1
|
Li Y, Xu X, Wu X, Li J, Chen S, Chen D, Li G, Tang Z. Cell polarization in ischemic stroke: molecular mechanisms and advances. Neural Regen Res 2025; 20:632-645. [PMID: 38886930 PMCID: PMC11433909 DOI: 10.4103/nrr.nrr-d-23-01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 06/20/2024] Open
Abstract
Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as 'cell polarization.' There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations (microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Wang J, Tang H, Tian J, Xie Y, Wu Y. Extracellular vesicles of ADSCs inhibit ischemic stroke-induced pyroptosis through Gbp3 regulation: A role for the NLRP3/GSDMD signaling pathway. Int Immunopharmacol 2024; 146:113881. [PMID: 39721455 DOI: 10.1016/j.intimp.2024.113881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 12/04/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Mounting data indicates that extracellular vesicles (EVs) have the potential to improve the injury after a stroke. Pyroptosis is a recently identified kind of programmed cell death that initiates an inflammatory reaction. We aimed to ascertain the therapeutic implications and possible molecular processes of EVs obtained from adipose-derived stem cells (ADSCs) in inhibiting pyroptosis in ischemic stroke. METHODS The investigation employed transient middle cerebral artery occlusion (tMCAO) rat model and a BV2 of oxygen-glucose deprivation/reoxygenation (OGD/R) to ascertain ADSCs-EVs implications on inflammation and pyroptosis as assessed by neurological deficit scores, TTC staining, IHC, HE, CCK8, WB, ELISA, and immunofluorescence. RNA-Seq was performed on BV2 cells in the control, OGD/R, and OGD/R + ADSCs-EVs groups. Using sequencing data analysis, in the OGD/R group, we screened the upregulated genes regulated by EVs, overlapped with 74 pyroptosis-related genes, and identified Guanylate-binding protein 2 (Gbp2) and Guanylate-binding protein 3 (Gbp3) as key genes. Following the validation of the sequencing results in vivo and in vitro, Gbp3 was selected for further study. To test its regulatory effects on inflammation and pyroptosis, Gbp3 was knocked down and overexpressed in vitro. RESULTS The administration of ADSCs-EVs resulted in a significant reduction in neurological involvement scores and reduced infarct volume in rats with tMCAO. They were also protective against BV-2 cells after OGD/R. In vivo and in vitro, ADSCs-EVs inhibited inflammatory response and pyroptosis after stroke. The outcomes of the RNA-Seq data analysis manifested that the protective implications of EVs after stroke are mediated by the modulation of inflammation-related mechanisms. Moreover, treatment with EVs led to a significant reduction in Gbp3 expression in post-ischemic brain tissue and cells. When Gbp3 was knocked down, the expression of inflammatory molecules and proteins linked to pyroptosis had a significant decline. When Gbp3 was overexpressed, the opposite results were obtained. CONCLUSIONS ADSCs-EVs modulate the NLRP3/GSDMD signaling pathway via Gbp3 to attenuate the inflammatory response and reduce pyroptosis that occurs after stroke.
Collapse
Affiliation(s)
- Jia Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hao Tang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jianan Tian
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yibo Xie
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yun Wu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
3
|
Xu K, Zhao X, He Y, Guo H, Zhang Y. Stem cell-derived exosomes for ischemic stroke: a conventional and network meta-analysis based on animal models. Front Pharmacol 2024; 15:1481617. [PMID: 39508049 PMCID: PMC11537945 DOI: 10.3389/fphar.2024.1481617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Objective We aimed to evaluate the efficacy of stem cell-derived exosomes for treating ischemic stroke and to screen for the optimal administration strategy. Methods We searched PubMed, Web of Science, Embase, Cochrane Library, and Scopus databases for relevant studies published from their inception to 31 December 2023. Conventional and network meta-analyses of the routes of administration, types, and immune compatibility of stem cell-derived exosomes were performed using the cerebral infarct volume (%) and modified neurological severity score (mNSS) as outcome indicators. Results A total of 38 randomized controlled animal experiments were included. Conventional meta-analysis showed that compared with the negative control group: intravenous administration significantly reduced the cerebral infarct volume (%) and mNSS; intranasal administration significantly reduced the cerebral infarct volume (%); and intracerebral administration significantly reduced the mNSS. Adipose-derived mesenchymal stem cell-derived exosomes (ADSC-Exos), bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos), dental pulp stem cell-derived exosomes (DPSC-Exos) and neural stem cell-derived exosomes (NSC-Exos) significantly reduced the cerebral infarct volume (%) and mNSS; Endothelial progenitor cell-derived exosomes (EPC-Exos), embryonic stem cell-derived exosomes (ESC-Exos), induced pluripotent stem cell-derived exosomes (iPSC-Exos) and neural progenitor cell-derived exosomes (NPC-Exos) significantly reduced the cerebral infarct volume (%); Umbilical cord mesenchymal stem cell-derived exosomes (UCMSC-Exos) significantly reduced the mNSS; and there was no significant difference between urogenital stem cell-derived exosomes (USC-Exos) and negative controls. Engineered modified exosomes had better efficacy than unmodified exosomes. Both allogeneic and xenogeneic stem cell-derived exosomes significantly reduced the cerebral infarct volume (%) and the mNSS. The network meta-analysis showed that intravenous administration was the best route of administration for reducing the cerebral infarct volume (%) and mNSS. Among the 10 types of stem cell-derived exosomes that were administered intravenously, BMSC-Exos were the best type for reducing the cerebral infarct volume (%) and the mNSS. Allogeneic exosomes had the best efficacy in reducing the cerebral infarct volume (%), whereas xenogeneic stem cell-derived exosomes had the best efficacy in reducing the mNSS. Conclusion This meta-analysis, by integrating the available evidence, revealed that intravenous administration is the best route of administration, that BMSC-Exos are the best exosome type, that allogeneic exosomes have the best efficacy in reducing the cerebral infarct volume (%), and that xenogeneic exosomes have the best efficacy in reducing mNSS, which can provide options for preclinical studies. In the future, more high-quality randomized controlled animal experiments, especially direct comparative evidence, are needed to determine the optimal administration strategy for stem cell-derived exosomes for ischemic stroke. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42024497333, PROSPERO, CRD42024497333.
Collapse
Affiliation(s)
- Kangli Xu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaohui Zhao
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuxuan He
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongxin Guo
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yunke Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
4
|
Schultz IC, Dos Santos Pereira Andrade AC, Dubuc I, Laroche A, Allaeys I, Doré E, Bertrand N, Vallières L, Fradette J, Flamand L, Wink MR, Boilard E. Targeting Cytokines: Evaluating the Potential of Mesenchymal Stem Cell Derived Extracellular Vesicles in the Management of COVID-19. Stem Cell Rev Rep 2024:10.1007/s12015-024-10794-4. [PMID: 39340739 DOI: 10.1007/s12015-024-10794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
The Coronavirus Disease 2019 (COVID-19), caused by virus SARS-CoV-2, is characterized by massive inflammation and immune system imbalance. Despite the implementation of vaccination protocols, the accessibility of treatment remains uneven. Furthermore, the persistent threat of new variants underscores the urgent need for expanded research into therapeutic options for SARS-CoV-2. Mesenchymal stem cells (MSCs) are known for their immunomodulatory potential through the release of molecules into the extracellular space, either as soluble elements or carried by extracellular vesicles (EVs). The aim of this study was to evaluate the anti-inflammatory potential of EVs obtained from human adipose tissue (ASC-EVs) against SARS-CoV-2 infection. ASC-EVs were purified by size-exclusion chromatography, and co-culture assays confirmed that ASC-EVs were internalized by human lung cells and could colocalize with SARS-CoV-2 into early and late endosomes. To determine the functionality of ASC-EVs, lung cells were infected with SARS-CoV-2 in the presence of increasing concentrations of ASC-EVs, and the release of cytokines, chemokines and viruses were measured. While SARS-CoV-2 replication was significantly reduced only at the highest concentrations tested, multiplex analysis highlighted that lower concentrations of ASC-EV sufficed to prevent the production of immune modulators. Importantly, ASC-EVs did not contain detectable inflammatory cytokines, nor did they trigger inflammatory mediators, nor affect cellular viability. In conclusion, this work suggests that ASC-EVs have the potential to attenuate inflammation by decreasing the production of pro-inflammatory cytokines in lung cells following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Iago Carvalho Schultz
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Ana Claudia Dos Santos Pereira Andrade
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Isabelle Dubuc
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Audrée Laroche
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Isabelle Allaeys
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Etienne Doré
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Nicolas Bertrand
- Axe Endocrinologie et Néphrologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Luc Vallières
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
| | - Julie Fradette
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Département de Chirurgie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
- Division of Regenerative Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
| | - Louis Flamand
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Marcia Rosangela Wink
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Eric Boilard
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada.
