1
|
Barry M, Trivedi A, Miyazawa B, Vivona LR, Shimmin D, Pathipati P, Keane C, Cuschieri J, Pati S. Regulation of vascular endothelial integrity by mesenchymal stem cell extracellular vesicles after hemorrhagic shock and trauma. J Transl Med 2024; 22:588. [PMID: 38907252 PMCID: PMC11191310 DOI: 10.1186/s12967-024-05406-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Patients with hemorrhagic shock and trauma (HS/T) are vulnerable to the endotheliopathy of trauma (EOT), characterized by vascular barrier dysfunction, inflammation, and coagulopathy. Cellular therapies such as mesenchymal stem cells (MSCs) and MSC extracellular vesicles (EVs) have been proposed as potential therapies targeting the EOT. In this study we investigated the effects of MSCs and MSC EVs on endothelial and epithelial barrier integrity in vitro and in vivo in a mouse model of HS/T. This study addresses the systemic effects of HS/T on multiorgan EOT. METHODS In vitro, pulmonary endothelial cell (PEC) and Caco-2 intestinal epithelial cell monolayers were treated with control media, MSC conditioned media (CM), or MSC EVs in varying doses and subjected to a thrombin or hydrogen peroxide (H2O2) challenge, respectively. Monolayer permeability was evaluated with a cell impedance assay, and intercellular junction integrity was evaluated with immunofluorescent staining. In vivo, a mouse model of HS/T was used to evaluate the effects of lactated Ringer's (LR), MSCs, and MSC EVs on endothelial and epithelial intercellular junctions in the lung and small intestine as well as on plasma inflammatory biomarkers. RESULTS MSC EVs and MSC CM attenuated permeability and preserved intercellular junctions of the PEC monolayer in vitro, whereas only MSC CM was protective of the Caco-2 epithelial monolayer. In vivo, both MSC EVs and MSCs mitigated the loss of endothelial adherens junctions in the lung and small intestine, though only MSCs had a protective effect on epithelial tight junctions in the lung. Several plasma biomarkers including MMP8 and VEGF were elevated in LR- and EV-treated but not MSC-treated mice. CONCLUSIONS In conclusion, MSC EVs could be a potential cell-free therapy targeting endotheliopathy after HS/T via preservation of the vascular endothelial barrier in multiple organs early after injury. Further research is needed to better understand the immunomodulatory effects of these products following HS/T and to move toward translating these therapies into clinical studies.
Collapse
Affiliation(s)
- Mark Barry
- Department of Surgery, University of California, San Francisco, 513 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Alpa Trivedi
- Department of Laboratory Medicine, University of California, San Francisco, 513 Parnassus Ave , San Francisco, CA, 94143, USA
| | - Byron Miyazawa
- Department of Laboratory Medicine, University of California, San Francisco, 513 Parnassus Ave , San Francisco, CA, 94143, USA
| | - Lindsay R Vivona
- Department of Laboratory Medicine, University of California, San Francisco, 513 Parnassus Ave , San Francisco, CA, 94143, USA
| | - David Shimmin
- NanoCraft.US., 807 Aldo Ave, Suite-101, Santa Clara, CA, 95054, USA
| | - Praneeti Pathipati
- Department of Laboratory Medicine, University of California, San Francisco, 513 Parnassus Ave , San Francisco, CA, 94143, USA
| | - Callie Keane
- Department of Laboratory Medicine, University of California, San Francisco, 513 Parnassus Ave , San Francisco, CA, 94143, USA
| | - Joseph Cuschieri
- Department of Surgery, University of California, San Francisco, 513 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Shibani Pati
- Department of Surgery, University of California, San Francisco, 513 Parnassus Ave, San Francisco, CA, 94143, USA.
