:593. [PMID: 37670388 PMCID: PMC10478283 DOI: 10.1186/s12967-023-04464-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND The tumor microenvironment (TME) is a supportive environment responsible for promoting the growth and proliferation of tumor cells. Current studies have revealed that the bone marrow mesenchymal stem cells (BM-MSCs), a type of crucial stromal cells in the TME, can promote the malignant progression of tumors. However, in the adult B-cell acute lymphoblastic leukemia (B-ALL) microenvironment, it is still uncertain what changes in BM-MSCs are induced by leukemia cells. METHODS In this study, we mimicked the leukemia microenvironment by constructing a BM-MSC-leukemia cell co-culture system. In vitro cell experiments, in vivo mouse model experiments, lentiviral transfection and transcriptome sequencing analysis were used to investigate the possible change of BM-MSCs in the leukemia niche and the potential factors in BM-MSCs that promote the progression of leukemia. RESULTS In the leukemia niche, the leukemia cells reduced the MSCs' capacity to differentiate towards adipogenic and osteogenic subtypes, which also promoted the senescence and cell cycle arrest of the MSCs. Meanwhile, compared to the mono-cultured MSCs, the gene expression profiles of MSCs in the leukemia niche changed significantly. These differential genes were enriched for cell cycle, cell differentiation, DNA replication, as well as some tumor-promoting biofunctions including protein phosphorylation, cell migration and angiogenesis. Further, interferon alpha-inducible protein 6 (IFI6), as a gene activated by interferon, was highly expressed in leukemia niche MSCs. The leukemia cell multiplication was facilitated evidently by IFI6 both in vitro and in vivo. Mechanistically, IFI6 might promote leukemia cell proliferation by stimulating SDF-1/CXCR4 axis, which leads to the initiation of downstream ERK signaling pathway. As suggested by further RNA sequencing analysis, the high IFI6 level in MSCs somewhat influenced the gene expression profile and biological functions of leukemia cells. CONCLUSIONS BM-MSCs in the leukemia niche have varying degrees of changes in biological characteristics and gene expression profiles. Overexpression of IFI6 in BM-MSCs could be a key factor in promoting the proliferation of B-ALL cells, and this effect might be exerted through the SDF-1/CXCR4/ERK signal stimulation. Targeting IFI6 or related signaling pathways might be an important measure to reduce the leukemia cell proliferation.
Collapse
Affiliation(s)
- Chengyun Pan
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
- School of Basic Medical Sciences, Guizhou Medical University, Guizhou, China
- Hematological Institute of Guizhou Province, Guizhou, China
| | - Tianzhen Hu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
- Hematological Institute of Guizhou Province, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation Centre and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guizhou, China
| | - Ping Liu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
- Hematological Institute of Guizhou Province, Guizhou, China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
- Hematological Institute of Guizhou Province, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation Centre and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guizhou, China
| | - Shuyun Cao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
- Hematological Institute of Guizhou Province, Guizhou, China
| | - Qin Shang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
| | - Luxin Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
- Hematological Institute of Guizhou Province, Guizhou, China
| | - Qingzhen Chen
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
- Hematological Institute of Guizhou Province, Guizhou, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China.
- School of Basic Medical Sciences, Guizhou Medical University, Guizhou, China.
- Hematological Institute of Guizhou Province, Guizhou, China.
- Guizhou Province Hematopoietic Stem Cell Transplantation Centre and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guizhou, China.
| |
Collapse
|
13
|
Zhang L, Yang S, Chen H, Xue C, Wang T, Chen S, Xu X, Ma S, Yu M, Guo T, Han Y, Yan J, Shen J, Cai H, Li F. Characterization of the biological and transcriptomic signatures of natural killer cells derived from cord blood and peripheral blood. Am J Cancer Res 2023; 13:3531-3546. [PMID: 37693132 PMCID: PMC10492111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/06/2023] [Indexed: 09/12/2023] Open
Abstract
Longitudinal studies have indicated the pivotal role of natural killer cells (NKs) in the elimination of certain infections and malignancies. Currently, perinatal blood (PB) and cord blood (CB) have been considered with promising prospective for autogenous and allogeneic NKs transplantation, yet the similarities and differences at the biological and molecular levels are largely obscure. We isolated mononuclear cells (MNCs) from PB and CB, and compared the biological phenotypes of resident NKs by flow cytometry and cell counting. Then, we turned to our well-established "3ILs" strategy and co-culture for NK cell activation and cytotoxicity analyses, respectively. Finally, with the aid of transcriptomic analyses, we further dissected the signatures of PB-NKs and CB-NKs. CB-NKs revealed superiority in cellular vitality over PB-NKs, together with variations in subpopulations. CB-NKs showed higher cytotoxicity over PB-NKs against K562 cells. Furthermore, we found both NKs revealed multifaceted conservations and differences in gene expression profiling and genetic variations, together with gene subsets and signaling pathway. Collectively, both NKs revealed multifaceted similarities and diverse variations at the cellular and transcriptomic levels. Our findings would benefit the further exploration of the biological and transcriptomic properties of CB-NKs and PB-NKs, together with the development of NK cell-based cytotherapy.
