1
|
Feng Z, Yang Y, Liu XZ, Sun HJ, Wen BY, Chen Z, Wei B. Application of cell therapy in rheumatoid Arthritis: Focusing on the immunomodulatory strategies of Mesenchymal stem cells. Int Immunopharmacol 2025; 147:114017. [PMID: 39778278 DOI: 10.1016/j.intimp.2025.114017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Rheumatoid arthritis (RA) is a common chronic autoimmune disease that primarily affects the joints, leading to synovial inflammation and hyperplasia, which subsequently causes joint pain, swelling, and damage. The microenvironment of RA is characterized by hypoxia, high reactive oxygen species (ROS), low pH, and levels of high inflammatory factors. Traditional treatments only partially alleviate symptoms and often cause various adverse reactions with long-term use. Therefore, there is an urgent need for safer and more effective treatments. In recent years, mesenchymal stem cells (MSCs) have shown significant potential in treating RA due to their diverse immunomodulatory mechanisms. MSCs paracrine a variety of soluble factors to improve the inflammatory microenvironment in RA patients by inhibiting T cell proliferation or inducing T cell differentiation to regulatory T cells (Tregs), inhibiting B cell proliferation and differentiation and immunoglobulin production, prompting macrophage polarization toward an anti-inflammatory phenotype, and inhibiting neutrophil recruitment and preventing the maturation of dendritic cells (DCs). This review summarizes the immunomodulatory effects of MSCs in RA and their application in animal models and clinical trials. Although the immunomodulatory mechanisms of MSCs are not yet fully elucidated, their significant potential in RA treatment has been widely recognized. Future research should further explore the immunomodulatory mechanisms of MSCs and optimize their functions in different pathological microenvironments to develop more effective and safer therapeutic strategies.
Collapse
Affiliation(s)
- Zhi Feng
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical College, University of South China, Hengyang, Hunan 42100l, China
| | - Ying Yang
- Department of Specialty Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiang-Zhuo Liu
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical College, University of South China, Hengyang, Hunan 42100l, China
| | - Hui-Jiao Sun
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical College, University of South China, Hengyang, Hunan 42100l, China
| | - Bo-Ya Wen
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical College, University of South China, Hengyang, Hunan 42100l, China
| | - Zhi Chen
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical College, University of South China, Hengyang, Hunan 42100l, China
| | - Bo Wei
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical College, University of South China, Hengyang, Hunan 42100l, China.
| |
Collapse
|
2
|
Bousch JF, Beyersdorf C, Schultz K, Windolf J, Suschek CV, Maus U. Proinflammatory Cytokines Enhance the Mineralization, Proliferation, and Metabolic Activity of Primary Human Osteoblast-like Cells. Int J Mol Sci 2024; 25:12358. [PMID: 39596421 PMCID: PMC11594863 DOI: 10.3390/ijms252212358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Osteoporosis is a progressive metabolic bone disease characterized by decreased bone density and microarchitectural deterioration, leading to an increased risk of fracture, particularly in postmenopausal women and the elderly. Increasing evidence suggests that inflammatory processes play a key role in the pathogenesis of osteoporosis and are strongly associated with the activation of osteoclasts, the cells responsible for bone resorption. In the present study, we investigated, for the first time, the influence of proinflammatory cytokines on the osteogenic differentiation, proliferation, and metabolic activity of primary human osteoblast-like cells (OBs) derived from the femoral heads of elderly patients. We found that all the proinflammatory cytokines, IL-1β, TNF-α, IL-6, and IL-8, enhanced the extracellular matrix mineralization of OBs under differentiation-induced cell culture conditions. In the cases of IL-1β and TNF-α, increased mineralization was correlated with increased osteoblast proliferation. Additionally, IL-1β- and TNF-α-increased osteogenesis was accompanied by a rise in energy metabolism due to improved glycolysis or mitochondrial respiration. In conclusion, we show here, for the first time, that, in contrast to findings obtained with cell lines, mesenchymal stem cells, or animal models, human OBs obtained from patients exhibited significantly enhanced osteogenesis upon exposure to proinflammatory cytokines, probably in part via a mechanism involving enhanced cellular energy metabolism. This study significantly contributes to the field of osteoimmunology by examining a clinically relevant cell model that can help to develop treatments for inflammation-related metabolic bone diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Uwe Maus
- Department for Orthopedics and Trauma Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany; (J.F.B.); (C.B.); (K.S.); (J.W.); (C.V.S.)
| |
Collapse
|
3
|
Ji W, Sun L, Wang D, Zhu W. Mesenchymal stem cells alleviate inflammatory responses through regulation of T-cell subsets. Eur J Pharmacol 2024; 983:176996. [PMID: 39277095 DOI: 10.1016/j.ejphar.2024.176996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Immune-mediated inflammatory disease (IMID) is a complex disorder characterized by excessive immune responses involving T cells and their subsets, leading to direct tissue damage. T cells can be broadly categorized into CD4+ T cells and CD8+ T cells. CD4+ T cells are composed of several subsets, including T helper (Th)1, Th2, Th9, Th17, Th22, follicular helper T cells (Tfhs), and regulatory T cells (Tregs), while effector CD8+ T cells consist mainly of cytotoxic T cells (CTLs). Current therapies for IMID are ineffective, prompting exploration into mesenchymal stem cells (MSCs) as a promising clinical treatment due to their immunomodulatory effects and self-renewal potential. Recent studies have shown that MSCs can suppress T cells through direct cell-to-cell contact or secretion of soluble cytokines. Nevertheless, the precise effects of MSCs on T cell subsets remain inadequately defined. In this review, we summarize the most recent studies that have examined how MSCs modulate one or more effector T-cell subsets and the mechanisms behind these modifications in vitro and several mouse models of clinical inflammation. This also provides theoretical support and novel insights into the efficacy of clinical treatments involving MSCs. However, the efficacy of MSC therapies in clinical models of inflammation varies, showing effective remission in most cases, but also with exacerbation of T-cell-mediated inflammatory damage in some instances.
