1
|
Korb A, Tajbakhsh S, Comai GE. Functional specialisation and coordination of myonuclei. Biol Rev Camb Philos Soc 2024; 99:1164-1195. [PMID: 38477382 DOI: 10.1111/brv.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Myofibres serve as the functional unit for locomotion, with the sarcomere as fundamental subunit. Running the entire length of this structure are hundreds of myonuclei, located at the periphery of the myofibre, juxtaposed to the plasma membrane. Myonuclear specialisation and clustering at the centre and ends of the fibre are known to be essential for muscle contraction, yet the molecular basis of this regionalisation has remained unclear. While the 'myonuclear domain hypothesis' helped explain how myonuclei can independently govern large cytoplasmic territories, novel technologies have provided granularity on the diverse transcriptional programs running simultaneously within the syncytia and added a new perspective on how myonuclei communicate. Building upon this, we explore the critical cellular and molecular sources of transcriptional and functional heterogeneity within myofibres, discussing the impact of intrinsic and extrinsic factors on myonuclear programs. This knowledge provides new insights for understanding muscle development, repair, and disease, but also opens avenues for the development of novel and precise therapeutic approaches.
Collapse
Affiliation(s)
- Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Glenda E Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| |
Collapse
|
2
|
Subhan F, Zizzo MG, Serio R. Motor dysfunction of the gut in Duchenne muscular dystrophy: A review. Neurogastroenterol Motil 2024; 36:e14804. [PMID: 38651673 DOI: 10.1111/nmo.14804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Duchenne's muscular dystrophy (DMD) is a severe type of hereditary, neuromuscular disorder caused by a mutation in the dystrophin gene resulting in the absence or production of truncated dystrophin protein. Conventionally, clinical descriptions of the disorder focus principally on striated muscle defects; however, DMD manifestations involving gastrointestinal (GI) smooth muscle have been reported, even if not rigorously studied. PURPOSE The objective of the present review is to offer a comprehensive perspective on the existing knowledge concerning GI manifestations in DMD, focusing the attention on evidence in DMD patients and mdx mice. This includes an assessment of symptomatology, etiological pathways, and potential corrective approaches. This paper could provide helpful information about DMD gastrointestinal implications that could serve as a valuable orientation for prospective research endeavors in this field. This manuscript emphasizes the effectiveness of mdx mice, a DMD animal model, in unraveling mechanistic insights and exploring the pathological alterations in the GI tract. The gastrointestinal consequences evident in patients with DMD and the mdx mice models are a significant area of focus for researchers. The exploration of this area in depth could facilitate the development of more efficient therapeutic approaches and improve the well-being of individuals impacted by the condition.
Collapse
Affiliation(s)
- Fazal Subhan
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo, Italy
| | - Maria Grazia Zizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo, Italy
- ATeN (Advanced Technologies Network) Center, Viale delle Scienze, University of Palermo, Palermo, Italy
| | - Rosa Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo, Italy
| |
Collapse
|
3
|
Peysson A, Zariohi N, Gendrel M, Chambert-Loir A, Frébault N, Cheynet E, Andrini O, Boulin T. Wnt-Ror-Dvl signalling and the dystrophin complex organize planar-polarized membrane compartments in C. elegans muscles. Nat Commun 2024; 15:4935. [PMID: 38858388 PMCID: PMC11164867 DOI: 10.1038/s41467-024-49154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
Cell polarity mechanisms allow the formation of specialized membrane domains with unique protein compositions, signalling properties, and functional characteristics. By analyzing the localization of potassium channels and proteins belonging to the dystrophin-associated protein complex, we reveal the existence of distinct planar-polarized membrane compartments at the surface of C. elegans muscle cells. We find that muscle polarity is controlled by a non-canonical Wnt signalling cascade involving the ligand EGL-20/Wnt, the receptor CAM-1/Ror, and the intracellular effector DSH-1/Dishevelled. Interestingly, classical planar cell polarity proteins are not required for this process. Using time-resolved protein degradation, we demonstrate that -while it is essentially in place by the end of embryogenesis- muscle polarity is a dynamic state, requiring continued presence of DSH-1 throughout post-embryonic life. Our results reveal the unsuspected complexity of the C. elegans muscle membrane and establish a genetically tractable model system to study cellular polarity and membrane compartmentalization in vivo.