Collapse
Affiliation(s)
- Leisheng Zhang
- School of Medicine, Nankai UniversityTianjin 300071, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province & National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial HospitalLanzhou 730000, Gansu, China
- Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of SciencesHefei 230031, Anhui, China
- Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd.Shangrao 334000, Jiangxi, China
- Department of General Practice, Affiliated Hospital of Xiangnan UniversityChenzhou 423000, Hunan, China
| | - Sijun Yang
- School of Medicine, Nankai UniversityTianjin 300071, China
- Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd.Shangrao 334000, Jiangxi, China
| | - Hongjun Chen
- Department of Intensive Care Unit, Affiliated Hospital of Zunyi Medical UniversityZunyi 563099, Guizhou, China
| | - Chun’e Xue
- Department of Hematology, Langfang City Hospital of Traditional Chinese MedicineLangfang 065000, Hebei, China
| | - Ti’er Wang
- Hospital Infection Management Department, Chengdu Seventh People’s HospitalChengdu 610041, Sichuan, China
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan ProvinceKunming 650032, Yunnan, China
| | - Shuang Chen
- Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd.Shangrao 334000, Jiangxi, China
| | - Xianghong Xu
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province & National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial HospitalLanzhou 730000, Gansu, China
| | - Shixun Ma
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province & National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial HospitalLanzhou 730000, Gansu, China
| | - Miao Yu
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province & National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial HospitalLanzhou 730000, Gansu, China
| | - Tiankang Guo
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province & National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial HospitalLanzhou 730000, Gansu, China
| | - Yan Han
- Department of General Practice, Affiliated Hospital of Xiangnan UniversityChenzhou 423000, Hunan, China
| | - Jianhui Yan
- Department of General Practice, Affiliated Hospital of Xiangnan UniversityChenzhou 423000, Hunan, China
| | - Jiakun Shen
- Department of Hematology, Shangrao People’s HospitalShangrao 334099, Jiangxi, China
| | - Hui Cai
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province & National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial HospitalLanzhou 730000, Gansu, China
| | - Feifei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical UniversityHefei 230032, Anhui, China
| |
Collapse
|
14
|
Pu X, Zhang L, Zhang P, Xu Y, Wang J, Zhao X, Dai Z, Zhou H, Zhao S, Fan A. Human UC-MSC-derived exosomes facilitate ovarian renovation in rats with chemotherapy-induced premature ovarian insufficiency. Front Endocrinol (Lausanne) 2023; 14:1205901. [PMID: 37564988 PMCID: PMC10411896 DOI: 10.3389/fendo.2023.1205901] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Premature ovarian insufficiency (POI) induced by chemotherapy is an intractable disorder with a considerable incidence that commonly results in insufficient fertility and concomitant complications in female patients. Due to limitations in the current progress in POI diagnosis and treatment, there is an urgent need to develop novel remedies to improve ovarian function and protect fertility. The ameliorative effect of human umbilical cord mesenchymal stem cells (hUCMSCs) and exosomes derived from them in POI treatment could be a new hope for patients. Herein, we identified exosomes from hUCMSCs (hUCMSC-Exos). Then, systematic infusion of hUCMSC-Exos was accomplished via tail intravenous injection to investigate the feasibility of the treatment of rats with chemotherapy-induced POI by intraperitoneal injection of cyclophosphamide (CTX) and busulfan (BUS). Ovarian functions in the indicated group were evaluated, including oestrous cycle, serum sex hormone levels, follicle counts, ovarian pathological changes, proliferation and apoptosis of granulosa cells (GCs), and reproductive ability testing. Furthermore, the potential influence of hUCMSC-Exos on ovarian tissues was illuminated by conducting RNA-seq and multifaceted bioinformatics analyses. POI rats with hUCMSC-Exos transplantation exhibited a decrease in follicle-stimulating hormone (FSH) and apoptosis of GCs but an increase in oestradiol (E2), anti-Müllerian hormone (AMH), and the number of ovarian follicles and foetuses in the uterus. And the immunomodulation- and cellular vitality-associated gene sets in rats had also undergone moderate changes. Our data indicated the feasibility of hUCMSC-Exos in improving ovarian function and protecting fertility in chemotherapy-induced POI rats. HUCMSC-Exos can improve the local microenvironment of ovarian tissue in POI rats by participating in immune regulation, cellular viability, inflammation regulation, fibrosis and metabolism, and other related signal pathways.