Collapse
Affiliation(s)
- Weimeng Ji
- Department of Oncology, Affiliated Hospital of Jiangsu University, Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, 212001, China; School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013,China
| | - Li Sun
- Department of Clinical Laboratory, Affiliated Kunshan Hospital Ofjiangsu University, Suzhou, Jiangsu, 215399, China
| | - Deqiang Wang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| | - Wei Zhu
- Department of Oncology, Affiliated Hospital of Jiangsu University, Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, 212001, China; School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013,China.
| |
Collapse
|
4
|
Su H, Liang L, Wang J, Yuan X, Zhao B. ZFP36, an RNA-binding protein promotes hBMSCs osteogenic differentiation via binding with JUN. J Orthop Surg Res 2024; 19:758. [PMID: 39543732 PMCID: PMC11562521 DOI: 10.1186/s13018-024-05232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024] Open
Abstract
Osteoporosis (OP) is a metabolic bone disease characterized by progressive decline of bone mass and bone quality, leading to bone fragility and an increased risk of fracture. The osteogenic differentiation of bone mesenchymal stem cells (BMSCs) is crucial to maintain the balance of osteoblast and osteoclast. Bioinformatics prediction indicates that ZFP36 ring finger protein (ZFP36), an RNA-binding protein, is a potential target of OP. Herein, we sought to probe the regulatory role and mechanisms of ZFP36 in the progression of OP. Overexpression of ZFP36 enhanced osteoblast viability, differentiation and mineralization of human BMSCs (hBMSCs). RNA immunoprecipitation qPCR (RIP-qPCR) assays demonstrated that ZFP36 could inhibit the translation of JUN, which was also verified with dual luciferase reporter gene assay. Furthermore, administration with T-5224, a transcription factor c-Fos/activator protein (AP)-1 inhibitor, which specifically inhibits the DNA binding activity of c-Fos/JUN, abolished the effect of ZFP36 knockdown on the behaviors of hBMSCs, suggesting that ZFP36 might promotes osteogenic differentiation through regulating JUN. These findings provide insights into the progression and a potential therapeutic target of OP.
Collapse
Affiliation(s)
- Hairong Su
- Maoming People's Hospital, Maoming, 525000, Guandong, China
| | - Linyuan Liang
- Maoming People's Hospital, Maoming, 525000, Guandong, China
| | - Junling Wang
- The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangzhou, China
| | - Xiaolu Yuan
- Maoming People's Hospital, Maoming, 525000, Guandong, China.
| | - Binxiu Zhao
- Maoming People's Hospital, Maoming, 525000, Guandong, China.
| |
Collapse
|
5
|
Sirisereephap K, Surboyo MDC, Rosenkranz AL, Terao Y, Tabeta K, Maeda T, Hajishengallis G, Maekawa T. Protocols for collecting mouse PDL cells and bone marrow cells, differentiation, and data analysis. STAR Protoc 2024; 5:103162. [PMID: 38935507 PMCID: PMC11260838 DOI: 10.1016/j.xpro.2024.103162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
Periodontal ligament cells (PDLCs) and macrophages in bone marrow cells have been widely used to investigate novel therapeutic agents to treat periodontitis. Here, we present a protocol for collecting primary mouse PDLCs and bone marrow cells. We detail steps for culturing and differentiation for both cell types and review data analysis for in vitro experiments using primary PDLCs and bone marrow cells. This protocol can be used to explore the impact of novel therapeutic agents using in vitro experiments. For complete details on the use and execution of this protocol, please refer to Sirisereephap et al.1.
Collapse
Affiliation(s)
| | - Meircurius Dwi Condro Surboyo
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; Faculty of Dentistry, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Andrea L Rosenkranz
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Koichi Tabeta
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tomoki Maekawa
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan.
| |
Collapse
|
6
|
Liu H, Wang Z, Li X, Zhao B, Li H, Han L, Yan J. CeO 2 Nanoparticle Bioactive Materials Promote MG-63 Osteogenic Differentiation and Antioxidant Activity Through NRF2 Signaling. Appl Biochem Biotechnol 2024; 196:4337-4351. [PMID: 37947945 DOI: 10.1007/s12010-023-04766-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
The incidence of bone-related diseases is higher in the elderly population, which greatly affects the patients' quality of life. Throughout this research, we synthesized a biocomposite nanomaterial of CeO2. The unique structural characteristics of CeO2 nanoparticles (CeO2 NPs) were studied by means of XRD, TEM, and SEM. Nanoparticles of an osteosarcoma cell line (MG-63) were assayed for ALP enzyme levels, key proteins in osteoblasts, and stained with Alizarin Red S to assess the physical properties, bioactivity, and calcium deposition of the osteosarcoma cell line. Moreover, we used H2O2 to construct an oxidative stress model to evaluate the antioxidant activity of CeO2 NPs. Experimental data showed that the CeO2 NPs increased the antioxidant capacity of MG-63 cells and significantly increased alkaline phosphatase activity, calcium deposition, and bone growth as manifested by increased expression of bone differentiation proteins BMP2, OCN, OPN, and type I collagen. Interestingly, RNA interference and functional recovery experiments confirmed that CeO2 NPs enhanced the antioxidant activity of MG-63 cells related to NRF2 signaling. In conclusion, the material is expected to be a potential treatment for bone-related diseases.