- Department of Laboratory Medicine, University of California, San Francisco, 513 Parnassus Ave , San Francisco, CA, 94143, USA.
| |
Collapse
|
2
|
Barry M, Trivedi A, Miyazawa B, Vivona L, Shimmin D, Pathipati P, Keane C, Cuschieri J, Pati S. Regulation of Vascular Endothelial Integrity by Mesenchymal Stem Cell Extracellular Vesicles after Hemorrhagic Shock and Trauma. RESEARCH SQUARE 2024:rs.3.rs-4284907. [PMID: 38746312 PMCID: PMC11092837 DOI: 10.21203/rs.3.rs-4284907/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
BACKGROUND Patients with hemorrhagic shock and trauma (HS/T) are vulnerable to the endotheliopathy of trauma (EOT), characterized by vascular barrier dysfunction, inflammation, and coagulopathy. Cellular therapies such as mesenchymal stem cells (MSCs) and MSC extracellular vesicles (EVs) have been proposed as potential therapies targeting the EOT. In this study we investigated the effects of MSCs and MSC EVs on endothelial and epithelial barrier integrity in vitro and in vivo in a mouse model of HS/T. This study addresses systemic effects of HS/T on multiorgan EOT in HS/T model. METHODS In vitro, pulmonary endothelial cell (PEC) and Caco-2 intestinal epithelial cell monolayers were treated with control media, MSC conditioned media (CM), or MSC EVs in varying doses and subjected to a thrombin or hydrogen peroxide (H2O2) challenge, respectively. Monolayer permeability was evaluated with a cell impedance assay, and intercellular junction integrity was evaluated with immunofluorescent staining. In vivo, a mouse model of HS/T was used to evaluate the effects of lactated Ringer's (LR), MSCs, and MSC EVs on endothelial and epithelial intercellular junctions in the lung and small intestine as well as on plasma inflammatory biomarkers. RESULTS MSC EVs and MSC CM attenuated permeability and preserved intercellular junctions of the PEC monolayer in vitro, whereas only MSC CM was protective of the Caco-2 epithelial monolayer. In vivo, both MSC EVs and MSCs mitigated the loss of endothelial adherens junctions in the lung and small intestine, though only MSCs had a protective effect on epithelial tight junctions in the lung. Several plasma biomarkers including MMP8 and VEGF were elevated in LR- and EV-treated but not MSC-treated mice. CONCLUSIONS In conclusion, MSC EVs could be a potential cell-free therapy targeting endotheliopathy after HS/T via preservation of the vascular endothelial barrier in multiple organs early after injury. Further research is needed to better understand the immunomodulatory effects of these products following HS/T and to move toward translating these therapies into clinical studies.
Collapse
|
3
|
Makkar D, Gakhar D, Mishra V, Rakha A. Fine Tuning Mesenchymal Stromal Cells - Code For Mitigating Kidney Diseases. Stem Cell Rev Rep 2024; 20:738-754. [PMID: 38334884 DOI: 10.1007/s12015-024-10684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
Kidney Disease (KD), has a high global prevalence and accounts for one of the most prominent causes of morbidity and mortality in the twenty-first century. Despite the advances in our understanding of its pathophysiology, the only available therapy options are dialysis and kidney transplantation. Mesenchymal stem cells (MSCs) have proven to be a viable choice for KD therapy due to their antiapoptotic, immunomodulatory, antioxidative, and pro-angiogenic activities. However, the low engraftment, low survival rate, diminished paracrine ability, and delayed delivery of MSCs are the major causes of the low clinical efficacy. A number of preconditioning regimens are being tested to increase the therapeutic capabilities of MSCs. In this review, we highlight the various strategies to prime MSCs and their protective effects in kidney diseases.
Collapse
Affiliation(s)
- Diksha Makkar
- Department of Translational and Regenerative Medicine, PGIMER, Chandigarh, 160012, India
| | - Diksha Gakhar
- Department of Translational and Regenerative Medicine, PGIMER, Chandigarh, 160012, India
| | - Vinod Mishra
- Department of Translational and Regenerative Medicine, PGIMER, Chandigarh, 160012, India
| | - Aruna Rakha
- Department of Translational and Regenerative Medicine, PGIMER, Chandigarh, 160012, India.