Collapse
Affiliation(s)
- Xiaodi Pu
- Department of Obstetrics and Gynecology, Guizhou Medical University, Guiyang, China
| | - Leisheng Zhang
- Stem Cell Bank of Guizhou Province, Guizhou Health-Biotech Biotechnology Co., Ltd., Guiyang, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Peiyu Zhang
- Department of Obstetrics and Gynecology, Guizhou Medical University, Guiyang, China
| | - Yaqiong Xu
- Department of Obstetrics and Gynecology, Guizhou Medical University, Guiyang, China
| | - Jun Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology of the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaomei Zhao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology of the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhihua Dai
- Stem Cell Bank of Guizhou Province, Guizhou Health-Biotech Biotechnology Co., Ltd., Guiyang, China
| | - Hua Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology of the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shuyun Zhao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology of the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Anran Fan
- Key Laboratory of Reproductive Medicine, Stem Cell and Tissue Engineering Research Center in Guizhou Province, Guizhou Medical University, Guiyang, China
| |
Collapse
|
15
|
Zhang L, Zhuo Y, Yu H. Spatio-temporal metabolokinetics and therapeutic effect of CD106 + mesenchymal stem/stromal cells upon mice with acute lung injury. Cell Biol Int 2023; 47:720-730. [PMID: 36490221 DOI: 10.1002/cbin.11976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 09/12/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Longitudinal investigations have revealed the unique attributes of mesenchymal stem/stromal cells (MSCs) in regenerative medicine. However, the spatio-temporal metabolokinetics and efficacy of MSCs with vascular cell adhesion molecule 1 (also known as CD106) expression in phenotypes and therapeutic effect upon acute lung injury (ALI) mice are largely obscure. For the purpose, we took advantage of the "3IL"-based strategy and Lentivirus-mediated green fluorescent protein (GFP) delivery for the generation of the CD106+ subset (denote as CD106+ -MSCs) from umbilical cord-derived MSCs (denote as NT-MSCs). Therewith, the cellular phenotypes of CD106+ -MSCs including immunophenotypes, multilineage differentiation potential towards adipocytes and osteoblasts were confirmed by flow cytometry and qRT-PCR assay. Meanwhile, multifaceted characteristics of transcriptomic features were analyzed by utilizing the RNA-SEQ and bioinformatics. Furthermore, to compare the therapeutic effects and spatio-temporal dynamics of CD106+ -MSCs, we conducted in vivo fluorescent tracer, hematoxylin and eosin staining, blood smear, blood routine and cytokine detection in mice. Herein, we generated CD106+ -MSCs with GFP expression and confirmed the conservative property of phenotypes. Compared to NT-MSCs with minimal CD106 expression, CD106+ -MSCs manifested consistent distribution and metabolokinetics in vivo but with preferable ameliorative effect upon the pathological appearance and proinflammatory cytokine secretion in ALI mice. Collectively, our data indicated the preferable therapeutic effects of CD106+ -MSCs upon ALI mice, which would benefit the further exploration of the CD106+ subset for pulmonary diseases and investigational new drug application purposes.
Collapse
Affiliation(s)
- Leisheng Zhang
- School of Medicine, Nankai University, Tianjin, China.,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province & NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China.,Center for Cellular Therapies, The First Affiliated Hospital of Shandong First Medical University, Ji-nan, China.,Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Yi Zhuo
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hao Yu
- School of Medicine, Nankai University, Tianjin, China.,National Engineering Research Center of Cell Products, AmCellGene Engineering Co., Ltd, Tianjin, China.,Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, Tianjin, China
| |
Collapse
|
16
|
Rassaei N, Abbaszade Dibavar M, Soleimani M, Atashi A, Mohammadi MH, Allahbakhshian Farsani M, Shahsavan S. The effect of microvesicles derived from K562 cells on proliferation and apoptosis of human bone marrow mesenchymal stem cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:295-300. [PMID: 36865039 PMCID: PMC9922373 DOI: 10.22038/ijbms.2023.66903.14675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/30/2022] [Indexed: 03/04/2023]
Abstract
Objectives Microvesicles (MVs) are small membrane-bound particles that act as a vehicle to transfer their contents, such as proteins, RNAs, and miRNAs, to the target cells, making them undergo several changes. Depending on the origin and the target cell, MVs may cause cell survival or apoptosis. This study investigated the effects of MVs released from the leukemic K562 cell line on the human bone marrow mesenchymal stem cells (hBM-MSCs) to evaluate changes in the survival or apoptosis of the cells in an in vitro system. Materials and Methods In this experimental study, we added the isolated MVs from the K562 cell line to hBM-MSCs, and after three and then seven days, subsequently cell count, cell viability, transmission electron microscopy, tracing MVs by carboxyfluorescein diacetate, succinimidyl ester (CFSE) solution, flow cytometry analysis for Annexin-V/PI staining and qPCR for the evaluation of BCL-2, KI67, and BAX expression were carried out. On the 10th day of the culture, hBM-MSCs were examined by Oil red O and Alizarin Red staining to evaluate their differentiation into adipocytes and osteoblasts. Results There was a significant decrease in cell viability and KI67 and BCL-2 expression; however, BAX was significantly upregulated in the hBM-MSCs compared to control groups. Annexin-V/PI staining results also showed the apoptotic effects of K562-MVs on hBM-MSCs. Moreover, the differentiation of hBM-MSCs into adipocytes and osteoblasts was not observed. Conclusion MVs from the leukemic cell line could affect the viability of normal hBM-MSCs and induce cell apoptosis.