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada.
| |
Collapse
|
5
|
Vahab SA, V VK, Kumar VS. Exosome-based drug delivery systems for enhanced neurological therapeutics. Drug Deliv Transl Res 2024:10.1007/s13346-024-01710-x. [PMID: 39325272 DOI: 10.1007/s13346-024-01710-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Exosomes are small extracellular vesicles naturally secreted by cells into body fluids, enriched with bioactive molecules such as RNAs, proteins, and lipids. These nanosized vesicles play a crucial role in physiological and pathological processes by facilitating intercellular communication and modulating cellular responses, particularly within the central nervous system (CNS). Their ability to cross the blood-brain barrier and reflect the characteristics of their parent cells makes exosomal cargo a promising candidate for biomarkers in the early diagnosis and clinical assessment of neurological conditions. This review offers a comprehensive overview of current knowledge on the characterization of mammalian-derived exosomes, their application as drug delivery systems for neurological disorders, and ongoing clinical trials involving exosome-loaded cargo. Despite their promising attributes, a significant challenge remains the lack of standardized isolation methods, as current techniques are often complex, costly, and require sophisticated equipment, affecting the scalability and affordability of exosome-based therapies. The review highlights the engineering potential of exosomes, emphasizing their ability to be customized for targeted therapeutic delivery through surface modification or conjugation. Future advancements in addressing these challenges and leveraging the unique properties of exosomes could lead to innovative and effective therapeutic strategies in neurology.
Collapse
Affiliation(s)
- Safa A Vahab
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | - Vyshma K V
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | - Vrinda S Kumar
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India.
| |
Collapse
|
6
|
Wang Y, Chang C, Wang R, Li X, Bao X. The advantages of multi-level omics research on stem cell-based therapies for ischemic stroke. Neural Regen Res 2024; 19:1998-2003. [PMID: 38227528 DOI: 10.4103/1673-5374.390959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/11/2023] [Indexed: 01/17/2024] Open
Abstract
Stem cell transplantation is a potential therapeutic strategy for ischemic stroke. However, despite many years of preclinical research, the application of stem cells is still limited to the clinical trial stage. Although stem cell therapy can be highly beneficial in promoting functional recovery, the precise mechanisms of action that are responsible for this effect have yet to be fully elucidated. Omics analysis provides us with a new perspective to investigate the physiological mechanisms and multiple functions of stem cells in ischemic stroke. Transcriptomic, proteomic, and metabolomic analyses have become important tools for discovering biomarkers and analyzing molecular changes under pathological conditions. Omics analysis could help us to identify new pathways mediated by stem cells for the treatment of ischemic stroke via stem cell therapy, thereby facilitating the translation of stem cell therapies into clinical use. In this review, we summarize the pathophysiology of ischemic stroke and discuss recent progress in the development of stem cell therapies for the treatment of ischemic stroke by applying multi-level omics. We also discuss changes in RNAs, proteins, and metabolites in the cerebral tissues and body fluids under stroke conditions and following stem cell treatment, and summarize the regulatory factors that play a key role in stem cell therapy. The exploration of stem cell therapy at the molecular level will facilitate the clinical application of stem cells and provide new treatment possibilities for the complete recovery of neurological function in patients with ischemic stroke.
Collapse
Affiliation(s)
- Yiqing Wang
- 4+4 Doctor Medical Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chuheng Chang
- 4+4 Doctor Medical Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Zhou B, Chen Q, Zhang Q, Tian W, Chen T, Liu Z. Therapeutic potential of adipose-derived stem cell extracellular vesicles: from inflammation regulation to tissue repair. Stem Cell Res Ther 2024; 15:249. [PMID: 39113098 PMCID: PMC11304935 DOI: 10.1186/s13287-024-03863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
Inflammation is a key pathological feature of many diseases, disrupting normal tissue structure and resulting in irreversible damage. Despite the need for effective inflammation control, current treatments, including stem cell therapies, remain insufficient. Recently, extracellular vesicles secreted by adipose-derived stem cells (ADSC-EVs) have garnered attention for their significant anti-inflammatory properties. As carriers of bioactive substances, these vesicles have demonstrated potent capabilities in modulating inflammation and promoting tissue repair in conditions such as rheumatoid arthritis, osteoarthritis, diabetes, cardiovascular diseases, stroke, and wound healing. Consequently, ADSC-EVs are emerging as promising alternatives to conventional ADSC-based therapies, offering advantages such as reduced risk of immune rejection, enhanced stability, and ease of storage and handling. However, the specific mechanisms by which ADSC-EVs regulate inflammation under pathological conditions are not fully understood. This review discusses the role of ADSC-EVs in inflammation control, their impact on disease prognosis, and their potential to promote tissue repair. Additionally, it provides insights into future clinical research focused on ADSC-EV therapies for inflammatory diseases, which overcome some limitations associated with cell-based therapies.
Collapse
Affiliation(s)
- Bohuai Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qiuyu Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qiuwen Zhang
- The Affiliated Stomatological Hospital Southwest Medical University, Luzhou, 646000, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tian Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Zhi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Foti R, Storti G, Palmesano M, Scioli MG, Fiorelli E, Terriaca S, Cervelli G, Kim BS, Orlandi A, Cervelli V. Senescence in Adipose-Derived Stem Cells: Biological Mechanisms and Therapeutic Challenges. Int J Mol Sci 2024; 25:8390. [PMID: 39125960 PMCID: PMC11312747 DOI: 10.3390/ijms25158390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) represent a subset of the mesenchymal stem cells in every adipose compartment throughout the body. ADSCs can differentiate into various cell types, including chondrocytes, osteocytes, myocytes, and adipocytes. Moreover, they exhibit a notable potential to differentiate in vitro into cells from other germinal lineages, including endothelial cells and neurons. ADSCs have a wide range of clinical applications, from breast surgery to chronic wounds. Furthermore, they are a promising cell population for future tissue-engineering uses. Accumulating evidence indicates a decreased proliferation and differentiation potential of ADSCs with an increasing age, increasing body mass index, diabetes mellitus, metabolic syndrome, or exposure to radiotherapy. Therefore, the recent literature thoroughly investigates this cell population's senescence mechanisms and how they can hinder its possible therapeutic applications. This review will discuss the biological mechanisms and the physio-pathological causes behind ADSC senescence and how they can impact cellular functionality. Moreover, we will examine the possible strategies to invert these processes, re-establishing the full regenerative potential of this progenitor population.
