1
|
Xie Q, Dasari R, Namba MD, Buck LA, Side CM, Park K, Jackson JG, Barker JM. Astrocytic regulation of cocaine locomotor sensitization in EcoHIV infected mice. Neuropharmacology 2025; 265:110245. [PMID: 39631679 DOI: 10.1016/j.neuropharm.2024.110245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/30/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Cocaine use disorder (CUD) is highly comorbid with HIV infection and worsens HIV outcomes. Preclinical research on the outcomes of HIV infection may yield crucial information on neurobehavioral changes resulting from chronic drug exposure in people living with HIV (PLWH). Repeated exposure to cocaine alters behavioral responses to cocaine. This includes development of cocaine locomotor sensitization - or increased locomotor responses to the same doses of cocaine - which depends on nucleus accumbens (NAc) neural plasticity. NAc astrocytes are key regulators of neural activity and plasticity, and their function can be impaired by cocaine exposure and HIV infection, thus implicating them as potential regulators of HIV-induced changes in behavioral response to cocaine. To characterize the effects of HIV infection on cocaine locomotor sensitization, we employed the EcoHIV mouse model in male and female mice to assess changes in locomotor responses after repeated cocaine (10 mg/kg) exposure and challenge. EcoHIV infection potentiated expression of cocaine sensitization. We also identified EcoHIV-induced increases in expression of the astrocytic nuclear marker Sox9 selectively in the NAc core. To investigate whether modulation of NAc astrocytes could reverse EcoHIV-induced deficits, we employed a chemogenetic approach. We found that chemogenetic activation of NAc astrocyte Gq signaling attenuated EcoHIV-enhanced cocaine sensitization. We propose that HIV infection contributes to cocaine behavioral sensitization and induces adaptations in NAc astrocytes, while promoting NAc astrocytic Gq-signaling can recover EcoHIV-induced behavioral changes. These findings identify potential cellular substrates of disordered cocaine-driven behavior in the context of HIV infection and point toward strategies to reduce cocaine-related behavior in PLWH.
Collapse
Affiliation(s)
- Qiaowei Xie
- Department of Pharmacology and Physiology, Drexel University College of Medicine, USA; Graduate Program in Pharmacology and Physiology, Drexel University College of Medicine, USA
| | - Rohan Dasari
- Department of Pharmacology and Physiology, Drexel University College of Medicine, USA
| | - Mark D Namba
- Department of Pharmacology and Physiology, Drexel University College of Medicine, USA
| | - Lauren A Buck
- Department of Pharmacology and Physiology, Drexel University College of Medicine, USA
| | - Christine M Side
- Department of Pharmacology and Physiology, Drexel University College of Medicine, USA
| | - Kyewon Park
- University of Pennsylvania Center for AIDS Research, USA
| | - Joshua G Jackson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, USA
| | - Jacqueline M Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, USA.
| |
Collapse
|
2
|
Nogueira M. Critical Involvement of Actin Stabilizer TMOD2 in Cocaine-Induced Neuroadaptations. J Neurosci 2024; 44:e1357242024. [PMID: 39632093 PMCID: PMC11622171 DOI: 10.1523/jneurosci.1357-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024] Open
Affiliation(s)
- Margareth Nogueira
- Heinsbroek and Peters Labs, University of Alabama at Birmingham, Birmingham, Alabama 35233
| |
Collapse
|
3
|
Tavakoli NS, Malone SG, Anderson TL, Neeley RE, Asadipooya A, Bardo MT, Ortinski PI. Astrocyte Ca 2+ in the dorsal striatum suppresses neuronal activity to oppose cue-induced reinstatement of cocaine seeking. Front Cell Neurosci 2024; 18:1347491. [PMID: 39280793 PMCID: PMC11393831 DOI: 10.3389/fncel.2024.1347491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Recent literature supports a prominent role for astrocytes in regulation of drug-seeking behaviors. The dorsal striatum, specifically, is known to play a role in reward processing with neuronal activity that can be influenced by astrocyte Ca2+. However, the manner in which Ca2+ in dorsal striatum astrocytes impacts neuronal signaling after exposure to self-administered cocaine remains unclear. We addressed this question following over-expression of the Ca2+ extrusion pump, hPMCA2w/b, in dorsal