Collapse
Affiliation(s)
- Alice Peysson
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Noura Zariohi
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Marie Gendrel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université Paris Sciences et Lettres Research University, Paris, 75005, France
| | - Amandine Chambert-Loir
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Noémie Frébault
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Elise Cheynet
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Olga Andrini
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Thomas Boulin
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France.
| |
Collapse
|
4
|
Germer J, Lessl AL, Pöhmerer J, Grau M, Weidinger E, Höhn M, Yazdi M, Cappelluti MA, Lombardo A, Lächelt U, Wagner E. Lipo-Xenopeptide Polyplexes for CRISPR/Cas9 based Gene editing at ultra-low dose. J Control Release 2024; 370:239-255. [PMID: 38663751 DOI: 10.1016/j.jconrel.2024.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Double pH-responsive xenopeptide carriers containing succinoyl tetraethylene pentamine (Stp) and lipo amino fatty acids (LAFs) were evaluated for CRISPR/Cas9 based genome editing. Different carrier topologies, variation of LAF/Stp ratios and LAF types as Cas9 mRNA/sgRNA polyplexes were screened in three different reporter cell lines using three different genomic targets (Pcsk9, eGFP, mdx exon 23). One U-shaped and three bundle (B2)-shaped lipo-xenopeptides exhibiting remarkable efficiencies were identified. Genome editing potency of top carriers were observed at sub-nanomolar EC50 concentrations of 0.4 nM sgRNA and 0.1 nM sgRNA for the top U-shape and top B2 carriers, respectively, even after incubation in full (≥ 90%) serum. Polyplexes co-delivering Cas9 mRNA/sgRNA with a single stranded DNA template for homology directed gene editing resulted in up to 38% conversion of eGFP to BFP in reporter cells. Top carriers were formulated as polyplexes or lipid nanoparticles (LNPs) for subsequent in vivo administration. Formulations displayed long-term physicochemical and functional stability upon storage at 4 °C. Importantly, intravenous administration of polyplexes or LNPs mediated in vivo editing of the dystrophin gene, triggering mRNA exon 23 splicing modulation in dystrophin-expressing cardiac muscle, skeletal muscle and brain tissue.
Collapse
Affiliation(s)
- Janin Germer
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Anna-Lina Lessl
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Jana Pöhmerer
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Melina Grau
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Eric Weidinger
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Miriam Höhn
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Mina Yazdi
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Martino Alfredo Cappelluti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Angelo Lombardo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Ulrich Lächelt
- Center for Nanoscience (CeNS), LMU Munich, Munich 80799, Germany; Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany; Center for Nanoscience (CeNS), LMU Munich, Munich 80799, Germany; CNATM - Cluster for Nucleic Acid Therapeutics Munich, Germany.
| |
Collapse
|
5
|
Saxena H, Weintraub NL, Tang Y. Potential Therapeutic Targets for Hypotension in Duchenne Muscular Dystrophy. Med Hypotheses 2024; 185:111318. [PMID: 38585412 PMCID: PMC10993928 DOI: 10.1016/j.mehy.2024.111318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Duchenne Muscular Dystrophy (DMD) is marked by genetic mutations occurring in the DMD gene, which is widely expressed in the cardiovascular system. In addition to developing cardiomyopathy, patients with DMD have been reported to be susceptible to the development of symptomatic hypotension, although the mechanisms are unclear. Analysis of single-cell RNA sequencing data has identified potassium voltage-gated channel subfamily Q member 5 (KCNQ5) and possibly ryanodine receptor 2 (RyR2) as potential candidate hypotension genes whose expression is significantly upregulated in the vascular smooth muscle cells of DMD mutant mice. We hypothesize that heightened KCNQ5 and RyR2 expression contributes to decreased arterial blood pressure in patients with DMD. Exploring pharmacological approaches to inhibit the KCNQ5 and RyR2 channels holds promise in managing the systemic hypotension observed in individuals with DMD. This avenue of investigation presents new prospects for improving clinical outcomes for these patients.
Collapse
Affiliation(s)
- Harshi Saxena
- Vascular Biology Center, Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Neal L Weintraub
- Vascular Biology Center, Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Yaoliang Tang
- Vascular Biology Center, Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Shen Y, Kim IM, Tang Y. Identification of Novel Gene Regulatory Networks for Dystrophin Protein in Vascular Smooth Muscle Cells by Single-Nuclear Transcriptome Analysis. Cells 2023; 12:892. [PMID: 36980233 PMCID: PMC10047041 DOI: 10.3390/cells12060892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/15/2023] Open
Abstract
Duchenne muscular dystrophy is an X-linked recessive disease caused by mutations in dystrophin proteins that lead to heart failure and respiratory failure. Dystrophin (DMD) is not only expressed in cardiomyocytes and skeletal muscle cells, but also in vascular smooth muscle cells (VSMCs). Patients with DMD have been reported to have hypotension. Single nuclear RNA sequencing (snRNA-seq) is a state-of-the-art technology capable of identifying niche-specific gene programs of tissue-specific cell subpopulations. To determine whether DMD mutation alters blood pressure, we compared systolic, diastolic, and mean blood pressure levels in mdx mice (a mouse model of DMD carrying a nonsense mutation in DMD gene) and the wide-type control mice. We found that mdx mice showed significantly lower systolic, diastolic, and mean blood pressure than control mice. To understand how DMD mutation changes gene expression profiles from VSMCs, we analyzed an snRNA-seq dataset from the muscle nucleus of DMD mutant (DMDmut) mice and control (Ctrl) mice. Gene Ontology (GO) enrichment analysis revealed that the most significantly activated pathways in DMDmut-VSMCs are involved in ion channel function (potassium channel activity, cation channel complex, and cation channel activity). Notably, we discovered that the DMDmut-VSMCs showed significantly upregulated expression of KCNQ5 and RYR2, whereas the most suppressed pathways were transmembrane transporter activity (such as anion transmembrane transporter activity, inorganic anion transmembrane transporter activity, import into cell, and import across plasma membrane). Moreover, we analyzed metabolic pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) using "scMetabolism" R package. DMDmut-VSMCs exhibited dysregulation of pyruvate metabolism and nuclear acid metabolism. In conclusion, via the application of snRNA-seq, we (for the first time) identify the potential molecular regulation by DMD in the upregulation of the expression of KCNQ5 genes in VSMCs, which helps us to understand the mechanism of hypotension in DMD patients. Our study potentially offers new possibilities for therapeutic interventions in systemic hypotension in DMD patients with pharmacological inhibition of KCNQ5.