Collapse
Affiliation(s)
- Riccardo Foti
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| | - Gabriele Storti
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| | - Marco Palmesano
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| | - Maria Giovanna Scioli
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Elena Fiorelli
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Sonia Terriaca
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Giulio Cervelli
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Bong Sung Kim
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8006 Zurich, Switzerland;
| | - Augusto Orlandi
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Valerio Cervelli
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| |
Collapse
|
9
|
Xie Y, Deng T, Xie L, Xie Y, Ma J, Zhong D, Huang X, Li Y. Effects of extracellular vesicles for ischemic stroke: A meta‑analysis of preclinical studies. Exp Ther Med 2024; 28:287. [PMID: 38827473 PMCID: PMC11140296 DOI: 10.3892/etm.2024.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/16/2024] [Indexed: 06/04/2024] Open
Abstract
Ischemic stroke is a common occurrence worldwide, posing a severe threat to human health and leading to negative financial impacts. Currently available treatments still have numerous limitations. As research progresses, extracellular vesicles are being found to have therapeutic potential in ischemic stroke. In the present study, the literature on extracellular vesicle therapy in animal studies of ischemic stroke was screened by searching databases, including PubMed, Embase, Medline, Web of Science and the Cochrane Library. The main outcomes of the present study were the neurological function score, apoptotic rate and infarct volumes. The secondary outcomes were pro-inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6. The study quality was assessed using the CAMARADES Checklist. Subgroup analyses were performed to evaluate factors influencing extracellular vesicle therapy. Review Man3ager5.3 was used for data analysis. A total of 20 relevant articles were included in the present meta-analysis. The comprehensive analysis revealed that extracellular vesicles exerted a significant beneficial effect on neurobehavioral function, reducing the infarct volume and decreasing the apoptotic rate. Moreover, extracellular vesicles were found to promote nerve recovery by inhibiting pro-inflammatory factors (TNF-α, IL-1β and IL-6). On the whole, the present meta-analysis examined the combined effects of extracellular vesicles on nerve function, infarct volume, apoptosis and inflammation, which provides a foundation for the clinical study of extracellular vesicles.
Collapse
Affiliation(s)
- Yuan Xie
- Department of Neurology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan 410000, P.R. China
| | - Tianhao Deng
- Department of Oncology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan 410000, P.R. China
| | - Le Xie
- Department of Neurology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan 410000, P.R. China
| | - Yao Xie
- Department of Neurology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan 410000, P.R. China
| | - Jiaqi Ma
- Department of Neurology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan 410000, P.R. China
| | - Don Zhong
- Department of Neurology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan 410000, P.R. China
| | - Xiongying Huang
- Department of Neurology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan 410000, P.R. China
| | - Yingchen Li
- Department of Neurology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan 410000, P.R. China
| |
Collapse
|
10
|
Wang K, Yang Z, Zhang B, Gong S, Wu Y. Adipose-Derived Stem Cell Exosomes Facilitate Diabetic Wound Healing: Mechanisms and Potential Applications. Int J Nanomedicine 2024; 19:6015-6033. [PMID: 38911504 PMCID: PMC11192296 DOI: 10.2147/ijn.s466034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/08/2024] [Indexed: 06/25/2024] Open
Abstract
Wound healing in diabetic patients is frequently hampered. Adipose-derived stem cell exosomes (ADSC-eoxs), serving as a crucial mode of intercellular communication, exhibit promising therapeutic roles in facilitating wound healing. This review aims to comprehensively outline the molecular mechanisms through which ADSC-eoxs enhance diabetic wound healing. We emphasize the biologically active molecules released by these exosomes and their involvement in signaling pathways associated with inflammation modulation, cellular proliferation, vascular neogenesis, and other pertinent processes. Additionally, the clinical application prospects of the reported ADSC-eoxs are also deliberated. A thorough understanding of these molecular mechanisms and potential applications is anticipated to furnish a theoretical groundwork for combating diabetic wound healing.
Collapse
Affiliation(s)
- Kang Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zihui Yang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Boyu Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Song Gong
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
11
|
Larson A, Natera-Rodriguez DE, Crane A, Larocca D, Low WC, Grande AW, Lee J. Emerging Roles of Exosomes in Stroke Therapy. Int J Mol Sci 2024; 25:6507. [PMID: 38928214 PMCID: PMC11203879 DOI: 10.3390/ijms25126507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke is the number one cause of morbidity in the United States and number two cause of death worldwide. There is a critical unmet medical need for more effective treatments of ischemic stroke, and this need is increasing with the shift in demographics to an older population. Recently, several studies have reported the therapeutic potential of stem cell-derived exosomes as new candidates for cell-free treatment in stoke. This review focuses on the use of stem cell-derived exosomes as a potential treatment tool for stroke patients. Therapy using exosomes can have a clear clinical advantage over stem cell transplantation in terms of safety, cost, and convenience, as well as reducing bench-to-bed latency due to fewer regulatory milestones. In this review article, we focus on (1) the therapeutic potential of exosomes in stroke treatment, (2) the optimization process of upstream and downstream production, and (3) preclinical application in a stroke animal model. Finally, we discuss the limitations and challenges faced by exosome therapy in future clinical applications.
Collapse
Affiliation(s)
- Anthony Larson
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; (A.L.); (D.E.N.-R.); (A.C.); (W.C.L.); (A.W.G.)
| | - Dilmareth E. Natera-Rodriguez
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; (A.L.); (D.E.N.-R.); (A.C.); (W.C.L.); (A.W.G.)
| | - Andrew Crane
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; (A.L.); (D.E.N.-R.); (A.C.); (W.C.L.); (A.W.G.)
| | - Dana Larocca
- DC Biotechnology Consulting, Alameda, CA 94501, USA;
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; (A.L.); (D.E.N.-R.); (A.C.); (W.C.L.); (A.W.G.)
| | - Andrew W. Grande
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; (A.L.); (D.E.N.-R.); (A.C.); (W.C.L.); (A.W.G.)
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jieun Lee
- UniverXome Bioengineering, Inc. (Formerly Known as AgeX Therapeutics Inc.), Alameda, CA 94501, USA
| |
Collapse
|
12
|
Wang Y, Liu Z, Li L, Zhang Z, Zhang K, Chu M, Liu Y, Mao X, Wu D, Xu D, Zhao J. Anti-ferroptosis exosomes engineered for targeting M2 microglia to improve neurological function in ischemic stroke. J Nanobiotechnology 2024; 22:291. [PMID: 38802919 PMCID: PMC11129432 DOI: 10.1186/s12951-024-02560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Stroke is a devastating disease affecting populations worldwide and is the primary cause of long-term disability. The inflammatory storm plays a crucial role in the progression of stroke. In the acute phase of ischemic stroke, there is a transient increase in anti-inflammatory M2 microglia followed by a rapid decline. Due to the abundant phospholipid in brain tissue, lipid peroxidation is a notable characteristic of ischemia/reperfusion (I/R), constituting a structural foundation for ferroptosis in M2 microglia. Slowing down the decrease in M2 microglia numbers and controlling the inflammatory microenvironment holds significant potential for enhancing stroke recovery. RESULTS We found that the ferroptosis inhibitor can modulate inflammatory response in MCAO mice, characterizing that the level of M2 microglia-related cytokines was increased. We then confirmed that different subtypes of microglia exhibit distinct sensitivities to I/R-induced ferroptosis. Adipose-derived stem cells derived exosome (ADSC-Exo) effectively decreased the susceptibility of M2 microglia to ferroptosis via Fxr2/Atf3/Slc7a11, suppressing the inflammatory microenvironment and promoting neuronal survival. Furthermore, through plasmid engineering, a more efficient M2 microglia-targeted exosome, termed M2pep-ADSC-Exo, was developed. In vivo and in vitro experiments demonstrated that M2pep-ADSC-Exo exhibits significant targeting specificity for M2 microglia, further inhibiting M2 microglia ferroptosis and improving neurological function in ischemic stroke mice. CONCLUSION Collectively, we illustrated a novel potential therapeutic mechanism that Fxr2 in ADSC-Exo could alleviate the M2 microglia ferroptosis via regulating Atf3/Slc7all expression, hence inhibiting the inflammatory microenvironment, improving neurofunction recovery in cerebral I/R injury. We obtained a novel exosome, M2pep-ADSC-Exo, through engineered modification, which exhibits improved targeting capabilities toward M2 microglia. This provides a new avenue for the treatment of stroke.