striatum astrocytes and the Ca2+ indicator, GCaMP6f, in dorsal striatum neurons of rats that were trained to self-administer cocaine. Following extinction of cocaine-seeking behavior, the rats over-expressing hMPCA2w/b showed a significant increase in cue-induced reinstatement of cocaine seeking. Suppression of astrocyte Ca2+ increased the amplitude of neuronal Ca2+ transients in brain slices, but only after cocaine self-administration. This was accompanied by decreased duration of neuronal Ca2+ events in the cocaine group and no changes in Ca2+ event frequency. Acute administration of cocaine to brain slices decreased amplitude of neuronal Ca2+ in both the control and cocaine self-administration groups regardless of hPMCA2w/b expression. These results indicated that astrocyte Ca2+ control over neuronal Ca2+ transients was enhanced by cocaine self-administration experience, although sensitivity to acutely applied cocaine remained comparable across all groups. To explore this further, we found that neither the hMPCA2w/b expression nor the cocaine self-administration experience altered regulation of neuronal Ca2+ events by NPS-2143, a Ca2+ sensing receptor (CaSR) antagonist, suggesting that plasticity of neuronal signaling after hPMCA2w/b over-expression was unlikely to result from elevated extracellular Ca2+. We conclude that astrocyte Ca2+ in the dorsal striatum impacts neurons via cell-intrinsic mechanisms (e.g., gliotransmission, metabolic coupling, etc.) and impacts long-term neuronal plasticity after cocaine self-administration differently from neuronal response to acute cocaine. Overall, astrocyte Ca2+ influences neuronal output in the dorsal striatum to promote resistance to cue-induced reinstatement of cocaine seeking.
Collapse
Affiliation(s)
- Navid S Tavakoli
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Samantha G Malone
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Tanner L Anderson
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Ryson E Neeley
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Artin Asadipooya
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Pavel I Ortinski
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
4
|
Copenhaver AE, LeGates TA. Sex-Specific Mechanisms Underlie Long-Term Potentiation at Hippocampus→Medium Spiny Neuron Synapses in the Medial Shell of the Nucleus Accumbens. J Neurosci 2024; 44:e0100242024. [PMID: 38806250 PMCID: PMC11223474 DOI: 10.1523/jneurosci.0100-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Sex differences have complicated our understanding of the neurobiological basis of many behaviors that are key for survival. As such, continued elucidation of the similarities and differences between sexes is necessary to gain insight into brain function and vulnerability. The connection between the hippocampus (Hipp) and nucleus accumbens (NAc) is a crucial site where modulation of neuronal activity mediates reward-related behavior. Our previous work demonstrated that long-term potentiation (LTP) of Hipp→NAc synapses is rewarding, and mice can establish learned associations between LTP of these synapses and the contextual environment in which LTP occurred. Here, we investigated sex differences in the mechanisms underlying Hipp→NAc LTP using whole-cell electrophysiology and pharmacology. We observed similarities in basal synaptic strength between males and females and found that LTP occurs postsynaptically with similar magnitudes in both sexes. However, key sex differences emerged as LTP in males required NMDA receptors (NMDAR), whereas LTP in females utilized an NMDAR-independent mechanism involving L-type voltage-gated Ca2+ channels (VGCCs) and estrogen receptor α (ERα). We also uncovered sex-similar features as LTP in both sexes depended on CaMKII activity and occurred independently of dopamine-1 receptor (D1R) activation. Our results have elucidated sex-specific molecular mechanisms for LTP in an integral pathway that mediates reward-related behaviors, emphasizing the importance of considering sex as a variable in mechanistic studies. Continued characterization of sex-specific mechanisms underlying plasticity will offer novel insight into the neurophysiological basis of behavior, with significant implications for understanding how diverse processes mediate behavior and contribute to vulnerability to developing psychiatric disorders.