Collapse
Affiliation(s)
- Haijuan Liu
- Department of Endocrinology, Liaocheng People's Hospital, Clinical Hospital of Shandong First Medical University, Liaocheng, 252000, China
| | - Zidong Wang
- Department of Orthopaedic Surgery, Liaocheng People's Hospital, Clinical Hospital of Shandong First Medical University, Liaocheng, 252000, China
| | - Xian Li
- School of Clinical Medicine, Weifang Medical University, Weifang, 261053, China
| | - Bei Zhao
- Department of Orthopaedic Surgery, Liaocheng People's Hospital, Clinical Hospital of Shandong First Medical University, Liaocheng, 252000, China
| | - Hao Li
- Department of Orthopaedic Surgery, Liaocheng People's Hospital, Clinical Hospital of Shandong First Medical University, Liaocheng, 252000, China
| | - Liren Han
- Department of Orthopaedic Surgery, Liaocheng People's Hospital, Clinical Hospital of Shandong First Medical University, Liaocheng, 252000, China.
| | - Jun Yan
- Department of Orthopaedic Surgery, Liaocheng People's Hospital, Clinical Hospital of Shandong First Medical University, Liaocheng, 252000, China.
| |
Collapse
|
7
|
Fu F, Li M, Yang S, Du G, Xu Y, Jiang J, Jia L, Zhang K, Li P. The effects of SDF-1 combined application with VEGF on femoral distraction osteogenesis in rats. Open Life Sci 2024; 19:20220851. [PMID: 38645752 PMCID: PMC11032098 DOI: 10.1515/biol-2022-0851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/03/2024] [Accepted: 03/08/2024] [Indexed: 04/23/2024] Open
Abstract
Bone regeneration and mineralization can be achieved by means of distraction osteogenesis (DO). In the present study, we investigated the effect of stromal cell-derived factor 1 (SDF-1) and vascular endothelial growth factor (VEGF) on the new bone formation during DO in rats. Forty-eight Sprague-Dawley rats were randomized into four groups of 12 rats each. We established the left femoral DO model in rats and performed a mid-femoral osteotomy, which was fixed with an external fixator. DO was performed at 0.25 mm/12 h after an incubation period of 5 days. Distraction was continued for 10 days, resulting in a total of 5 mm of lengthening. After distraction, the solution was locally injected into the osteotomy site, once a day 1 ml for 1 week. One group received the solvent alone and served as the control, and the other three groups were treated with SDF-1, VEGF, and SDF-1with VEGF in an aqueous. Sequential X-ray radiographs were taken two weekly. The regeneration was monitored with the use of micro-CT analysis, mechanical testing, and histology. Radiographs showed accelerated regenerate ossification in the SDF-1, VEGF, and SDF-1 with the VEGF group, with a larger amount of new bone compared with the control group, especially SDF-1 with the VEGF group. Micro-CT analysis and biomechanical tests showed Continuous injection of the SDF-1, VEGF, and SDF-1 with VEGF during the consolidation period significantly increased bone mineral density bone volume, mechanical maximum loading, and bone mineralization of the regenerate. Similarly, the expression of osteogenic-specific genes, as determined by real-time polymerase chain reaction , was significantly higher in SDF-1 with the VEGF group than in the other groups. Histological examination revealed more new trabeculae in the distraction gap and more mature bone tissue for the SDF-1 with the VEGF group. SDF-1 and VEGF promote bone regeneration and mineralization during DO, and there is a synergistic effect between the SDF-1 and VEGF. It is possible to provide a new and feasible method to shorten the period of treatment of DO.