Collapse
Affiliation(s)
- Yong Wang
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201100, China
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Zhuohang Liu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Luyu Li
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Zengyu Zhang
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Kai Zhang
- Department of Cardiovascular Medicine, Pujiang Traditional Chinese Medicine Hospital, Zhejiang, 322200, China
| | - Min Chu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Yang Liu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Xueyu Mao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Di Wu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Dongsheng Xu
- College of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 200120, China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201100, China.
- Institute of Healthy Yangtze River Delta, Shanghai Jiao Tong University, Shanghai, 200001, China.
| |
Collapse
|
13
|
Mahajan A, Gunewardena S, Morris A, Clauss M, Dhillon NK. Analysis of MicroRNA Cargo in Circulating Extracellular Vesicles from HIV-Infected Individuals with Pulmonary Hypertension. Cells 2024; 13:886. [PMID: 38891019 PMCID: PMC11172129 DOI: 10.3390/cells13110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 06/20/2024] Open
Abstract
The risk of developing pulmonary hypertension (PH) in people living with HIV is at least 300-fold higher than in the general population, and illicit drug use further potentiates the development of HIV-associated PH. The relevance of extracellular vesicles (EVs) containing both coding as well as non-coding RNAs in PH secondary to HIV infection and drug abuse is yet to be explored. We here compared the miRNA cargo of plasma-derived EVs from HIV-infected stimulant users with (HIV + Stimulants + PH) and without PH (HIV + Stimulants) using small RNA sequencing. The data were compared with 12 PH datasets available in the GEO database to identify potential candidate gene targets for differentially altered miRNAs using the following functional analysis tools: ingenuity pathway analysis (IPA), over-representation analysis (ORA), and gene set enrichment analysis (GSEA). MiRNAs involved in promoting cell proliferation and inhibition of intrinsic apoptotic signaling pathways were among the top upregulated miRNAs identified in EVs from the HIV + Stimulants + PH group compared to the HIV + Stimulants group. Alternatively, the downregulated miRNAs in the HIV + Stimulants + PH group suggested an association with the negative regulation of smooth muscle cell proliferation, IL-2 mediated signaling, and transmembrane receptor protein tyrosine kinase signaling pathways. The validation of significantly differentially expressed miRNAs in an independent set of HIV-infected (cocaine users and nondrug users) with and without PH confirmed the upregulation of miR-32-5p, 92-b-3p, and 301a-3p positively regulating cellular proliferation and downregulation of miR-5571, -4670 negatively regulating smooth muscle proliferation in EVs from HIV-PH patients. This increase in miR-301a-3p and decrease in miR-4670 were negatively correlated with the CD4 count and FEV1/FVC ratio, and positively correlated with viral load. Collectively, this data suggest the association of alterations in the miRNA cargo of circulating EVs with HIV-PH.
Collapse
Affiliation(s)
- Aatish Mahajan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Sumedha Gunewardena
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Alison Morris
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Matthias Clauss
- Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Navneet K. Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| |
Collapse
|
14
|
Liu C, Yin T, Zhang M, Li Z, Xu B, Lv H, Wang P, Wang J, Hao J, Zhang L. Function of miR-21-5p derived from ADSCs-exos on the neuroinflammation after cerebral ischemia. J Stroke Cerebrovasc Dis 2024; 33:107779. [PMID: 38768666 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/13/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024] Open
Abstract
INTRODUCTION Cerebral ischemia (CI) induces a profound neuroinflammatory response, but the underlying molecular mechanism remains unclear. Exosomes from adipose-derived stem cells (ADSC-exos) have been found to play a crucial role in cell communication by transferring molecules including microRNAs (miRNAs), which have been shown to modulate the inflammatory response after CI and are viable molecular targets for altering brain function. The current study aimed to explore the contribution of ADSC-exosomal miR-21-5p to the neuroinflammation after CI. METHODS The differentially expressed miR-21-5p in CI was screened based on literature search. The target mRNAs of miR-21-5p were predicted using online databases and verified by luciferase reporter assay. Then, BV2 cells were treated with hemin to simulate the inflammatory response after CI, and its animal model was induced using the MCAO method. Ischemia was evaluated in rats using 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining. ADSCs-exos were further isolated and identified by western blot analysis and transmission electron microscope. RESULTS MiR-21-5p was significantly down-regulated in CI and alleviated neuropathic damage after CI by the PIK3R1/PI3K/AKT signaling axis. And miR-21-5p derived from ADSCs-exos alleviated neuroinflammation after CI via promoting microglial M2 polarization. CONCLUSION We demonstrated that ADSC-exosomal miR-21-5p mitigated post-CI inflammatory response through the PIK3R1/PI3K/AKT signaling axis and could offer neuroprotection after CI through promoting polarization of M2 microglia.
Collapse
Affiliation(s)
- Chao Liu
- Department of Neurosurgery, Liaocheng Brain Hospital, No. 45 Huashan Road, Dongchangfu District, Liaocheng, Shandong 252000, China
| | - Tengkun Yin
- Department of Neurosurgery, Liaocheng Brain Hospital, No. 45 Huashan Road, Dongchangfu District, Liaocheng, Shandong 252000, China
| | - Meng Zhang
- Department of Neurosurgery, Liaocheng Brain Hospital, No. 45 Huashan Road, Dongchangfu District, Liaocheng, Shandong 252000, China
| | - Zhongchen Li
- Department of Neurosurgery, Liaocheng Brain Hospital, No. 45 Huashan Road, Dongchangfu District, Liaocheng, Shandong 252000, China
| | - Bin Xu
- Department of Neurosurgery, Liaocheng Brain Hospital, No. 45 Huashan Road, Dongchangfu District, Liaocheng, Shandong 252000, China
| | - Hang Lv
- Department of Neurosurgery, Liaocheng Brain Hospital, No. 45 Huashan Road, Dongchangfu District, Liaocheng, Shandong 252000, China
| | - Peijian Wang
- Department of Neurosurgery, Liaocheng Brain Hospital, No. 45 Huashan Road, Dongchangfu District, Liaocheng, Shandong 252000, China
| | - Jiyue Wang
- Department of Neurosurgery, Liaocheng Brain Hospital, No. 45 Huashan Road, Dongchangfu District, Liaocheng, Shandong 252000, China
| | - Jiheng Hao
- Department of Neurosurgery, Liaocheng Brain Hospital, No. 45 Huashan Road, Dongchangfu District, Liaocheng, Shandong 252000, China
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng Brain Hospital, No. 45 Huashan Road, Dongchangfu District, Liaocheng, Shandong 252000, China.