Collapse
Affiliation(s)
- Ashley E Copenhaver
- Department of Biological Sciences, University of Maryland, Baltimore County (UMBC), Baltimore, Maryland 21250
| | - Tara A LeGates
- Department of Biological Sciences, University of Maryland, Baltimore County (UMBC), Baltimore, Maryland 21250
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
5
|
Proaño SB, Miller CK, Krentzel AA, Dorris DM, Meitzen J. Sex steroid hormones, the estrous cycle, and rapid modulation of glutamatergic synapse properties in the striatal brain regions with a focus on 17β-estradiol and the nucleus accumbens. Steroids 2024; 201:109344. [PMID: 37979822 PMCID: PMC10842710 DOI: 10.1016/j.steroids.2023.109344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/28/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
The striatal brain regions encompassing the nucleus accumbens core (NAcc), shell (NAcs) and caudate-putamen (CPu) regulate cognitive functions including motivated behaviors, habit, learning, and sensorimotor action, among others. Sex steroid hormone sensitivity and sex differences have been documented in all of these functions in both normative and pathological contexts, including anxiety, depression and addiction. The neurotransmitter glutamate has been implicated in regulating these behaviors as well as striatal physiology, and there are likewise documented sex differences in glutamate action upon the striatal output neurons, the medium spiny neurons (MSNs). Here we review the available data regarding the role of steroid sex hormones such as 17β-estradiol (estradiol), progesterone, and testosterone in rapidly modulating MSN glutamatergic synapse properties, presented in the context of the estrous cycle as appropriate. Estradiol action upon glutamatergic synapse properties in female NAcc MSNs is most comprehensively discussed. In the female NAcc, MSNs exhibit development period-specific sex differences and estrous cycle variations in glutamatergic synapse properties as shown by multiple analyses, including that of miniature excitatory postsynaptic currents (mEPSCs). Estrous cycle-differences in NAcc MSN mEPSCs can be mimicked by acute exposure to estradiol or an ERα agonist. The available evidence, or lack thereof, is also discussed concerning estrogen action upon MSN glutamatergic synapse in the other striatal regions as well as the underexplored roles of progesterone and testosterone. We conclude that there is strong evidence regarding estradiol action upon glutamatergic synapse function in female NAcs MSNs and call for more research regarding other hormones and striatal regions.
Collapse
Affiliation(s)
- Stephanie B Proaño
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Christiana K Miller
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Amanda A Krentzel
- Office of Research and Innovation, North Carolina State University, Raleigh, NC, USA
| | - David M Dorris
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - John Meitzen
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
6
|
Fetterly TL, Catalfio AM, Ferrario CR. Effects of junk-food on food-motivated behavior and nucleus accumbens glutamate plasticity; insights into the mechanism of calcium-permeable AMPA receptor recruitment. Neuropharmacology 2024; 242:109772. [PMID: 37898332 PMCID: PMC10883075 DOI: 10.1016/j.neuropharm.2023.109772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
In rats, eating obesogenic diets increases calcium-permeable AMPA receptor (CP-AMPAR) transmission in the nucleus accumbens (NAc) core, and enhances food-motivated behavior. Interestingly, these diet-induced alterations in NAc transmission are pronounced and sustained in obesity-prone (OP) male rats and absent in obesity-resistant (OR) populations. However, effects of diet manipulation on food motivation, and the mechanisms underlying this NAc plasticity in OPs is unknown. Using male selectively-bred OP and OR rats, we assessed food-motivated behavior following ad lib access to chow (CH), junk-food (JF), or 10d of JF followed by a return to chow diet (JF-Dep). Motivation for food was greater in OP than OR rats, as expected. However, JF-Dep only produced enhancements in food-seeking in OP groups, while continuous JF access reduced food-seeking in both OPs and ORs. Additionally, optogenetic, chemogenetic, and pharmacological approaches were used to examine NAc CP-AMPAR recruitment following diet manipulation and ex vivo treatment of brain slices. Reducing excitatory transmission in the NAc was sufficient to recruit CP-AMPARs to synapses in OPs, but not ORs. In OPs, JF-induced increases in CP-AMPARs occurred in mPFC-, but not BLA-to-NAc inputs. Together results show that diet differentially affects behavioral and neural plasticity in obesity susceptible populations. We also identify conditions for acute recruitment of NAc CP-AMPARs; these results suggest that synaptic scaling mechanisms contribute to NAc CP-AMPAR recruitment. Overall, this work helps elucidate how diet interacts with obesity susceptibility to influence food-motivated behavior and extends our fundamental understanding of NAc CP-AMPAR recruitment.