Collapse
Affiliation(s)
- Fangang Fu
- Department of Orthopaedics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Mengqi Li
- Department of Orthopedics, Binzhou Medical University Hospital, Binzhou, 256603China
| | - Shuye Yang
- Department of Orthopedics, Binzhou Medical University Hospital, Binzhou, 256603China
| | - Gangqiang Du
- Department of Orthopedics, Binzhou Medical University Hospital, Binzhou, 256603China
| | - Yingjiang Xu
- Binzhou Medical University Hospital, Binzhou, China
| | - Jianhao Jiang
- Department of Orthopedics, Binzhou Medical University Hospital, Binzhou, 256603China
| | - Long Jia
- Department of Orthopedics, Binzhou Medical University Hospital, Binzhou, 256603China
| | - Kai Zhang
- Department of Orthopedics, Binzhou Medical University Hospital, Binzhou, 256603China
| | - Peng Li
- Department of Orthopedics, Binzhou Medical University Hospital, Binzhou, 256603China
| |
Collapse
|
8
|
Heikkinen J, Tanner T, Bergmann U, Palosaari S, Lehenkari P. Cigarette smoke and nicotine effect on human mesenchymal stromal cell wound healing and osteogenic differentiation capacity. Tob Induc Dis 2024; 22:TID-22-54. [PMID: 38496254 PMCID: PMC10943629 DOI: 10.18332/tid/185281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
INTRODUCTION Mesenchymal stromal cells (MSCs) play a crucial role in promoting tissue regeneration and healing, particularly in bone tissue. Both smoking and nicotine use are known to delay and inhibit the healing process in patients. This study aims at delineating these cellular effects by comparing the impact of nicotine alone to cigarette smoke with equivalent nicotine content, and shedding light on potential differences in the healing process. METHODS We examined how cigarette smoke and nicotine affect the migration, proliferation, and osteogenic differentiation of human patient-derived MSCs in vitro, as well as the secretion of cytokines IL-6 and IL-8. We measured nicotine concentration of the cigarette smoke extract (CSE) to clarify the role of the nicotine in the effect of the cigarette smoke. RESULTS MSCs exposed to nicotine-concentration-standardized CSE exhibited impaired wound healing capability, and at high concentrations, increased cell death. At lower concentrations, CSE dose-dependently impaired migration, proliferation, and osteogenic differentiation, and increased IL-8 secretion. Nicotine impaired proliferation and decreased PINP secretion. While there was a trend for elevated IL-6 levels by nicotine in undifferentiated MSCs, these changes were not statistically significant. Exposure of MSCs to equivalent concentrations of nicotine consistently elicited stronger responses by CSE and had a more pronounced effect on all studied parameters. Our results suggest that the direct effect of cigarette smoke on MSCs contributes to impaired MSC function, that adds to the nicotine effects. CONCLUSIONS Cigarette smoke extract reduced the migration, proliferation, and osteogenic differentiation in MSCs in vitro, while nicotine alone reduced proliferation. Cigarette smoke impairs the osteogenic and regenerative ability of MSCs in a direct cytotoxic manner. Cytotoxic effect of nicotine alone impairs regenerative ability of MSCs, but it only partly explains cytotoxic effects of cigarette smoke. Direct effect of cigarette smoke, and partly nicotine, on MSCs could contribute to the smoking-related negative impact on long-term bone health, especially in bone healing.
Collapse
Affiliation(s)
- Janne Heikkinen
- Research Unit of Translational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Tarja Tanner
- Research Unit of Oral Health Sciences, University of Oulu, Oulu, Finland
- Dental Training Clinic, Oulu, Finland
| | - Ulrich Bergmann
- Proteomics and Protein Analysis, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sanna Palosaari
- Research Unit of Translational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Petri Lehenkari
- Research Unit of Translational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Division of Orthopedic Surgery, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
9
|
Zhao S, Qiao Z, Pfeifer R, Pape HC, Mao K, Tang H, Meng B, Chen S, Liu H. Modulation of fracture healing by senescence-associated secretory phenotype (SASP): a narrative review of the current literature. Eur J Med Res 2024; 29:38. [PMID: 38195489 PMCID: PMC10775505 DOI: 10.1186/s40001-023-01604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
The senescence-associated secretory phenotype (SASP) is a generic term for the secretion of cytokines, such as pro-inflammatory factors and proteases. It is a crucial feature of senescent cells. SASP factors induce tissue remodeling and immune cell recruitment. Previous studies have focused on the beneficial role of SASP during embryonic development, wound healing, tissue healing in general, immunoregulation properties, and cancer. However, some recent studies have identified several negative effects of SASP on fracture healing. Senolytics is a drug that selectively eliminates senescent cells. Senolytics can inhibit the function of senescent cells and SASP, which has been found to have positive effects on a variety of aging-related diseases. At the same time, recent data suggest that removing senescent cells may promote fracture healing. Here, we reviewed the latest research progress about SASP and illustrated the inflammatory response and the influence of SASP on fracture healing. This review aims to understand the role of SASP in fracture healing, aiming to provide an important clinical prevention and treatment strategy for fracture. Clinical trials of some senolytics agents are underway and are expected to clarify the effectiveness of their targeted therapy in the clinic in the future. Meanwhile, the adverse effects of this treatment method still need further study.