| |
Collapse
|
4
|
Jia D, Han J, Cai J, Huan Z, Wang Y, Ge X. Mesenchymal stem cells overexpressing PBX1 alleviates haemorrhagic shock-induced kidney damage by inhibiting NF-κB activation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119571. [PMID: 37673222 DOI: 10.1016/j.bbamcr.2023.119571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Mesenchymal stem cells (MSCs) have favourable outcomes in the treatment of kidney diseases. Pre-B-cell leukaemia transcription factor 1 (PBX1) has been reported to be a regulator of self-renewal of stem cells. Whether PBX1 is beneficial to MSCs in the treatment of haemorrhagic shock (HS)-induced kidney damage is unknown. We overexpressed PBX1 in rat bone marrow-derived mesenchymal stem cells (rBMSCs) and human bone marrow-derived mesenchymal stem cells (hBMSCs) to treat rats with HS and hypoxia-treated human proximal tubule epithelial cells (HK-2), respectively. The results indicated that PBX1 enhanced the homing capacity of rBMSCs to kidney tissues and that treatment with rBMSCs overexpressing PBX1 improved the indicators of kidney function, alleviated structural damage to kidney tissues. Furthermore, administration with rBMSCs overexpressing PBX1 inhibited HS-induced NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation and the release of proinflammatory cytokines, and further attenuated apoptosis. We then determined whether NF-κB, an important factor in NLRP3 activation and the regulation of inflammation, participates in HS-induced kidney damage, and we found that rBMSCs overexpressing PBX1 inhibited NF-κB activation by decreasing the p-IκBα/IκBα and p-p65/p65 ratios and inhibiting the nuclear translocation and decreasing the DNA-binding capacity of NF-κB. hBMSCs overexpressing PBX1 also exhibited protective effects on HK-2 cells exposed to hypoxia, as shown by the increase in cell viability, the mitigation of apoptosis, the decrease in inflammation, and the inhibition of NF-κB and NLRP3 inflammasome activation. Our study demonstrates that MSCs overexpressing PBX1 ameliorates HS-induced kidney damage by inhibiting NF-κB pathway-mediated NLRP3 inflammasome activation and the inflammatory response.
Collapse
Affiliation(s)
- Di Jia
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Jiahui Han
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Jimin Cai
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Zhirong Huan
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Yan Wang
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Xin Ge
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China; Orthopedic Institution of Wuxi City, Wuxi, Jiangsu 214000, People's Republic of China.
| |
Collapse
|
5
|
Wang J, Donohoe E, Canning A, Moosavizadeh S, Buckley F, Brennan MÁ, Ryan AE, Ritter T. Immunomodulatory function of licensed human bone marrow mesenchymal stromal cell-derived apoptotic bodies. Int Immunopharmacol 2023; 125:111096. [PMID: 37871378 DOI: 10.1016/j.intimp.2023.111096] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) show great potential for immunomodulatory and anti-inflammatory treatments. Clinical trials have been performed for the treatment of Type 1 diabetes, graft-versus-host disease and organ transplantation, which offer a promise of MSCs as an immunomodulatory therapy. Nevertheless, their unstable efficacy and immunogenicity concerns present challenges to clinical translation. It has emerged that the MSC-derived secretome, which includes secreted proteins, exosomes, apoptotic bodies (ABs) and other macromolecules, may have similar therapeutic effects to parent MSCs. Among all of the components of the MSC-derived secretome, most interest thus far has been garnered by exosomes for their therapeutic potential. However, since MSCs were reported to undergo apoptosis after in vivo transplantation and release ABs, we speculated as to whether ABs have immunomodulatory effects. In this study, cytokine licensing was used to enhance the immunomodulatory potency of MSCs and ABs derived from licensed MSCs in vitro were isolated to explore their immunomodulatory effects as an effective non-viable cell therapy. RESULTS IFN-γ and IFN-γ/TGF-β1 licensing enhanced the immunomodulatory effect of MSCs on T cell proliferation. Further, TGF-β1 and IFN-γ licensing strengthened the immunomodulatory effect of MSC on reducing the TNF-α and IL-1β expression by M1 macrophage-like THP-1 cells. Additionally, we discovered the immunomodulatory effect mediated by MSC-derived apoptotic bodies. Licensing impacted the uptake of ABs by recipient immune cells and importantly altered their phenotypes. CONCLUSION ABs derived from IFN-γ/TGF-β1-licensed apoptotic MSCs significantly inhibited T cell proliferation, induced more regulatory T cells, and maintained immunomodulatory T cells but reduced pro-inflammatory T cells.