Collapse
Affiliation(s)
- Neda Rassaei
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University,Tehran, Iran
| | - Mahnoosh Abbaszade Dibavar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University,Tehran, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Hossein Mohammadi
- HSCT Research Center, Laboratory Hematology and Blood Banking Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Corresponding author: Mohammad Hossein Mohammadi. HSCT Research Center, Laboratory Hematology and Blood Banking Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Tel: +98-21-22718531;
| | - Mehdi Allahbakhshian Farsani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Shahsavan
- HSCT Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Hughes AM, Kuek V, Oommen J, Chua GA, van Loenhout M, Malinge S, Kotecha RS, Cheung LC. Characterization of mesenchymal stem cells in pre-B acute lymphoblastic leukemia. Front Cell Dev Biol 2023; 11:1005494. [PMID: 36743421 PMCID: PMC9897315 DOI: 10.3389/fcell.2023.1005494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
Components of the bone marrow microenvironment (BMM) have been shown to mediate the way in which leukemia develops, progresses and responds to treatment. Increasing evidence shows that leukemic cells hijack the BMM, altering its functioning and establishing leukemia-supportive interactions with stromal and immune cells. While previous work has highlighted functional defects in the mesenchymal stem cell (MSC) population from the BMM of acute leukemias, thorough characterization and molecular profiling of MSCs in pre-B cell acute lymphoblastic leukemia (B-ALL), the most common cancer in children, has not been conducted. Here, we investigated the cellular and transcriptome profiles of MSCs isolated from the BMM of an immunocompetent BCR-ABL1+ model of B-ALL. Leukemia-associated MSCs exhibited reduced self-renewal capacity in vitro and significant changes in numerous molecular signatures, including upregulation of inflammatory signaling pathways. Additionally, we found downregulation of genes involved in extracellular matrix organization and osteoblastogenesis in leukemia-associated MSCs. This study provides cellular and molecular insights into the role of MSCs during B-ALL progression.
Collapse
Affiliation(s)
- Anastasia M. Hughes
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia,Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Vincent Kuek
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia,Curtin Medical School, Curtin University, Perth, WA, Australia,School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Joyce Oommen
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Grace-Alyssa Chua
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Maria van Loenhout
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Sebastien Malinge
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia,School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Rishi S. Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia,Curtin Medical School, Curtin University, Perth, WA, Australia,School of Medicine, University of Western Australia, Perth, WA, Australia,Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA, Australia
| | - Laurence C. Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia,Curtin Medical School, Curtin University, Perth, WA, Australia,Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia,*Correspondence: Laurence C. Cheung, ,
| |
Collapse
|
18
|
Sun Y, Wang TE, Hu Q, Zhang W, Zeng Y, Lai X, Zhang L, Shi M. Systematic comparation of the biological and transcriptomic landscapes of human amniotic mesenchymal stem cells under serum-containing and serum-free conditions. Stem Cell Res Ther 2022; 13:490. [PMID: 36195964 PMCID: PMC9530421 DOI: 10.1186/s13287-022-03179-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background Human amniotic mesenchymal stem cells (hAMSCs) are splendid cell sources for clinical application in the administration of numerous refractory and relapse diseases. Despite the preferable prospect of serum-free (SF) condition for cell product standardization and pathogenic contamination remission, yet the systematic and detailed impact upon hAMSCs at both cellular and transcriptomic levels is largely obscure. Methods For the purpose, we preconditioned hAMSCs under serum-containing (SC) and SF medium for 48 h and compared the biological signatures and biofunctions from the view of cell morphology, immunophenotypes, multi-lineage differentiation in vitro, cell vitality, cytokine expression, and immunosuppressive effect upon the subpopulations of T lymphocytes, together with the PI3K-AKT-mTOR signaling reactivation upon cell vitality. Meanwhile, we took advantage of RNA-SEQ and bioinformatic analyses to verify the gene expression profiling and genetic variation spectrum in the indicated hAMSCs. Results Compared with those maintained in SC medium, hAMSCs pretreated in SF conditions manifested conservation in cell morphology, immunophenotypes, adipogenic differentiation, and immunosuppressive effect upon the proliferation and activation of most of the T cell subpopulations, but with evaluated cytokine expression (e.g., TGF-β1, IDO1, NOS2) and declined osteogenic differentiation and cell proliferation as well as proapoptotic and apoptotic cells. The declined proliferation in the SF group was efficiently rescued by PI3K-AKT-mTOR signaling reactivation. Notably, hAMSCs cultured in SF and SC conditions revealed similarities in gene expression profiling and variations in genetic mutation at the transcriptome level. Instead, based on the differentially expressed genes and variable shear event analyses, we found those genes were mainly involved in DNA synthesis-, protein metabolism-, and cell vitality-associated biological processes and signaling pathways (e.g., P53, KRAS, PI3K-Akt-mTOR). Conclusions Collectively, our data revealed the multifaceted cellular and molecular properties of hAMSCs under SC and SF conditions, which suggested the feasibility of serum-free culture for the preferable preparation of standardized cell products for hAMSC drug development and clinical application. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03179-2.