Collapse
Affiliation(s)
- Shangkun Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi Qiao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Roman Pfeifer
- Department of Traumatology, University Hospital of Zurich, Zurich, 8091, China
| | - Hans-Christoph Pape
- Department of Traumatology, University Hospital of Zurich, Zurich, 8091, China
| | - Keya Mao
- Chinese PLA General Hospital Beijing, Beijing, 100853, China
| | - Hai Tang
- Beijing Friendship Hospital, Beijing, 100050, China
| | - Bin Meng
- First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Songfeng Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjian Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
10
|
Shen F, Xiao H, Shi Q. Mesenchymal stem cells derived from the fibrotic tissue of atrophic nonunion or the bone marrow of iliac crest: A donor-matched comparison. Regen Ther 2023; 24:398-406. [PMID: 37719889 PMCID: PMC10502321 DOI: 10.1016/j.reth.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/29/2023] [Accepted: 08/13/2023] [Indexed: 09/19/2023] Open
Abstract
Purpose Atrophic nonunion is one of the most difficult complications of fracture. The cellular factors that contribute to atrophic nonunion are poorly understood, and mesenchymal stem cells (MSCs) are recognized as the key contributor to bone formation. This study aimed to characterize the MSCs isolated from the fibrotic tissue of atrophic nonunion (AN-MSCs) from the perspective of proliferation, differentiation potential, senescence, and paracrine function. Methods Human atrophic fibrotic tissue was obtained from four donors aged 29-37 for isolating AN-MSCs, and donor-matched bone marrow acquired from the iliac crest for isolating MSCs (IC-MSCs) as control. The AN-MSCs or IC-MSCs in passage 3 were applied for the following evaluations. The surface markers expressed on the two cells were evaluated using flow cytometry. The proliferation of the two cells for up to 11 days was comparatively investigated. After osteogenic, chondrogenic, or adipogenic induction, multi-lineage differentiation of AN-MSCs or IC-MSCs was comparatively evaluated using lineage-specific stains and lineage-specific gene expression. Enzyme-linked immunosorbent assay (ELISA) assessment was applied to evaluate the paracrine function of AN-MSCs or IC-MSCs. Cellular senescence of AN-MSCs or IC-MSCs was evaluated using senescence-associated β-galactosidase (SA-β-gal) staining. Results AN-MSCs or IC-MSCs from the four donors showed morphologic and immunophenotypic characteristics of MSCs, with the expression of MSCs markers and negative expression of hematopoietic markers. In general, AN-MSCs showed similar proliferation and adipogenic capacity with IC-MSCs. In contrast, IC-MSCs showed significantly higher osteogenic and chondrogenic capacity compared to AN-MSCs. Moreover, the culture medium of IC-MSCs contains significantly higher levels of VEGF, TGF-β1, PDGF-BB, and IGF-1 than the culture medium of AN-MSCs. Lastly, the AN-MSCs are more prone to cellular senescence than the IC-MSCs. Conclusions In-vitro, AN-MSCs were similar to IC-MSCs in proliferation and adipogenic capacity, but inferior to IC-MSCs in osteogenic and chondrogenic capacity, paracrine function, and anti-senescence.
Collapse
Affiliation(s)
- Feng Shen
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410018, Hunan, People's Republic of China
| | - Hao Xiao
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410018, Hunan, People's Republic of China
| | - Qiang Shi
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410018, Hunan, People's Republic of China
| |
Collapse
|
11
|
Miłek O, Tur D, Ahčin L, Voitseshyna O, Behm C, Andrukhov O. Osteogenic Differentiation of Human Periodontal Ligament Stromal Cells Influences Their Immunosuppressive Potential toward Allogenic CD4 + T Cells. Int J Mol Sci 2023; 24:16439. [PMID: 38003629 PMCID: PMC10671619 DOI: 10.3390/ijms242216439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The differentiation ability of human periodontal ligament mesenchymal stromal cells (hPDL-MSCs) in vivo is limited; therefore, some studies considered strategies involving their pre-differentiation in vitro. However, it is not known how the differentiation of hPDL-MSCs influences their immunomodulatory properties. This study investigated how osteogenic differentiation of hPDL-MSCs affects their ability to suppress CD4+ T-lymphocyte proliferation. hPDL-MSCs were cultured for 21 days in osteogenic differentiation or standard culture media. Allogeneic CD4+ T lymphocytes were co-cultured with undifferentiated and differentiated cells in the presence or absence of interferon (IFN)-γ, interleukin (IL)-1β or tumor necrosis factor (TNF)-α, and their proliferation and apoptosis were measured. Additionally, the effects of these cytokines on the expression of immunomodulatory or pro-inflammatory factors were investigated. Our data show that osteogenic differentiation of hPDL-MSCs reduced their ability to suppress the proliferation of CD4+ T lymphocytes in the presence of IFN-γ and enhanced this ability in the presence of IL-1β. These changes were accompanied by a slightly decreased proportion of apoptotic CD4+ in the presence of IFN-γ. The osteogenic differentiation was accompanied by decreases and increases in the activity of indoleamine-2,3-dioxygenase in the presence of IFN-γ and IL-1β, respectively. The basal production of interleukin-8 by hPDL-MSCs was substantially increased upon osteogenic differentiation. In conclusion, this study suggests that pre-differentiation strategies in vitro may impact the immunomodulatory properties of hPDL-MSCs and subsequently affect their therapeutic effectiveness in vivo. These findings provide important insights for the development of MSC-based therapies.
Collapse
Affiliation(s)
- Oliwia Miłek
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (O.M.); (L.A.); (O.V.)
| | - Dino Tur
- Clinical Division of Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
| | - Lucia Ahčin
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (O.M.); (L.A.); (O.V.)
| | - Olha Voitseshyna
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (O.M.); (L.A.); (O.V.)
| | - Christian Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (O.M.); (L.A.); (O.V.)