Collapse
Affiliation(s)
- Jiemin Wang
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Ellen Donohoe
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Aoife Canning
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Seyedmohammad Moosavizadeh
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Fiona Buckley
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - Meadhbh Á Brennan
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Aideen E Ryan
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland; Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
6
|
He S, Zhang Z, Peng X, Wu Y, Zhu Y, Wang L, Zhou H, Li T, Liu L. The protective effect of pericytes on vascular permeability after hemorrhagic shock and their relationship with Cx43. Front Physiol 2022; 13:948541. [PMID: 36262250 PMCID: PMC9576106 DOI: 10.3389/fphys.2022.948541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular hyperpermeability is a complication of hemorrhagic shock. Pericytes (PCs) are a group of mural cells surrounded by microvessels that are located on the basolateral side of the endothelium. Previous studies have shown that damage to PCs contributes to the occurrence of many diseases such as diabetic retinopathy and myocardial infarction. Whether PCs can protect the vascular barrier function following hemorrhagic shock and the underlying mechanisms are unknown. A hemorrhagic shock rat model, Cx43 vascular endothelial cell (VEC)-specific knockdown mice, and VECs were used to investigate the role of PCs in vascular barrier function and their relationship with Cx43. The results showed that following hemorrhagic shock, the number of PCs in the microvessels was significantly decreased and was negatively associated with an increase in pulmonary and mesenteric vascular permeability. Exogenous infusion of PCs (106 cells per rat) colonized the microvessels and improved pulmonary and mesenteric vascular barrier function. Upregulation of Cx43 in PCs significantly increased the number of PCs colonizing the pulmonary vessels. In contrast, downregulation of Cx43 expression in PCs or knockout of Cx43 in VECs (Cx43 KO mice) significantly reduced PC colonization in pulmonary vessels in vivo and reduced direct contact formation between PCs and VECs in vitro. It has been suggested that PCs have an important protective effect on vascular barrier function in pulmonary and peripheral vessels following hemorrhagic shock. Cx43 plays an important role in the colonization of exogenous PCs in the microvessels. This finding provides a potential new shock treatment measure.
Collapse
Affiliation(s)
- Shuangshuang He
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
- Department of Pharmacy, Army Medical Center, Army Medical University, Chongqing, China
| | - Zisen Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
| | - Xiaoyong Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
| | - Li Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
| | - Henan Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
- *Correspondence: Tao Li, ; Liangming Liu,
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
- *Correspondence: Tao Li, ; Liangming Liu,
| |
Collapse
|
7
|
Ferroptotic MSCs protect mice against sepsis via promoting macrophage efferocytosis. Cell Death Dis 2022; 13:825. [PMID: 36163182 PMCID: PMC9512818 DOI: 10.1038/s41419-022-05264-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 01/23/2023]
Abstract
The therapeutic effect of mesenchymal stem cells (MSCs) on sepsis has been well-known. However, a comprehensive understanding of the relationship between MSCs and macrophages remains elusive. Superparamagnetic iron oxide (SPIO) is one of the most commonly used tracers for MSCs. Our previous study has shown that SPIO enhanced the therapeutic effect of MSCs in a macrophage-dependent manner. However, the fate of SPIO-labeled MSCs (MSCSPIO) after infusion remains unknown and the direct interaction between MSCSPIO and macrophages remains unclear. Mice were injected intravenously with MSCSPIO at 2 h after Escherichia coli infection and sacrificed at different times to investigate their distribution and therapeutic effect. We found that MSCSPIO homed to lungs rapidly after infusion and then trapped in livers for more than 10 days. Only a few MSCSPIO homed to the spleen and there was no MSCSPIO detectable in the brain, heart, kidney, colon, and uterus. MSCSPIO tended to stay longer in injured organs compared with healthy organs and played a long-term protective role in sepsis. The mRNA expression profiles between MSCs and MSCSPIO were rather different, genes related to lipid metabolism, inflammation, and oxidative stress were changed. The levels of ROS and lipid peroxide were elevated in MSCSPIO, which confirmed that SPIO-induced ferroptosis in MSCSPIO. Ferroptosis of MSCSPIO induced by SPIO enhanced the efferocytosis of macrophages and thus enhanced the protective effect on septic mice, while the benefits were impaired after MSCSPIO were treated with Ferrostatin-1 (Fer-1) or Liproxtatin-1 (Lip-1), the inhibitors of ferroptosis. SPIO-induced ferroptosis in MSCs contributes to better therapeutic effects in sepsis by enhancing the efferocytosis of macrophages. Our data showed the efficacy and advantage of MSCSPIO as a therapeutic tool and the cell states exert different curative effects on sepsis.