Collapse
Affiliation(s)
- Yunyan Sun
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, 650032, China.,Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, 650118, China
| | - Ti-Er Wang
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, 650032, China
| | - Qianwen Hu
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, 650032, China
| | - Wenxia Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yun Zeng
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, 650032, China.
| | - Xun Lai
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, 650118, China.
| | - Leisheng Zhang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province & NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China. .,Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Shushan District, Hefei, 230031, Anhui, China. .,Center for Cellular Therapies, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China.
| | - Mingxia Shi
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, 650032, China.
| |
Collapse
|
19
|
Multifaceted characterization of the biological and transcriptomic signatures of natural killer cells derived from cord blood and placental blood. Cancer Cell Int 2022; 22:291. [PMID: 36153574 PMCID: PMC9508758 DOI: 10.1186/s12935-022-02697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
Background Perinatal blood including umbilical cord blood and placental blood are splendid sources for allogeneic NK cell generation with high cytotoxicity of combating pathogenic microorganism and malignant tumor. Despite the generation of NK cells from the aforementioned perinatal blood, yet the systematical and detailed information of the biological and transcriptomic signatures of UC-NKs and P-NKs before large-scale clinical applications in disease remodeling is still largely obscure. Methods Herein, we took advantage of the “3IL”-based strategy for high-efficient generation of NK cells from umbilical cord blood and placental blood (UC-NKs and P-NKs), respectively. On the one hand, we conducted flow cytometry (FCM) assay and coculture to evaluate the subpopulations, cellular vitality and cytotoxic activity of the aforementioned NK cells. On the other hand, with the aid of RNA-SEQ and multiple bioinformatics analyses, we further dissected the potential diversities of UC-NKs and P-NKs from the perspectives of transcriptomes. Results On the basis of the “3IL” strategy, high-efficient NKs were generated from mononuclear cells (MNCs) in perinatal blood. P-NKs revealed comparable ex vivo expansion but preferable activation and cytotoxicity upon K562 cells over UC-NKs. Both of the two NKs showed diversity in cellular vitality and transcriptome including apoptotic cells, cell cycle, gene expression profiling and the accompanied multifaceted biological processes. Conclusions Our data revealed the multifaceted similarities and differences of UC-NKs and P-NKs both at the cellular and molecular levels. Our findings supply new references for allogeneic NK cell-based immunotherapy in regenerative medicine and will benefit the further exploration for illuminating the underlying mechanism as well. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02697-6.
Collapse
|
20
|
Zhang L, Zhao Q, Cang H, Wang Z, Hu X, Pan R, Yang Y, Chen Y. Acute Myeloid Leukemia Cells Educate Mesenchymal Stromal Cells toward an Adipogenic Differentiation Propensity with Leukemia Promotion Capabilities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:2105811. [PMID: 35686138 PMCID: PMC9165478 DOI: 10.1002/advs.202105811] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/16/2022] [Indexed: 05/14/2023]
Abstract
Mesenchymal stromal cells (MSCs) are essential elements of the bone marrow (BM) microenvironment, which have been widely implicated in pathways that contribute to leukemia growth and resistance. Recent reports showed genotypic and phenotypic alterations in leukemia patient-derived MSCs, indicating that MSCs might be educated/reprogrammed. However, the results have been inconclusive, possibly due to the heterogeneity of leukemia. Here, the authors report that acute myeloid leukemia (AML) induces MSCs towards an adipogenic differentiation propensity. RNAseq analysis reveal significant upregulation of gene expression enriched in the adipocyte differentiation process and reduction in osteoblast differentiation. The alteration is accompanied by a metabolic switch from glycolysis to a more oxidative phosphorylation-dependent manner. Mechanistic studies identify that AML cell-derived exosomes play a vital role during the AML cell-mediated MSCs education/reprogramming process. Pre-administration of mice BM microenvironment with AML-derived exosomes greatly enhance leukemia engraftment in vivo. The quantitative proteomic analysis identified a list of exosomal protein components that are differently expressed in AML-derived exosomes, which represent an opportunity for novel therapeutic strategies based on the targeting of exosome-based AML cells-MSCs communication. Collectively, the data show that AML-educated MSCs tend to differentiate into adipocytes contributing to disease progression, which suggests complex interactions of leukemia with microenvironment components.