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (O.M.); (L.A.); (O.V.)
| |
Collapse
|
12
|
Umer A, Ghouri MD, Muyizere T, Aqib RM, Muhaymin A, Cai R, Chen C. Engineered Nano-Bio Interfaces for Stem Cell Therapy. PRECISION CHEMISTRY 2023; 1:341-356. [PMID: 37654807 PMCID: PMC10466455 DOI: 10.1021/prechem.3c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 09/02/2023]
Abstract
Engineered nanomaterials (ENMs) with different topographies provide effective nano-bio interfaces for controlling the differentiation of stem cells. The interaction of stem cells with nanoscale topographies and chemical cues in their microenvironment at the nano-bio interface can guide their fate. The use of nanotopographical cues, in particular nanorods, nanopillars, nanogrooves, nanofibers, and nanopits, as well as biochemical forces mediated factors, including growth factors, cytokines, and extracellular matrix proteins, can significantly impact stem cell differentiation. These factors were seen as very effective in determining the proliferation and spreading of stem cells. The specific outgrowth of stem cells can be decided with size variation of topographic nanomaterial along with variation in matrix stiffness and surface structure like a special arrangement. The precision chemistry enabled controlled design, synthesis, and chemical composition of ENMs can regulate stem cell behaviors. The parameters of size such as aspect ratio, diameter, and pore size of nanotopographic structures are the main factors for specific termination of stem cells. Protein corona nanoparticles (NPs) have shown a powerful facet in stem cell therapy, where combining specific proteins could facilitate a certain stem cell differentiation and cellular proliferation. Nano-bio reactions implicate the interaction between biological entities and nanoparticles, which can be used to tailor the stem cells' culmination. The ion release can also be a parameter to enhance cellular proliferation and to commit the early differentiation of stem cells. Further research is needed to fully understand the mechanisms underlying the interactions between engineered nano-bio interfaces and stem cells and to develop optimized regenerative medicine and tissue engineering designs.
Collapse
Affiliation(s)
- Arsalan Umer
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
- University
of Chinese Academy of Sciences, Beijing100049, China
| | - Muhammad Daniyal Ghouri
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
- University
of Chinese Academy of Sciences, Beijing100049, China
| | - Theoneste Muyizere
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Raja Muhammad Aqib
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Abdul Muhaymin
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Rong Cai
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
- University
of Chinese Academy of Sciences, Beijing100049, China
- GBA
National Institute for Nanotechnology Innovation, Guangdong 5110700, China
| |
Collapse
|
13
|
Fan M, Tong P, Yan L, Li T, Ren J, Huang J, Du W, Zhou L, Shan L. Detrimental alteration of mesenchymal stem cells by an articular inflammatory microenvironment results in deterioration of osteoarthritis. BMC Med 2023; 21:215. [PMID: 37337188 PMCID: PMC10280917 DOI: 10.1186/s12916-023-02923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Articular injection of mesenchymal stem cells (MSCs) has been applied to treat knee osteoarthritis (kOA), but its clinical outcomes are controversial. This study investigated whether an articular inflammatory microenvironment (AIM) impacts MSC-based therapy in a rat model of kOA. METHODS The biological change of MSCs and the functional change of MSCs on chondrocytes were evaluated under AIM. The key mediator and mechanism for the AIM impact on MSC therapy were explored via gain- and loss-of-function approaches. RESULTS The results showed that MSCs exerted potent anti-kOA effects in vivo and in vitro, but that this therapy become chondrodestructive if a chronic AIM was present. Mechanistically, the overexpression of MMP13 in the injected MSCs via a MAPKs-AP1 signaling axis was revealed as the underlying mechanism for the detriment outcome. CONCLUSIONS This study thus clarifies recent clinical findings while also suggesting a means to overcome any detrimental effects of MSC-based therapy while improving its efficacy.
Collapse
Affiliation(s)
- Mengqiang Fan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peijian Tong
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yan
- Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China
| | - Ting Li
- Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jiadan Ren
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiefeng Huang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenxi Du
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
- Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China.
| |
Collapse
|
14
|
Wang Y, Guo J, Yang F, Dong R, Song D, Huang P, Wen L, Xiang G, Wang S, Teng J, Miao W. Predictive effect of the decline in CD4 + T cell levels in blood on infection in patients with severe hemorrhagic stroke and mechanism. Front Neurol 2023; 14:1118282. [PMID: 37360336 PMCID: PMC10288285 DOI: 10.3389/fneur.2023.1118282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/03/2023] [Indexed: 06/28/2023] Open
Abstract
Objective The purpose of this research was to evaluate the influence of immunity on infection in patients with severe hemorrhagic stroke and explore the mechanism underlying this connection. Methods Clinical data obtained from 126 patients with severe hemorrhagic stroke were retrospectively analyzed, and the factors affecting infection were screened by multivariable logistic regression models. Nomograms, calibration curves, the Hosmer-Lemeshow goodness-of-fit test, and decision curve analysis were used to examine the effectiveness of the models in evaluating infection. The mechanism underlying the reduction in CD4+ T-cell levels in blood was explored by analysis of lymphocyte subsets and cytokines in cerebrospinal fluid (CSF) and blood. Results The results showed that CD4+ T-cell levels of <300/μL was an independent risk factor for early infection. The models for multivariable logistic regression involving the CD4+ T-cell levels and other influencing factors had good applicability and effectiveness in evaluating early infection. CD4+ T-cell levels decreased in blood but increased in CSF. Similarly, interleukin (IL)-6 and IL-8 levels in CSF had a significant increase, generating a substantial concentration gradient between the CSF and the blood. Conclusion Reduced blood CD4+ T-cell counts among patients who had severe hemorrhagic stroke increased the risk of early infection. CSF IL-6 and IL-8 may be involved in inducing the migration of CD4+ T cells into the CSF and decreasing blood CD4+ T-cell levels.