| |
Collapse
|
15
|
Phelps J, Hart DA, Mitha AP, Duncan NA, Sen A. Extracellular Vesicles Generated by Mesenchymal Stem Cells in Stirred Suspension Bioreactors Promote Angiogenesis in Human-Brain-Derived Endothelial Cells. Int J Mol Sci 2024; 25:5219. [PMID: 38791256 PMCID: PMC11121007 DOI: 10.3390/ijms25105219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Interrupted blood flow in the brain due to ischemic injuries such as ischemic stroke or traumatic brain injury results in irreversible brain damage, leading to cognitive impairment associated with inflammation, disruption of the blood-brain barrier (BBB), and cell death. Since the BBB only allows entry to a small class of drugs, many drugs used to treat ischemia in other tissues have failed in brain-related disorders. The administration of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) has shown promise in improving the functional recovery of the brain following cerebral ischemia by inducing blood vessel formation. To facilitate such a treatment approach, it is necessary to develop bioprocesses that can produce therapeutically relevant MSC-EVs in a reproducible and scalable manner. This study evaluated the feasibility of using stirred suspension bioreactors (SSBs) to scale-up the serum-free production of pro-angiogenic MSC-EVs under clinically relevant physioxic conditions. It was found that MSCs grown in SSBs generated EVs that stimulated angiogenesis in cerebral microvascular endothelial cells, supporting the use of SSBs to produce MSC-EVs for application in cerebral ischemia. These properties were impaired at higher cell confluency, outlining the importance of considering the time of harvest when developing bioprocesses to manufacture EV populations.
Collapse
Affiliation(s)
- Jolene Phelps
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada;
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada; (D.A.H.); (A.P.M.)
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W., Calgary, AB T2N 4Z6, Canada;
| | - David A. Hart
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada; (D.A.H.); (A.P.M.)
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W., Calgary, AB T2N 4Z6, Canada;
- Department of Surgery, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada
- Faculty of Kinesiology, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada
| | - Alim P. Mitha
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada; (D.A.H.); (A.P.M.)
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 1403 29 Street N.W., Calgary, AB T2N 2T9, Canada
| | - Neil A. Duncan
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W., Calgary, AB T2N 4Z6, Canada;
- Department of Surgery, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada
| | - Arindom Sen
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada;
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada; (D.A.H.); (A.P.M.)
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W., Calgary, AB T2N 4Z6, Canada;
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada
| |
Collapse
|
16
|
Fallahi S, Zangbar HS, Farajdokht F, Rahbarghazi R, Mohaddes G, Ghiasi F. Exosomes as a therapeutic tool to promote neurorestoration and cognitive function in neurological conditions: Achieve two ends with a single effort. CNS Neurosci Ther 2024; 30:e14752. [PMID: 38775149 PMCID: PMC11110007 DOI: 10.1111/cns.14752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/16/2024] [Accepted: 04/13/2024] [Indexed: 05/25/2024] Open
Abstract
Exosomes possess a significant role in intercellular communications. In the nervous system, various neural cells release exosomes that not only own a role in intercellular communications but also eliminate the waste of cells, maintain the myelin sheath, facilitate neurogenesis, and specifically assist in normal cognitive function. In neurological conditions including Parkinson's disease (PD), Alzheimer's disease (AD), traumatic brain injury (TBI), and stroke, exosomal cargo like miRNAs take part in the sequela of conditions and serve as a diagnostic tool of neurological disorders, too. Exosomes are not only a diagnostic tool but also their inhibition or administration from various sources like mesenchymal stem cells and serum, which have shown a worthy potential to treat multiple neurological disorders. In addition to neurodegenerative manifestations, cognitive deficiencies are an integral part of neurological diseases, and applying exosomes in improving both aspects of these diseases has been promising. This review discusses the status of exosome therapy in improving neurorestorative and cognitive function following neurological disease.
Collapse
Affiliation(s)
- Solmaz Fallahi
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyTabriz University of Medical SciencesTabrizIran
| | - Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Fereshteh Farajdokht
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyTabriz University of Medical SciencesTabrizIran
- Neurosciences Research CenterTabriz University of Medical SciencesTabrizIran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Gisou Mohaddes
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyTabriz University of Medical SciencesTabrizIran
- Department of Neuroscience and Cognition, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Neurosciences Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Biomedical EducationCalifornia Health Sciences University, College of Osteopathic MedicineClovisCaliforniaUSA
| | - Fariba Ghiasi
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
17
|
Miotto PM, Yang CH, Keenan SN, De Nardo W, Beddows CA, Fidelito G, Dodd GT, Parker BL, Hill AF, Burton PR, Loh K, Watt MJ. Liver-derived extracellular vesicles improve whole-body glycaemic control via inter-organ communication. Nat Metab 2024; 6:254-272. [PMID: 38263317 DOI: 10.1038/s42255-023-00971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Small extracellular vesicles (EVs) are signalling messengers that regulate inter-tissue communication through delivery of their molecular cargo. Here, we show that liver-derived EVs are acute regulators of whole-body glycaemic control in mice. Liver EV secretion into the circulation is increased in response to hyperglycaemia, resulting in increased glucose effectiveness and insulin secretion through direct inter-organ EV signalling to skeletal muscle and the pancreas, respectively. This acute blood glucose lowering effect occurs in healthy and obese mice with non-alcoholic fatty liver disease, despite marked remodelling of the liver-derived EV proteome in obese mice. The EV-mediated blood glucose lowering effects were recapitulated by administration of liver EVs derived from humans with or without progressive non-alcoholic fatty liver disease, suggesting broad functional conservation of liver EV signalling and potential therapeutic utility. Taken together, this work reveals a mechanism whereby liver EVs act on peripheral tissues via endocrine signalling to restore euglycaemia in the postprandial state.
Collapse
Affiliation(s)
- Paula M Miotto
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Chieh-Hsin Yang
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Stacey N Keenan
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - William De Nardo
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Cait A Beddows
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Gio Fidelito
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Garron T Dodd
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin L Parker
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew F Hill
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- Institute for Health and Sport, Victoria University, Footscray, Victoria, Australia
| | - Paul R Burton
- Centre for Obesity Research and Education, Department of Surgery, Monash University, Melbourne, Victoria, Australia
| | - Kim Loh
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
18
|
Ya J, Pellumbaj J, Hashmat A, Bayraktutan U. The Role of Stem Cells as Therapeutics for Ischaemic Stroke. Cells 2024; 13:112. [PMID: 38247804 PMCID: PMC10814781 DOI: 10.3390/cells13020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Stroke remains one of the leading causes of death and disability worldwide. Current reperfusion treatments for ischaemic stroke are limited due to their narrow therapeutic window in rescuing ischaemic penumbra. Stem cell therapy offers a promising alternative. As a regenerative medicine, stem cells offer a wider range of treatment strategies, including long-term intervention for chronic patients, through the reparation and replacement of injured cells via mechanisms of differentiation and proliferation. The purpose of this review is to evaluate the therapeutic role of stem cells for ischaemic stroke. This paper discusses the pathology during acute, subacute, and chronic phases of cerebral ischaemic injury, highlights the mechanisms involved in mesenchymal, endothelial, haematopoietic, and neural stem cell-mediated cerebrovascular regeneration, and evaluates the pre-clinical and clinical data concerning the safety and efficacy of stem cell-based treatments. The treatment of stroke patients with different types of stem cells appears to be safe and efficacious even at relatively higher concentrations irrespective of the route and timing of administration. The priming or pre-conditioning of cells prior to administration appears to help augment their therapeutic impact. However, larger patient cohorts and later-phase trials are required to consolidate these findings.