Collapse
Affiliation(s)
- Luwen Zhang
- Department of Genetics, and Department of Genetic and Metabolic DiseaseThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang310052China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental DisordersInstitute of Genetics, Zhejiang UniversityHangzhouZhejiang310058China
| | - Qiong Zhao
- Department of Genetics, and Department of Genetic and Metabolic DiseaseThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang310052China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental DisordersInstitute of Genetics, Zhejiang UniversityHangzhouZhejiang310058China
| | - Hui Cang
- Department of Genetics, and Department of Genetic and Metabolic DiseaseThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang310052China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental DisordersInstitute of Genetics, Zhejiang UniversityHangzhouZhejiang310058China
| | - Ziqiang Wang
- Department of Genetics, and Department of Genetic and Metabolic DiseaseThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang310052China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental DisordersInstitute of Genetics, Zhejiang UniversityHangzhouZhejiang310058China
| | - Xiaojia Hu
- Department of Genetics, and Department of Genetic and Metabolic DiseaseThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang310052China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental DisordersInstitute of Genetics, Zhejiang UniversityHangzhouZhejiang310058China
| | - Ruolang Pan
- Zhejiang Provincial Key Laboratory of Cell‐Based Drug and Applied Technology DevelopmentInstitute for Cell‐Based Drug Development of Zhejiang ProvinceS‐Evans BiosciencesHangzhouZhejiang310023China
| | - Yang Yang
- Bone Marrow Transplantation Center, Institute of Hematology, The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310004China
| | - Ye Chen
- Department of Genetics, and Department of Genetic and Metabolic DiseaseThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang310052China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental DisordersInstitute of Genetics, Zhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
21
|
Zhang L, Liu M, Song B, Miao W, Zhan R, Yang S, Han Z, Cai H, Xu X, Zhao Y, Han Z, Guo T, Yao J, Huang Q. Decoding the multidimensional signatures of resident and expanded natural killer cells generated from perinatal blood. Am J Cancer Res 2022; 12:2132-2145. [PMID: 35693070 PMCID: PMC9185604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023] Open
Abstract
Natural killer (NK) cells are lymphocytes and play a pivotal role in innate and adaptive immune responses against infections and malignancies. Longitudinal studies have indicated the feasibility of perinatal blood for large-scale NK cell generation, yet the systematic and detailed comparations of the signatures of resident and expanded NK cells (rNKs, eNKs) are largely obscure. Herein, we harvested rNKs from umbilical cord blood (rUC-NKs) and placental blood (rP-NKs) as well as the corresponding eNKs (eUC-NKs, eP-NKs). Furthermore, the biological properties and transcriptomic signatures including cellular subpopulations, cytotoxicity, gene expression profiling, genetic characteristics, signaling pathways and gene set-related biological process were investigated. The enriched rNKs and eNKs exhibited diversity in biomarker expression pattern, and eNKs with higher percentages of NKG2D+, NKG2A+, NKp44+ and NKp46+ subsets. rNKs or eNKs with different origins showed more similarities in transcriptomic signatures than those with the same origin. Our data revealed multifaceted similarities and differences of the indicated rNKs and pNKs both at the cellular and molecular levels. Our findings provide new references for further dissecting the efficacy and molecular mechanisms of rNKs and eNKs, which will collectively benefit the fundamental and translational studies of NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Leisheng Zhang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province & NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial HospitalLanzhou 730000, Gansu, China
- Center for Cellular Therapies, The First Affiliated Hospital of Shandong First Medical UniversityJinan 250014, Shandong, China
- Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of SciencesHefei 230031, Anhui, China
- Institute of Health-Biotech, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd.Tianjin 301701, China
| | - Min Liu
- Veterinary Bureau, Department agriculture and Animal Husbandry of Inner Mongolia Autonomous RegionHohhot 010011, China
| | - Baoquan Song
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Wenjing Miao
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Rucai Zhan
- Center for Cellular Therapies, The First Affiliated Hospital of Shandong First Medical UniversityJinan 250014, Shandong, China
| | - Sijun Yang
- Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd.Shangrao 334000, Jiangxi, China
| | - Zhihai Han
- Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd.Shangrao 334000, Jiangxi, China
| | - Hui Cai
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province & NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial HospitalLanzhou 730000, Gansu, China
| | - Xianghong Xu
- Department of Biotherapy Center, Gansu Provincial HospitalLanzhou 730000, Gansu, China
| | - Yixiao Zhao