Collapse
Affiliation(s)
- Yating Wang
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junshuang Guo
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fan Yang
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruirui Dong
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dandan Song
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peipei Huang
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lijun Wen
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guoliang Xiang
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuiyu Wang
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junfang Teng
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wang Miao
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Li Z, Fu R, Wen X, Zhang L. Network analysis reveals miRNA crosstalk between periodontitis and oral squamous cell carcinoma. BMC Oral Health 2023; 23:19. [PMID: 36639776 PMCID: PMC9840318 DOI: 10.1186/s12903-022-02704-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the malignant tumors with a poor prognosis. Periodontitis (PD is considered a high-risk factor for OSCC, but the genetic mechanism is rarely studied. This study aims to link OSCC and PD by identifying common differentially expressed miRNAs (Co-DEmiRNAs), their related genes (Hub genes), transcription factors (TFs), signaling pathways, enrichment functions, and compounds, and searching for genetic commonalities. METHODS The miRNAs expression datasets of OSCC and PD were searched from the GEO database. The miRNA and related crosstalk mechanism between OSCC and PD was obtained through a series of analyses. RESULTS hsa-mir-497, hsa-mir-224, hsa-mir-210, hsa-mir-29c, hsa-mir-486-5p, and hsa-mir-31are the top miRNA nodes in Co-DEmiRNA-Target networks. The most significant candidate miRNA dysregulation genes are ZNF460, FBN1, CDK6, BTG2, and CBX6, while the most important dysregulation TF includes HIF1A, TP53, E2F1, MYCN, and JUN. 5-fluorouracil, Ginsenoside, Rh2, and Formaldehyde are the most correlated compounds. Enrichment analysis revealed cancer-related pathways and so on. CONCLUSIONS The comprehensive analysis reveals the interacting genetic and molecular mechanism between OSCC and PD, linking both and providing a foundation for future basic and clinical research.
Collapse
Affiliation(s)
- Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Rao Fu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xutao Wen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, China.
| |
Collapse
|
16
|
Wang X, Guo S, Zhou H, Sun Y, Gan J, Zhang Y, Zheng W, Zhang C, Zhao X, Xiao J, Wang L, Gao Y, Ning S. Immune Pathways with Aging Characteristics Improve Immunotherapy Benefits and Drug Prediction in Human Cancer. Cancers (Basel) 2023; 15:cancers15020342. [PMID: 36672292 PMCID: PMC9856581 DOI: 10.3390/cancers15020342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
(1) Background: Perturbation of immune-related pathways can make substantial contributions to cancer. However, whether and how the aging process affects immune-related pathways during tumorigenesis remains largely unexplored. (2) Methods: Here, we comprehensively investigated the immune-related genes and pathways among 25 cancer types using genomic and transcriptomic data. (3) Results: We identified several pathways that showed aging-related characteristics in various cancers, further validated by conventional aging-related gene sets. Genomic analysis revealed high mutation burdens in cytokines and cytokines receptors pathways, which were strongly correlated with aging in diverse cancers. Moreover, immune-related pathways were found to be favorable prognostic factors in melanoma. Furthermore, the expression level of these pathways had close associations with patient response to immune checkpoint blockade therapy in melanoma and non-small cell lung cancer. Applying a net-work-based method, we predicted immune- and aging-related genes in pan-cancer and utilized these genes for potential immunotherapy drug discovery. Mapping drug target data to our top-ranked genes identified potential drug targets, FYN, JUN, and SRC. (4) Conclusions: Taken together, our systematic study helped interpret the associations among immune-related pathways, aging, and cancer and could serve as a resource for promoting clinical treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yue Gao
- Correspondence: (Y.G.); (S.N.)
| | | |
Collapse
|
17
|
Abo-Aziza FAM, Albarrak SM, Zaki AKA, El-Shafey SE. Tumor necrosis factor-alpha antibody labeled-polyethylene glycol-coated nanoparticles: A mesenchymal stem cells-based drug delivery system in the rat model of cisplatin-induced nephrotoxicity. Vet World 2022; 15:2475-2490. [DOI: 10.14202/vetworld.2022.2475-2490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: A delivery system consisting of bone marrow mesenchymal stem cells (MSCs) loaded with polyethylene glycol (PEG) coated superparamagnetic iron oxide nanoparticles (SPIONs) was constructed to treat a rat model of cisplatin (Cis)-induced nephrotoxicity with 1/10 of the common dose of anti-tumor necrosis factor-alpha (TNF-α) antibodies (infliximab).
Materials and Methods: Morphology, size, crystallinity, molecular structure, and magnetic properties of uncoated and PEG-coated SPIONs were analyzed. A delivery system consisting of MSCs containing infliximab-labeled PEG-coated SPIONs (Infliximab-PEG-SPIONs-MSCs) was generated and optimized before treatment. Fifty female Wistar rats were divided into five equal groups: Group 1: Untreated control; Group 2 (Cis): Rats were administered Cis through intraperitoneal (i.p.) injection (8 mg/kg) once a week for 4 weeks; Group 3 (Infliximab): Rats were injected once with infliximab (5 mg/kg), i.p. 3 days before Cis administration; Group 4 (Cis + MSCs): Rats were injected with Cis followed by an injection of 2 × 106 MSCs into the tail vein twice at a 1-week interval; and Group 5 (Cis + Infliximab (500 μg/kg)-PEG-SPIONs-MSCs): Rats were injected with the delivery system into the tail vein twice at a 1-week interval. Besides histological examination of the kidney, the Doppler ultrasound scanner was used to scan the kidney with the Gray-color-spectral mode.