Collapse
Affiliation(s)
| | | | | | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neurosciences, Queens Medical Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
19
|
Liang HB, Chen X, Zhao R, Li SJ, Huang PS, Tang YH, Cui GH, Liu JR. Simultaneous ischemic regions targeting and BBB crossing strategy to harness extracellular vesicles for therapeutic delivery in ischemic stroke. J Control Release 2024; 365:1037-1057. [PMID: 38109946 DOI: 10.1016/j.jconrel.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
Extracellular vesicles (EVs) derived from adipose-derived stem cells (ADSC-EVs) hold great promise for ischemic stroke treatment, but their therapeutic efficacy is greatly limited due to insufficient targeting ability. Previous reports focused on single ischemic targeting or blood-brain barrier (BBB) penetration, precise delivery to the brain parenchyma has not been fully considered. This study leveraged the targeting ability of RGD peptide and the cell penetrating ability of Angiopep-2 peptide to deliver ADSC-EVs precisely to the impaired brain parenchyma. We found that dual-modified EVs (RA-EVs) significantly enhanced the transcellular permeability across BBB in vitro, and not only targeted ischemic blood vessels but also achieved rapid accumulation in the ischemic lesion area after intravenous administration in vivo. RA-EVs further decreased the infarct volume, apoptosis, BBB disruption, and neurobehavioral deficits. RNA sequencing revealed the molecular regulation mechanism after administration. These findings demonstrate that dual-modification optimizes brain parenchymal targeting and highlights the significance of recruitment and penetration as a previously unidentified strategy for harnessing EVs for therapeutic delivery in ischemic stroke.
Collapse
Affiliation(s)
- Huai-Bin Liang
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Chen
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Zhao
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shen-Jie Li
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pei-Sheng Huang
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao-Hui Tang
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Hong Cui
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian-Ren Liu
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Clinical Research Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
20
|
Haupt M, Gerner ST, Huttner HB, Doeppner TR. Preconditioning Concepts for the Therapeutic Use of Extracellular Vesicles Against Stroke. Stem Cells Transl Med 2023; 12:707-713. [PMID: 37696005 PMCID: PMC10630075 DOI: 10.1093/stcltm/szad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/02/2023] [Indexed: 09/13/2023] Open
Abstract
Various preclinical stroke models have demonstrated the neuroprotective effects of extracellular vesicles (EVs) obtained from several types of cells, including neurons, astrocytes, microglia, neuronal progenitor cells, bone marrow stem cells, and mesenchymal stem cells. EVs interfere with key mechanisms in stroke pathophysiology such as cell death, neuroinflammation, autophagy, and angiogenesis. The mode of action and efficacy depend on the specific EV content, including miRNAs, proteins, and lipids, which can be modified through (I) bioengineering methods, (II) choice of source cells, and (III) modification of the source cell environment. Indeed, modifying the environment by preconditioning the EV-secreting cells with oxygen-glucose deprivation or medium modification revealed superior neuroprotective effects in stroke models. Although the concept of preconditioned EVs is relatively novel, it holds promise for the future treatment of ischemic stroke. Here, we give a brief overview about the main mechanisms of EV-induced neuroprotection and discuss the current status of preconditioning concepts for EV-treatment of ischemic stroke.
Collapse
Affiliation(s)
- Matteo Haupt
- Deparment of Neurology, University of Göttingen Medical School, Göttingen, Lower Saxony, Germany
| | - Stefan T Gerner
- Deparment of Neurology, University Hospital Giessen, Giessen, Hesse, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Hesse, Germany
| | - Hagen B Huttner
- Deparment of Neurology, University Hospital Giessen, Giessen, Hesse, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Hesse, Germany
| | - Thorsten R Doeppner
- Deparment of Neurology, University of Göttingen Medical School, Göttingen, Lower Saxony, Germany
- Deparment of Neurology, University Hospital Giessen, Giessen, Hesse, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Hesse, Germany
- Department of Anatomy and Cell Biology, Medical University of Varna, Varna, Bulgaria
- Medipol University Istanbul, Research Institute for Health Sciences and Technologies (SABITA), Istanbul, Turkey
| |
Collapse
|
21
|
Mukherjee S, Skrede S, Haugstøyl M, López M, Fernø J. Peripheral and central macrophages in obesity. Front Endocrinol (Lausanne) 2023; 14:1232171. [PMID: 37720534 PMCID: PMC10501731 DOI: 10.3389/fendo.2023.1232171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/28/2023] [Indexed: 09/19/2023] Open
Abstract
Obesity is associated with chronic, low-grade inflammation. Excessive nutrient intake causes adipose tissue expansion, which may in turn cause cellular stress that triggers infiltration of pro-inflammatory immune cells from the circulation as well as activation of cells that are residing in the adipose tissue. In particular, the adipose tissue macrophages (ATMs) are important in the pathogenesis of obesity. A pro-inflammatory activation is also found in other organs which are important for energy metabolism, such as the liver, muscle and the pancreas, which may stimulate the development of obesity-related co-morbidities, including insulin resistance, type 2 diabetes (T2D), cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). Interestingly, it is now clear that obesity-induced pro-inflammatory signaling also occurs in the central nervous system (CNS), and that pro-inflammatory activation of immune cells in the brain may be involved in appetite dysregulation and metabolic disturbances in obesity. More recently, it has become evident that microglia, the resident macrophages of the CNS that drive neuroinflammation, may also be activated in obesity and can be relevant for regulation of hypothalamic feeding circuits. In this review, we focus on the action of peripheral and central macrophages and their potential roles in metabolic disease, and how macrophages interact with other immune cells to promote inflammation during obesity.
Collapse
Affiliation(s)
- Sayani Mukherjee
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Silje Skrede
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Martha Haugstøyl
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
22
|
Yu Z, Zheng L, Geng Y, Zhang Y, Wang Y, You G, Cai M, Li M, Cheng X, Zan J. FTO alleviates cerebral ischemia/reperfusion-induced neuroinflammation by decreasing cGAS mRNA stability in an m6A-dependent manner. Cell Signal 2023:110751. [PMID: 37321527 DOI: 10.1016/j.cellsig.2023.110751] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Microglia-mediated inflammation is a major contributor to the brain damage in cerebral ischemia and reperfusion (I/R) injury, and N6-Methyladenosine (m6A) has been implicated in cerebral I/R injury. Here, we explored whether m6A modification is associated with microglia-mediated inflammation in cerebral I/R injury and its underlying regulatory mechanism using an in vivo mice model of intraluminal middle cerebral artery occlusion/reperfusion (MCAO/R) and in vitro models of primary isolated microglia and BV2 microglial cells subjected to oxygen-glucose deprivation and reoxygenation (OGD/R) were used. We found microglial m6A modification increased and microglial fat mass and obesity-associated protein (FTO) expression decreased in cerebral I/R injury in vivo and in vitro. Inhibition of m6A modification by intraperitoneal injection of Cycloleucine (Cyc) in vivo or transfection of FTO plasmid in vitro significantly alleviated brain injury and microglia-mediated inflammatory response. Through Methylated RNA immunoprecipitation sequencing (MeRIP-Seq), RNA sequencing (RNA-Seq) and western blotting, we found that m6A modification promoted cerebral I/R-induced microglial inflammation via increasing cGAS mRNA stability to aggravate Sting/NF-κB signaling. In conclusion, this study deepens our understanding on the relationship of m6A modification and microglia-mediated inflammation in cerebral I/R injury, and insights a novel m6A-based therapeutic for inhibiting inflammatory response against ischemic stroke.