Collapse
Affiliation(s)
- Tracy L Fetterly
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amanda M Catalfio
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carrie R Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA; Psychology Department (Biopsychology) University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Johnson CS, Chapp AD, Lind EB, Thomas MJ, Mermelstein PG. Sex differences in mouse infralimbic cortex projections to the nucleus accumbens shell. Biol Sex Differ 2023; 14:87. [PMID: 38082417 PMCID: PMC10712109 DOI: 10.1186/s13293-023-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The nucleus accumbens (NAc) is an important region in motivation and reward. Glutamatergic inputs from the infralimbic cortex (ILC) to the shell region of the NAc (NAcSh) have been implicated in driving the motivation to seek reward through repeated action-based behavior. While this has primarily been studied in males, observed sex differences in motivational circuitry and behavior suggest that females may be more sensitive to rewarding stimuli. These differences have been implicated for the observed vulnerability in women to substance use disorders. METHODS We used an optogenetic self-stimulation task in addition to ex vivo electrophysiological recordings of NAcSh neurons in mouse brain slices to investigate potential sex differences in ILC-NAcSh circuitry in reward-seeking behavior. Glutamatergic neurons in the ILC were infected with an AAV delivering DNA encoding for channelrhodopsin. Entering the designated active corner of an open field arena resulted in photostimulation of the ILC terminals in the NAcSh. Self-stimulation occurred during two consecutive days of testing over three consecutive weeks: first for 10 Hz, then 20 Hz, then 30 Hz. Whole-cell recordings of medium spiny neurons in the NAcSh assessed both optogenetically evoked local field potentials and intrinsic excitability. RESULTS Although both sexes learned to seek the active zone, within the first day, females entered the zone more than males, resulting in a greater amount of photostimulation. Increasing the frequency of optogenetic stimulation amplified female reward-seeking behavior. Males were less sensitive to ILC stimulation, with higher frequencies and repeated days required to increase male reward-seeking behavior. Unexpectedly, ex vivo optogenetic local field potentials in the NAcSh were greater in slices from male animals. In contrast, female medium-spiny neurons (MSNs) displayed significantly greater intrinsic neuronal excitability. CONCLUSIONS Taken together, these data indicate that there are sex differences in the motivated behavior driven by glutamate within the ILC-NAcSh circuit. Though glutamatergic signaling was greater in males, heightened intrinsic excitability in females appears to drive this sex difference.
Collapse
Affiliation(s)
- Caroline S Johnson
- Department of Neuroscience, School of Medicine, University of Minnesota, 4-140 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
| | - Andrew D Chapp
- Department of Neuroscience, School of Medicine, University of Minnesota, 4-140 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
| | - Erin B Lind
- Department of Neuroscience, School of Medicine, University of Minnesota, 4-140 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
| | - Mark J Thomas
- Department of Neuroscience, School of Medicine, University of Minnesota, 4-140 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
| | - Paul G Mermelstein
- Department of Neuroscience, School of Medicine, University of Minnesota, 4-140 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA.
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
8
|
Aruldas R, Orenstein LB, Spencer S. Metformin Prevents Cocaine Sensitization: Involvement of Adenosine Monophosphate-Activated Protein Kinase Trafficking between Subcellular Compartments in the Corticostriatal Reward Circuit. Int J Mol Sci 2023; 24:16859. [PMID: 38069180 PMCID: PMC10706784 DOI: 10.3390/ijms242316859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Repeated cocaine exposure produces an enhanced locomotor response (sensitization) paralleled by biological adaptations in the brain. Previous studies demonstrated region-specific responsivity of adenosine monophosphate-activated protein kinase (AMPK) to repeated cocaine exposure. AMPK maintains cellular energy homeostasis at the organismal and cellular levels. Here, our objective was to quantify changes in phosphorylated (active) and total AMPK in the cytosol and synaptosome of the medial prefrontal cortex, nucleus accumbens, and dorsal striatum following acute or sensitizing cocaine injections. Brain region and cellular compartment selective changes in AMPK and pAMPK were found with some differences associated with acute withdrawal versus ongoing cocaine treatment. Our additional goal was to determine the behavioral and molecular effects of pretreatment with the indirect AMPK activator metformin. Metformin potentiated the locomotor activating effects of acute cocaine but blocked the development of sensitization. Sex differences largely obscured any protein-level treatment group effects, although pAMPK in the NAc shell cytosol was surprisingly reduced by metformin in rats receiving repeated cocaine. The rationale for these studies was to inform our understanding of AMPK activation dynamics in subcellular compartments and provide additional support for repurposing metformin for treating cocaine use disorder.
Collapse
Affiliation(s)
- Rachel Aruldas
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| | | | - Sade Spencer
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|