Results: In vivo, intra-renal iron uptake indicates the traffic of the delivery system from venous blood to renal tissues. Cis-induced nephrotoxicity resulted in a significant increase in TNF-α and malondialdehyde (MDA) (p < 0.05), bilirubin, creatinine, and uric acid (p < 0.01) levels compared with the untreated control group. The different treatments used in this study resulted in the amelioration of some renal parameters. However, TNF-α levels significantly decreased in Cis + Infliximab and Cis + MSCs (p < 0.05) groups. The serum levels of MDA significantly decreased in Cis + Infliximab (p < 0.05), Cis + MSCs (p < 0.05), and Cis + Infliximab-PEG-SPIONs-MSCs (p < 0.01). Furthermore, the serum activities of antioxidant enzymes were significantly elevated in the Cis + MSCs and Cis + Infliximab-PEG-SPIONs-MSCs groups (p < 0.05) compared to the Cis-induced nephrotoxicity rat model.
Conclusion: With the support of the constructed MSCs-SPIONs infliximab delivery system, it will be possible to track and monitor cell homing after therapeutic application. This infliximab-loading system may help overcome some challenges regarding drug delivery to the target organ, optimize therapeutics' efficacy, and reduce the dose. The outcomes of the current study provide a better understanding of the potential of combining MSCs and antibodies-linked nanoparticles for the treatment of nephrotoxicity. However, further investigation is recommended using different types of other drugs. For new approaches development, we should evaluate whether existing toxicity analysis and risk evaluation strategies are reliable and enough for the variety and complexity of nanoparticles.
Collapse
Affiliation(s)
- Faten A. M. Abo-Aziza
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Saleh M. Albarrak
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdel-Kader A. Zaki
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia; Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
18
|
Khokhani P, Belluomo R, Croes M, Gawlitta D, Kruyt MC, Weinans H. An in-vitro model to test the influence of immune cell secretome on MSC osteogenic differentiation. Tissue Eng Part C Methods 2022; 28:420-430. [PMID: 35770885 DOI: 10.1089/ten.tec.2022.0086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Immune cells and their soluble factors have an important role in the bone healing process. Modulation of the immune response, therefore, offers a potential strategy to enhance bone formation. To investigate the influence of the immune system on osteogenesis, we developed and applied an in-vitro model that incorporates both innate and adaptive immune cells. Human peripheral blood mononuclear cells (PBMCs) were isolated and cultured for 24 hours and subsequently stimulated with immune-modulatory agents; C-class CpG oligodeoxynucleotide (CpG ODN C), Polyinosinic acid-polycytidylic acid Poly(I:C), and lipopolysaccharide (LPS); all pathogen recognition receptor agonists, and that target Toll-like receptors TLR9, -3, and -4, respectively. The conditioned medium obtained from PBMCs after 24 hours was used to investigate its effects on the metabolic activity and osteogenic differentiation capacity of human bone marrow-derived mesenchymal stromal cells (MSCs). Conditioned media from unstimulated PBMCs did not affect the metabolic activity and osteogenic differentiation capacity of MSCs. The conditioned medium from CpG ODN C and LPS stimulated PBMCs increased alkaline phosphatase activity of MSCs by approximately 3-fold as compared to the unstimulated control, whereas Poly(I:C) conditioned medium did not enhance ALP activity of MSCs. Moreover, direct stimulation of MSCs with the immune-modulatory stimuli did not result in increased alkaline phosphatase activity. These results demonstrate that soluble factors present in conditioned medium from PBMCs stimulated with immune-modulatory factors enhance osteogenesis of MSCs. This in-vitro model can serve as a tool in screening immune-modulatory stimulants from a broad variety of immune cells for (indirect) effects on osteogenesis and also to identify soluble factors from multiple immune cell types that may modulate bone healing.
Collapse
Affiliation(s)
- Paree Khokhani
- University Medical Centre Utrecht, 8124, Orthopedics , UMC Utrecht, dept. Orthopedics, G5.203, Heidelberglaan 100, Utrecht, Utrecht, Drenthe, Netherlands, 3584CX.,University Medical Centre, Utrecht (UMCU), UMC Utrecht, dept. Orthopedics, G5.203, Heidelberglaan 100, Netherlands;
| | - Ruggero Belluomo
- University Medical Centre Utrecht, 8124, Orthopedics , Utrecht, Utrecht, Netherlands;
| | - Michiel Croes
- University Medical Centre Utrecht, 8124, Orthopedics , Utrecht, Utrecht, Netherlands;
| | - Debby Gawlitta
- University Medical Center Utrecht, Oral and Maxillofacial Surgery, Prosthodontics & Special Dental Care, Heidelberglaan 100, G05.129, PO Box 85500, Utrecht, Netherlands, 3508 GA;
| | - Moyo C Kruyt
- University medical center Utrecht, Orthopedics, HP G 05.228, PO Box 85500, Utrecht, Netherlands, 3508 GA;
| | - Harrie Weinans
- University Medical Centre Utrecht, 8124, Orthopedics, Utrecht, Utrecht, Netherlands;
| |
Collapse
|