Collapse
Affiliation(s)
- Zhiyong Yu
- School of Biomedical and Pharmaceutical sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Linbo Zheng
- Department of Traditional Chinese Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510310, China; School of Biomedical and Pharmaceutical sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan Geng
- School of Biomedical and Pharmaceutical sciences, Guangdong University of Technology, Guangzhou 510006, China; School of Biomedical and Pharmaceutical sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuting Zhang
- School of Biomedical and Pharmaceutical sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yupeng Wang
- School of Biomedical and Pharmaceutical sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Guoxing You
- School of Biomedical and Pharmaceutical sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Mingsheng Cai
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Meili Li
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510260, Guangdong, China.
| | - Xiao Cheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China; Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China.
| | - Jie Zan
- School of Biomedical and Pharmaceutical sciences, Guangdong University of Technology, Guangzhou 510006, China; Department of Traditional Chinese Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510310, China.
| |
Collapse
|
23
|
Niu X, Xia Y, Luo L, Chen Y, Yuan J, Zhang J, Zheng X, Li Q, Deng Z, Wang Y. iPSC-sEVs alleviate microglia senescence to protect against ischemic stroke in aged mice. Mater Today Bio 2023; 19:100600. [PMID: 36936398 PMCID: PMC10020681 DOI: 10.1016/j.mtbio.2023.100600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
The polarization of microglia plays an important role in the outcome of ischemic stroke (IS). In the aged population, senescent microglia show a predominant pro-inflammatory phenotype, which leads to worse outcomes in aged ischemic stroke compared to young ischemic stroke. Recent research demonstrated that inducible pluripotent stem cell-derived small extracellular vesicles (iPSC-sEVs) possess the significant anti-ageing ability. We hypothesized that iPSC-sEVs could alleviate microglia senescence to regulate microglia polarization in aged ischemic stroke. In this study, we showed that treatment with iPSC-sEVs significantly alleviated microglia senescence as indicated by the decreased senescence-associated proteins including P16, P21, P53, and γ-H2AX as well as the activity of SA-β-gal, and inhibited pro-inflammatory activation of microglia both in vivo and in vitro. Furthermore, iPSC-sEVs shifted microglia from pro-inflammatory phenotype to anti-inflammatory phenotype, which reduced the apoptosis of neurons, and improved the outcome of aged stroke mice. Mechanism studies showed that iPSC-sEVs reversed the loss of Rictor and downstream p-AKT (s473) in senescent microglia, which was involved in the senescence and pro-inflammatory phenotype regulation of microglia. Inhibition of Rictor abolished the iPSC-sEVs-afforded phosphorylation of AKT and alleviation of inflammation of senescent microglia. Proteomics results indicated that iPSC-sEVs carried transforming growth factor-β1 (TGF-β1) to upregulate Rictor and p-AKT in senescent microglia, which could be hindered by blocking TGF-β1. Taken together, our work demonstrates iPSC-sEVs reverse the senescent characteristic of microglia in aged brains and therefore improve the outcome after stroke, at least, via delivering TGF-β1 to upregulate Rictor and p-AKT. Our data suggest that iPSC-sEVs might be a novelty therapeutic method for aged ischemic stroke and other diseases involving senescent microglia.
Collapse
Affiliation(s)
- Xinyu Niu
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yuguo Xia
- Department of Neurosurgery; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lei Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954, Huashan Road, Shanghai 200030, China
| | - Yu Chen
- The Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ji Yuan
- The Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Juntao Zhang
- The Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xianyou Zheng
- The Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Corresponding author. Institute of Microsurgery on Extremities, Department of Orthopedic Surgery Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine 600 Yishan Road, Shanghai 200233, China
| | - Qing Li
- The Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Corresponding author. Institute of Microsurgery on Extremities, Department of Orthopedic Surgery Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine 600 Yishan Road, Shanghai 200233, China
| | - Zhifeng Deng
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Corresponding author. Department of Neurosurgery Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine 600 Yishan Road, Shanghai 200233, China
| | - Yang Wang
- The Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
24
|
Wang Y, Niu H, Li L, Han J, Liu Z, Chu M, Sha X, Zhao J. Anti-CHAC1 exosomes for nose-to-brain delivery of miR-760-3p in cerebral ischemia/reperfusion injury mice inhibiting neuron ferroptosis. J Nanobiotechnology 2023; 21:109. [PMID: 36967397 PMCID: PMC10041751 DOI: 10.1186/s12951-023-01862-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/16/2023] [Indexed: 03/28/2023] Open
Abstract
Ferroptosis plays a critical role in ischemic stroke, and anti-ferroptosis strategies were regarded as potentially effective measures. Based on ferroptosis-related mechanisms, this study aims to design and prepare anti-ferroptosis exosomes from adipose-derived mesenchymal stem cells (ADSC-Exo) for treating ischemic brain injury via intranasal (IN) administration. According to the bioinformatic analysis, CHAC1 was a key gene in the progress of ferroptosis in ischemic stroke. miR-760-3p can inhibit the expression of CHAC1 and may be abundant in ADSC-Exo. Therefore, ADSC-Exo were successfully isolated and the immunofluorescence showed that they can be efficiently delivered to the brain via IN administration. Additionally, IN administration of ADSC-Exo can effectively improve the neurobehavior function of mice after I/R, and improve the ferroptosis-related outcomes. As the immunofluorescence showed the co-localization of NeuN with CHAC1 obviously, we further evaluated the systematic effect of ADSC-Exo in an oxygen-glucose deprivation (OGD) mouse neuroblastoma cell line N2a model. The results showed that miR-760-3p in ADSC-Exo contributed to their function in inhibiting ferroptosis by targeting CHAC1 in neurons. Collectively, the present study successfully designed and prepared anti-CHAC1 ADSC-Exo and suggested a promising exosome-based strategy for anti-ferroptosis therapy in cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Yong Wang
- grid.8547.e0000 0001 0125 2443Department of Neurology, Minhang Hospital, Fudan University, Floor 16th, # 170 Xinsong Road, Shanghai, 201199 China
| | - Huicong Niu
- grid.8547.e0000 0001 0125 2443Department of Neurology, Minhang Hospital, Fudan University, Floor 16th, # 170 Xinsong Road, Shanghai, 201199 China
| | - Luyu Li
- grid.16821.3c0000 0004 0368 8293Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Han
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhuohang Liu
- grid.8547.e0000 0001 0125 2443Department of Neurology, Minhang Hospital, Fudan University, Floor 16th, # 170 Xinsong Road, Shanghai, 201199 China
| | - Min Chu
- grid.8547.e0000 0001 0125 2443Department of Neurology, Minhang Hospital, Fudan University, Floor 16th, # 170 Xinsong Road, Shanghai, 201199 China
| | - Xianyi Sha
- grid.8547.e0000 0001 0125 2443Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203 China
- grid.8547.e0000 0001 0125 2443The Institutes of Integrative Medicine, Fudan University, 120 Urumqi Middle Road, Shanghai, 200040 China
| | - Jing Zhao
- grid.8547.e0000 0001 0125 2443Department of Neurology, Minhang Hospital, Fudan University, Floor 16th, # 170 Xinsong Road, Shanghai, 201199 China
| |
Collapse
|
25
|
Hedayat M, Ahmadi M, Shoaran M, Rezaie J. Therapeutic application of mesenchymal stem cells derived exosomes in neurodegenerative diseases: A focus on non-coding RNAs cargo, drug delivery potential, perspective. Life Sci 2023; 320:121566. [PMID: 36907326 DOI: 10.1016/j.lfs.2023.121566] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Despite the massive efforts advanced over recent years in emerging therapies for neurodegenerative diseases, effective treatment for these diseases is still an urgent need. The application of mesenchymal stem cells (MSCs) derived exosomes (MSCs-Exo) as a novel therapy for neurodegenerative diseases holds great promise. A growing body of data now suggests that an innovative cell-free therapy, MSCs-Exo, may establish a fascinating alternative therapy due to their unique advantages over MSCs. Notable, MSCs-Exo can infiltrate the blood-brain barrier and then well distribute non-coding RNAs into injured tissues. Research shows that non-coding RNAs of MSCs-Exo are vital effectors that participate in the treatment of neurodegenerative diseases through neurogeneration and neurite outgrowth, modulation of the immune system, reducing neuroinflammation, repairmen of damaged tissue, and promotion of neuroangiogenesis. In addition, MSCs-Exo can serve as a drug delivery system for delivering non-coding RNAs to neurons in neurodegenerative conditions. In this review, we summarize the recent progress in the therapeutic role of non-coding RNAs of MSCs-Exo for various neurodegenerative diseases. This study also discusses the potential drug delivery role of MSCs-Exo and challenges and opportunities in the clinical translation of MSCs-Exo-based therapies for neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Mohaddeseh Hedayat
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Shoaran
- Pediatric Health Research Center,Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
26
|
Monsour M, Gordon J, Lockard G, Alayli A, Elsayed B, Connolly J, Borlongan CV. Minor Changes for a Major Impact: A Review of Epigenetic Modifications in Cell-Based Therapies for Stroke. Int J Mol Sci 2022; 23:13106. [PMID: 36361891 PMCID: PMC9656972 DOI: 10.3390/ijms232113106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 08/16/2024] Open
Abstract
Epigenetic changes in stroke may revolutionize cell-based therapies aimed at reducing ischemic stroke risk and damage. Epigenetic changes are a novel therapeutic target due to their specificity and potential for reversal. Possible targets for epigenetic modification include DNA methylation and demethylation, post-translational histone modification, and the actions of non-coding RNAs such as microRNAs. Many of these epigenetic modifications have been reported to modulate atherosclerosis development and progression, ultimately contributing to stroke pathogenesis. Furthermore, epigenetics may play a major role in inflammatory responses following stroke. Stem cells for stroke have demonstrated safety in clinical trials for stroke and show therapeutic benefit in pre-clinical studies. The efficacy of these cell-based interventions may be amplified with adjunctive epigenetic modifications. This review advances the role of epigenetics in atherosclerosis and inflammation in the context of stroke, followed by a discussion on current stem cell studies modulating epigenetics to ameliorate stroke damage.