Collapse
|
8
|
Sarsenova M, Kim Y, Raziyeva K, Kazybay B, Ogay V, Saparov A. Recent advances to enhance the immunomodulatory potential of mesenchymal stem cells. Front Immunol 2022; 13:1010399. [PMID: 36211399 PMCID: PMC9537745 DOI: 10.3389/fimmu.2022.1010399] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Considering the unique therapeutic potential of mesenchymal stem cells (MSCs), including their immunosuppressive and immunomodulatory properties as well as their ability to improve tissue regeneration, these cells have attracted the attention of scientists and clinicians for the treatment of different inflammatory and immune system mediated disorders. However, various clinical trials using MSCs for the therapeutic purpose are conflicting and differ from the results of promising preclinical studies. This inconsistency is caused by several factors such as poor migration and homing capacities, low survival rate, low level of proliferation and differentiation, and donor-dependent variation of the cells. Enhancement and retention of persistent therapeutic effects of the cells remain a challenge to overcome in MSC-based therapy. In this review, we summarized various approaches to enhance the clinical outcomes of MSC-based therapy as well as revised current and future perspectives for the creation of cellular products with improved potential for diverse clinical applications.
Collapse
Affiliation(s)
- Madina Sarsenova
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Yevgeniy Kim
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bexultan Kazybay
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Vyacheslav Ogay
- Laboratory of Stem Cells, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- *Correspondence: Arman Saparov,
| |
Collapse
|
9
|
Huang Q, Gao S, Yao Y, Wang Y, Li J, Chen J, guo C, Zhao D, Li X. Innate immunity and immunotherapy for hemorrhagic shock. Front Immunol 2022; 13:918380. [PMID: 36091025 PMCID: PMC9453212 DOI: 10.3389/fimmu.2022.918380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Hemorrhagic shock (HS) is a shock result of hypovolemic injury, in which the innate immune response plays a central role in the pathophysiology ofthe severe complications and organ injury in surviving patients. During the development of HS, innate immunity acts as the first line of defense, mediating a rapid response to pathogens or danger signals through pattern recognition receptors. The early and exaggerated activation of innate immunity, which is widespread in patients with HS, results in systemic inflammation, cytokine storm, and excessive activation of complement factors and innate immune cells, comprised of type II innate lymphoid cells, CD4+ T cells, natural killer cells, eosinophils, basophils, macrophages, neutrophils, and dendritic cells. Recently, compelling evidence focusing on the innate immune regulation in preclinical and clinical studies promises new treatment avenues to reverse or minimize HS-induced tissue injury, organ dysfunction, and ultimately mortality. In this review, we first discuss the innate immune response involved in HS injury, and then systematically detail the cutting-edge therapeutic strategies in the past decade regarding the innate immune regulation in this field; these strategies include the use of mesenchymal stem cells, exosomes, genetic approaches, antibody therapy, small molecule inhibitors, natural medicine, mesenteric lymph drainage, vagus nerve stimulation, hormones, glycoproteins, and others. We also reviewed the available clinical studies on immune regulation for treating HS and assessed the potential of immune regulation concerning a translation from basic research to clinical practice. Combining therapeutic strategies with an improved understanding of how the innate immune system responds to HS could help to identify and develop targeted therapeutic modalities that mitigate severe organ dysfunction, improve patient outcomes, and reduce mortality due to HS injury.