- College of Food Science and Engineering, Northwest Agriculture & Forestry UniversityYangling 712100, Shaanxi, China
| | - Zhongchao Han
- Institute of Health-Biotech, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd.Tianjin 301701, China
- Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd.Shangrao 334000, Jiangxi, China
- Stem Cell Bank of Guizhou Province, Guizhou Health-Biotech Biotechnology Co., Ltd.Guiyang 550000, Guizhou, China
| | - Tiankang Guo
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province & NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial HospitalLanzhou 730000, Gansu, China
| | - Jun Yao
- School and Hospital of Stomatology, Fujian Medical UniversityFuzhou 350002, Fujian, China
| | - Qing Huang
- Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of SciencesHefei 230031, Anhui, China
| |
Collapse
|
22
|
Jia L, Zhang P, Ci Z, Hao X, Bai B, Zhang W, Jiang H, Zhou G. Acellular cartilage matrix biomimetic scaffold with immediate enrichment of autologous bone marrow mononuclear cells to repair articular cartilage defects. Mater Today Bio 2022; 15:100310. [PMID: 35677810 PMCID: PMC9168693 DOI: 10.1016/j.mtbio.2022.100310] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/13/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
Functional repair of articular cartilage defects is always a great challenge in joint surgery clinically. Tissue engineering strategies that combine autologous cell implantation with three-dimensional scaffolds have proven effective for repairing articular cartilage tissue. However, it faces the problem of cell sources and scaffold materials. Autologous chondrocytes and bone marrow are difficult to popularize clinically due to limited donor sources and low mononuclear cell (MNC) concentrations, respectively. The density gradient centrifugation method can increase the concentration of MNCs in fresh bone marrow by nearly a hundredfold and achieve immediate enrichment. In addition, acellular cartilage matrix (ACM), with good biocompatibility and a cartilage-specific microenvironment, is considered to be an ideal candidate scaffold for cartilage regeneration. In this study, hybrid pigs were used to establish articular cartilage defect models of different sizes to determine the feasibility and maximum scope of application of ACM-based biomimetic scaffolds combined with MNCs for inducing articular cartilage regeneration. Importantly, ACM-based biomimetic scaffolds instantly enriched MNCs could improve the repair effect of articular cartilage defects in situ, which established a new model of articular cartilage regeneration that could be applied immediately and suited for large-scale clinical promotion. The current study significantly improves the repair effect of articular cartilage defects, which provides scientific evidence and detailed insights for future clinical applications of ACM-based biomimetic scaffolds combined with MNCs. Explore the maximum scope of repairing articular cartilage defect with ACM scaffold. Immediate enrichment of mononuclear cells by density gradient centrifugation. ACM scaffold enriched MNCs improve the repair effect of articular cartilage defect. Enrichment of MNCs expands the maximum scope of repairing articular cartilage defect.
Collapse
|
23
|
Yang Q, Zhang L, Li Q, Gu M, Qu Q, Yang X, Yi Q, Gu K, Kuang L, Hao M, Xu J, Yang H. Characterization of microbiome and metabolite analyses in patients with metabolic associated fatty liver disease and type II diabetes mellitus. BMC Microbiol 2022; 22:105. [PMID: 35421921 PMCID: PMC9011963 DOI: 10.1186/s12866-022-02526-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
State-of-the-art renewal has indicated the improvement of diagnostics of patients with metabolic associated fatty liver disease (MAFLD) and/or type II diabetes mellitus (T2DM) by dissecting the clinical characteristics as well as genomic analysis. However, the deficiency of the characterization of microbial and metabolite signatures largely impedes the symptomatic treatment.
Methods
For the purpose, we retrospectively analyzed the clinical data of 20 patients with MAFLD (short for “M”), 20 cases with MAFLD and T2DM (short for “MD”), together with 19 healthy donors (short for “Ctr”). Microbial and metabolite analyses were further conducted to explore the similarities and differences among the aforementioned populations based on feces and blood samples, respectively.
Results
Compared with those in the Ctr group, patients with M or MD revealed multifaceted similarities (e.g., Age, ALP, LDL, BUN) and distinctions in clinical indicators of liver (e.g., BMI, ALT, PCHE, CAP). With the aid of microbial and metabolite analyses as well as bioinformatic analyses, we found that the characteristics of gut microbiota (e.g., abundance, hierarchical clustering, cladogram, species) and lipid metabolism (e.g., metabolite, correlation coefficient and scatter plot) were distinct among the indicated groups.
Conclusions
The patients with MD revealed multifaceted similarities and distinctions in characteristics of microbiome and metabolites with those in the M and HD groups, and in particular, the significantly expressed microbes (e.g., Elusimicrobiota, Berkelbacteria, Cyanobacteria, Peregrinibacteria) and lipid metabolites (e.g., Lipid-Q-P-0765, Lipid-Q-P-0216, Lipid-Q-P-0034, Lipid-Q-P-0800), which would collectively benefit the clinical diagnosis of MAFLD and T2DM.