Collapse
Affiliation(s)
- Molly Monsour
- University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA
| | - Jonah Gordon
- University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA
| | - Gavin Lockard
- University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA
| | - Adam Alayli
- University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA
| | - Bassel Elsayed
- University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA
| | - Jacob Connolly
- University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
27
|
Long C, Wang J, Gan W, Qin X, Yang R, Chen X. Therapeutic potential of exosomes from adipose-derived stem cells in chronic wound healing. Front Surg 2022; 9:1030288. [PMID: 36248361 PMCID: PMC9561814 DOI: 10.3389/fsurg.2022.1030288] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic wound healing remains a challenging medical problem affecting society, which urgently requires anatomical and functional solutions. Adipose-derived stem cells (ADSCs), mesenchymal stem cells with self-renewal and multiple differentiation ability, play essential roles in wound healing and tissue regeneration. The exosomes from ADSCs (ADSC-EXOs) are extracellular vesicles that are essential for communication between cells. ADSC-EXOs release various bioactive molecules and subsequently restore tissue homeostasis and accelerate wound healing, by promoting various stages of wound repair, including regulating the inflammatory response, promoting wound angiogenesis, accelerating cell proliferation, and modulating wound remodeling. Compared with ADSCs, ADSC-EXOs have the advantages of avoiding ethical issues, being easily stored, and having high stability. In this review, a literature search of PubMed, Medline, and Google Scholar was performed for articles before August 1, 2022 focusing on exosomes from ADSCs, chronic wound repair, and therapeutic potential. This review aimed to provide new therapeutic strategies to help investigators explore how ADSC-EXOs regulate intercellular communication in chronic wounds.
Collapse
Affiliation(s)
- Chengmin Long
- Guangdong Medical University, Zhanjiang, China
- Department of Burn Surgery and Skin Regeneration, the First People’s Hospital of Foshan, Foshan, China
| | - Jingru Wang
- Department of Burn Surgery and Skin Regeneration, the First People’s Hospital of Foshan, Foshan, China
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Wenjun Gan
- Guangdong Medical University, Zhanjiang, China
- Department of Burn Surgery and Skin Regeneration, the First People’s Hospital of Foshan, Foshan, China
| | - Xinchi Qin
- Department of Burn Surgery and Skin Regeneration, the First People’s Hospital of Foshan, Foshan, China
- Zunyi Medical University, Zhuhai, China
| | - Ronghua Yang
- Guangdong Medical University, Zhanjiang, China
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
- Correspondence: Xiaodong Chen Ronghua Yang a_hwa991316 @163.com
| | - Xiaodong Chen
- Guangdong Medical University, Zhanjiang, China
- Department of Burn Surgery and Skin Regeneration, the First People’s Hospital of Foshan, Foshan, China
- Correspondence: Xiaodong Chen Ronghua Yang a_hwa991316 @163.com
| |
Collapse
|
28
|
Xiong Y, Song J, Huang X, Pan Z, Goldbrunner R, Stavrinou L, Lin S, Hu W, Zheng F, Stavrinou P. Exosomes Derived From Mesenchymal Stem Cells: Novel Effects in the Treatment of Ischemic Stroke. Front Neurosci 2022; 16:899887. [PMID: 35585925 PMCID: PMC9108502 DOI: 10.3389/fnins.2022.899887] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is defined as an infarction in the brain, caused by impaired cerebral blood supply, leading to local brain tissue ischemia, hypoxic necrosis, and corresponding neurological deficits. At present, revascularization strategies in patients with acute ischemic stroke include intravenous thrombolysis and mechanical endovascular treatment. However, due to the short treatment time window (<4.5 h) and method restrictions, clinical research is focused on new methods to treat ischemic stroke. Exosomes are nano-sized biovesicles produced in the endosomal compartment of most eukaryotic cells, containing DNA, complex RNA, and protein (30-150 nm). They are released into surrounding extracellular fluid upon fusion between multivesicular bodies and the plasma membrane. Exosomes have the characteristics of low immunogenicity, good innate stability, high transmission efficiency, and the ability to cross the blood-brain barrier, making them potential therapeutic modalities for the treatment of ischemic stroke. The seed sequence of miRNA secreted by exosomes is base-paired with complementary mRNA to improve the microenvironment of ischemic tissue, thereby regulating downstream signal transduction activities. With exosome research still in the theoretical and experimental stages, this review aims to shed light on the potential of exosomes derived from mesenchymal stem cells in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yu Xiong
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Jianping Song
- Department of Neurosurgery, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- Department of Neurosurgery, National Regional Medical Center, Fudan University Huashan Hospital Fujian Campus, The First Affiliated Hospital Binhai Campus, Fujian Medical University, Fuzhou, China
| | - Xinyue Huang
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Zhigang Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Roland Goldbrunner
- Department of Neurosurgery, Faculty of Medicine and University Hospital, Center for Neurosurgery, University of Cologne, Cologne, Germany
| | - Lampis Stavrinou
- 2nd Department of Neurosurgery, Athens Medical School, “Attikon” University Hospital, National and Kapodistrian University, Athens, Greece
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Weipeng Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Pantelis Stavrinou
- Department of Neurosurgery, Faculty of Medicine and University Hospital, Center for Neurosurgery, University of Cologne, Cologne, Germany
- Department of Neurosurgery, Metropolitan Hospital, Athens, Greece
| |
Collapse
|