Collapse
Affiliation(s)
- Qingxia Huang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Song Gao
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd., Changchun, China
| | - Yao Yao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yisa Wang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chen guo
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Daqing Zhao, ; Xiangyan Li,
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Daqing Zhao, ; Xiangyan Li,
| |
Collapse
|
10
|
Mesenchymal stem cells and their derived small extracellular vesicles for COVID-19 treatment. Stem Cell Res Ther 2022; 13:410. [PMID: 35962458 PMCID: PMC9372991 DOI: 10.1186/s13287-022-03034-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/14/2022] [Indexed: 11/24/2022] Open
Abstract
Since December 2019, the coronavirus (COVID-19) pandemic has imposed huge burdens to the whole world, seriously affecting global economic growth, and threatening people’s lives and health. At present, some therapeutic regimens are available for treatment of COVID-19 pneumonia, including antiviral therapy, immunity therapy, anticoagulant therapy, and others. Among them, injection of mesenchymal stem cells (MSCs) is currently a promising therapy. The preclinical studies and clinical trials using MSCs and small extracellular vesicles derived from MSCs (MSC-sEVs) in treating COVID-19 were summarized. Then, the molecular mechanism, feasibility, and safety of treating COVID-19 with MSCs and MSC-sEVs were also discussed.
Collapse
|
11
|
Zhang Y, Zhang X, Zhang H, Song P, Pan W, Xu P, Wang G, Hu P, Wang Z, Huang K, Zhang X, Wang H, Zhang J. Mesenchymal Stem Cells Derived Extracellular Vesicles Alleviate Traumatic Hemorrhagic Shock Induced Hepatic Injury via IL-10/PTPN22-Mediated M2 Kupffer Cell Polarization. Front Immunol 2022; 12:811164. [PMID: 35095903 PMCID: PMC8790700 DOI: 10.3389/fimmu.2021.811164] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
Traumatic hemorrhagic shock (THS) is a major cause of mortality and morbidity worldwide in severely injured patients. Mesenchymal stem cells (MSCs) possess immunomodulatory properties and tissue repair potential mainly through a paracrine pathway mediated by MSC-derived extracellular vesicles (MSC-EVs). Interleukin 10 (IL-10) is a potent anti-inflammatory cytokine that plays a crucial role during the inflammatory response, with a broad range of effects on innate and adaptive immunity, preventing damage to the host and maintaining normal tissue homeostasis. However, the function and mechanism of IL-10 in MSC-mediated protective effect in THS remain obscure. Here, we show that MSCs significantly attenuate hepatic injury and inflammation from THS in mice. Notably, these beneficial effects of MSCs disappeared when IL-10 was knocked out in EVs or when recombinant IL-10 was administered to mice. Mechanistically, MSC-EVs function to carry and deliver IL-10 as cargo. WT MSC-EVs restored the function of IL-10 KO MSCs during THS injury. We further demonstrated that EVs containing IL-10 mainly accumulated in the liver during THS, where they were captured by Kupffer cells and induced the expression of PTPN22. These effects subsequently shifted Kupffer cells to an anti-inflammatory phenotype and mitigated liver inflammation and injury. Therefore, our study indicates that MSC-EVs containing IL-10 alleviate THS-induced hepatic injury and may serve as a cell-free therapeutic approach for THS.