Collapse
|
24
|
Chen H, Zhang L, Zhang W, Liu L, Dai Z, Chen M, Zhang D. Blood Purification in Severe and Critical COVID-19 Patients: A Case Series of 5 Patients. Front Public Health 2021; 9:741125. [PMID: 34869156 PMCID: PMC8635486 DOI: 10.3389/fpubh.2021.741125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023] Open
Abstract
Objective: The ongoing coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a worldwide pandemic. Currently, supportive care measures remain the standard of care for severe and critical COVID-19 patients, such as ventilation oxygenation, fluid management and blood purification. In this study, we aimed to evaluate the effects of early blood purification therapy upon severe and/or critical COVID-19 patients. Patients and Methods: From January 31, 2020 to March 1, 2020, a total 5 patients with COVID-19 (3 critical type cases and 2 severe type cases) received early blood purification treatment in the intensive care unit (ICU) of Affiliated Hospital of Zunyi Medical University. Clinical indexes, including oxygen concentration, blood gas analysis, oxygenation index, and laboratory test as well as disease scores were recorded and analyzed before and after the treatment with blood purification. Results: Among the 5 patients, 4 were males ranging from 35 to 80 year old (Mean age = 63 ± 17.87). All cases with characteristics of OI <300 mm Hg, decline in lymphocyte (LYMPH)%, boost in lactate dehydrogenase (LDH), troponin T (TNT), B-type brain natriuretic peptide (BNP), interleukin-6 (IL-6) and interferon-alpha (IFN-a), three with high flow nasal cannula (HFNC), two with non-invasive ventilation (NIV) and acute kidney injury (AKI), and one with shock and IV. Blood purification therapy significantly decreased the serum levels of inflammatory cytokine, ameliorated the concomitant symptoms and complications. Finally, one case was discharged from the hospital, 4 cases were transferred to the general ward, and all the 5 cases survived. Conclusion: Continuous blood purification therapy held promising prospects for alleviating the deteriorative progression of severe and critical types of COVID-19 in the early stage, together with ameliorating the accumulation of inflammatory cytokine and the concomitant symptoms and complications by efficacious immunoadsorption. Trial Registration:www.chictr.org.cn, Identifier (ChiCTR2000031930).
Collapse
Affiliation(s)
- Hongjun Chen
- Department of Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Leisheng Zhang
- Stem Cell Bank, Guizhou Health-Biotech Biotechnology Co., Ltd., Guiyang, China.,Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin, China.,Department of Neurosurgery, The First Affiliated Hospital, Shandong First Medical University, Jinan, China.,Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao, China
| | - Wei Zhang
- Department of Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lili Liu
- Department of Cerebrovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhihua Dai
- Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin, China
| | - Miao Chen
- Department of Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Jiang Q, Dong X, Hu D, Chen L, Luo Y. Aquaporin 4 inhibition alleviates myocardial ischemia-reperfusion injury by restraining cardiomyocyte pyroptosis. Bioengineered 2021; 12:9021-9030. [PMID: 34657556 PMCID: PMC8806966 DOI: 10.1080/21655979.2021.1992332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Myocardial injury caused by ischemia-reperfusion is the main pathological manifestation of coronary artery disease (CAD), which is characterized by high mortality and morbidity. Thus, there’s an urgent need to develop efficacious strategies and elucidate the underlying mechanisms to prevent or alleviate myocardial ischemia-reperfusion injury to improve the clinical outcomes in patients. In this study, we took advantage of a typical myocardial cell line of mice (HL-1) and cultured with or without an aquaporin 4 inhibitor (TGN-20 denoted as AQP4i) under normal conditions (NC), ischemia (IS) and ischemia reperfusion (IR), respectively. The cytomorphology, ultrastructure, cell vitality and expression pattern of apoptotic proteins were verified with scanning electron microscope (SEM), immunofluorescence staining, flow cytometry, quantitative real-time PCR and western-blotting analysis, respectively. HL-1 under IS or IR condition revealed higher expression of Aquaporin 4 (Aqp4) compared to the NC group, whereas showed similarity in cytomorphology and ultrastructure. Aqp4 inhibition was sufficient to improve the apoptotic cells in HL-1 while showed minimal effects to the other cellular vitality. Furthermore, the expression pattern of apoptotic proteins and anti-apoptotic proteins together with proinflammatory factors in HL-1 was effectively rescued by Aqp4i treatment both at the mRNA level and protein level. Ischemia and ischemia reperfusion caused higher expression of Aqp4 and resultant increase of cardiomyocyte pyroptosis. Myocardial ischemia-reperfusion injury of HL-1 was effectively alleviated by Aqp4 and pyroptosis inhibition. Our findings provided new references for myocardial ischemia-reperfusion injury management via targeting Aqp4-mediated pyroptosis of cardiomyocyte.
Collapse
Affiliation(s)
- Qiong Jiang
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China.,Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian, P.R. China.,Fujian Heart Medical Center, Fuzhou, Fujian, P.R. China
| | - Xianfeng Dong
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China.,Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian, P.R. China.,Fujian Heart Medical Center, Fuzhou, Fujian, P.R. China
| | - Danqing Hu
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China.,Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian, P.R. China.,Fujian Heart Medical Center, Fuzhou, Fujian, P.R. China
| | - Lejun Chen
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China.,Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian, P.R. China.,Fujian Heart Medical Center, Fuzhou, Fujian, P.R. China
| | - Yukun Luo
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China.,Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian, P.R. China.,Fujian Heart Medical Center, Fuzhou, Fujian, P.R. China
| |
Collapse
|