Collapse
Affiliation(s)
- Yunwei Zhang
- Department of Emergency, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Zhang
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongji Zhang
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Peng Song
- Department of Breast and Thyroid Surgery, Ningxia hui Autonomous Region People's Hospital, Yinchuan, China
| | - Wenming Pan
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Xu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoliang Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Hu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zixuan Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunpeng Huang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaodong Zhang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Medical Genetics, Basic School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxiang Zhang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Javed K, Gurdon JB. The initiation and maintenance of a differentiated state in development. Dev Biol 2021; 483:34-38. [PMID: 34942195 DOI: 10.1016/j.ydbio.2021.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/03/2022]
Abstract
Proper function of the body is maintained by an intricate interaction and communication among cells. during the animal development how these cells are formed and maintained is an important yet elusive. Understanding of how cells such as muscle and nerve cells maintain their identities would enable us to control the diseases which include malfunctioning in cellular identities such as cancer. In this article, we describe how the concept of formation and maintenance of cell identities has changed over the last 100 years. We will also briefly describe our current experimental work which includes transcriptional dynamics, and protein-protein interaction and how they are bringing new molecular insights. We also describe liquid-liquid phase separation as a potential new mechanism for the stability of gene expression in the non dvididng specialised cells of Xenopus oocytes.
Collapse
Affiliation(s)
| | - J B Gurdon
- The Gurdon Institute, Cambridge, CB2 1QN, UK
| |
Collapse
|
13
|
Valade G, Libert N, Martinaud C, Vicaut E, Banzet S, Peltzer J. Therapeutic Potential of Mesenchymal Stromal Cell-Derived Extracellular Vesicles in the Prevention of Organ Injuries Induced by Traumatic Hemorrhagic Shock. Front Immunol 2021; 12:749659. [PMID: 34659252 PMCID: PMC8511792 DOI: 10.3389/fimmu.2021.749659] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
Severe trauma is the principal cause of death among young people worldwide. Hemorrhagic shock is the leading cause of death after severe trauma. Traumatic hemorrhagic shock (THS) is a complex phenomenon associating an absolute hypovolemia secondary to a sudden and significant extravascular blood loss, tissue injury, and, eventually, hypoxemia. These phenomena are responsible of secondary injuries such as coagulopathy, endotheliopathy, microcirculation failure, inflammation, and immune activation. Collectively, these dysfunctions lead to secondary organ failures and multi-organ failure (MOF). The development of MOF after severe trauma is one of the leading causes of morbidity and mortality, where immunological dysfunction plays a central role. Damage-associated molecular patterns induce an early and exaggerated activation of innate immunity and a suppression of adaptive immunity. Severe complications are associated with a prolonged and dysregulated immune–inflammatory state. The current challenge in the management of THS patients is preventing organ injury, which currently has no etiological treatment available. Modulating the immune response is a potential therapeutic strategy for preventing the complications of THS. Mesenchymal stromal cells (MSCs) are multipotent cells found in a large number of adult tissues and used in clinical practice as therapeutic agents for immunomodulation and tissue repair. There is growing evidence that their efficiency is mainly attributed to the secretion of a wide range of bioactive molecules and extracellular vesicles (EVs). Indeed, different experimental studies revealed that MSC-derived EVs (MSC-EVs) could modulate local and systemic deleterious immune response. Therefore, these new cell-free therapeutic products, easily stored and available immediately, represent a tremendous opportunity in the emergency context of shock. In this review, the pathophysiological environment of THS and, in particular, the crosstalk between the immune system and organ function are described. The potential therapeutic benefits of MSCs or their EVs in treating THS are discussed based on the current knowledge. Understanding the key mechanisms of immune deregulation leading to organ damage is a crucial element in order to optimize the preparation of EVs and potentiate their therapeutic effect.
Collapse
Affiliation(s)
- Guillaume Valade
- Institut de Recherche Biomédicale des Armées (IRBA), Inserm UMRS-MD-1197, Clamart, France
| | - Nicolas Libert
- Service d'Anesthésie-Réanimation, Hôpital d'instruction des armées Percy, Clamart, France
| | - Christophe Martinaud
- Unité de Médicaments de Thérapie Innovante, Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Eric Vicaut
- Laboratoire d'Etude de la Microcirculation, Université de Paris, UMRS 942 INSERM, Paris, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées (IRBA), Inserm UMRS-MD-1197, Clamart, France
| | - Juliette Peltzer
- Institut de Recherche Biomédicale des Armées (IRBA), Inserm UMRS-MD-1197, Clamart, France
| |
Collapse
|