Collapse
Affiliation(s)
- Yan Shen
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Il-man Kim
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Yaoliang Tang
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
7
|
Dystrophin myonuclear domain restoration governs treatment efficacy in dystrophic muscle. Proc Natl Acad Sci U S A 2023; 120:e2206324120. [PMID: 36595689 PMCID: PMC9926233 DOI: 10.1073/pnas.2206324120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Dystrophin is essential for muscle health: its sarcolemmal absence causes the fatal, X-linked condition, Duchenne muscular dystrophy (DMD). However, its normal, spatial organization remains poorly understood, which hinders the interpretation of efficacy of its therapeutic restoration. Using female reporter mice heterozygous for fluorescently tagged dystrophin (DmdEGFP), we here reveal that dystrophin distribution is unexpectedly compartmentalized, being restricted to myonuclear-defined sarcolemmal territories extending ~80 µm, which we called "basal sarcolemmal dystrophin units (BSDUs)." These territories were further specialized at myotendinous junctions, where both Dmd transcripts and dystrophin protein were enriched. Genome-level correction in X-linked muscular dystrophy mice via CRISPR/Cas9 gene editing restored a mosaic of separated dystrophin domains, whereas transcript-level Dmd correction, following treatment with tricyclo-DNA antisense oligonucleotides, restored dystrophin initially at junctions before extending along the entire fiber-with levels ~2% sufficient to moderate the dystrophic process. We conclude that widespread restoration of fiber dystrophin is likely critical for therapeutic success in DMD, perhaps most importantly, at muscle-tendon junctions.
Collapse
|
8
|
Fujimoto T, Yaoi T, Nakano K, Arai T, Okamura T, Itoh K. Generation of dystrophin short product-specific tag-insertion mouse: distinct Dp71 glycoprotein complexes at inhibitory postsynapse and glia limitans. Cell Mol Life Sci 2022; 79:109. [PMID: 35098363 PMCID: PMC11071725 DOI: 10.1007/s00018-022-04151-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/24/2021] [Accepted: 01/14/2022] [Indexed: 11/03/2022]
Abstract
Duchenne muscular dystrophy (DMD), the most severe form of dystrophinopathies, is a fatal X-linked recessive neuromuscular disorder characterized by progressive muscle degeneration and various extents of intellectual disabilities. Physiological and pathological roles of the responsible gene, dystrophin, in the brain remain elusive due to the presence of multiple dystrophin products, mainly full-length dystrophin, Dp427, and the short product, Dp71. In this study, we generated a Dp71-specific hemagglutinin (HA) peptide tag-insertion mice to enable specific detection of intrinsic Dp71 expression by anti-HA-tag antibodies. Immunohistochemical detections in the transgenic mice demonstrated Dp71 expression not only at the blood-brain barrier, where astrocytic endfeet surround the microvessels, but also at the inhibitory postsynapse of hippocampal dentate granule neurons. Interestingly, hippocampal cornu ammonis (CA)1 pyramidal neurons were negative for Dp71, although Dp427 detected by anti-dystrophin antibody was clearly present at the inhibitory postsynapse, suggesting cell-type dependent dystrophin expressions. Precise examination using the primary hippocampal culture validated exclusive localization of Dp71 at the inhibitory postsynaptic compartment but not at the excitatory synapse in neurons. We further performed interactome analysis and found that Dp71 formed distinct molecular complexes, i.e. synapse-associated Dp71 interacted with dystroglycan (Dg) and dystrobrevinβ (Dtnb), whereas glia-associated Dp71 did with Dg and dystrobrevinα (Dtna). Thus, our data indicate that Dp71 and its binding partners are relevant to the inhibitory postsynaptic function of hippocampal granule neurons and the novel Dp71-transgenic mouse provides a valuable tool to understand precise physiological expressions and functions of Dp71 and its interaction proteins in vivo and in vitro.
Collapse
Affiliation(s)
- Takahiro Fujimoto
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takeshi Yaoi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, 162-8655, Japan
| | - Tetsuya Arai
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, 162-8655, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, 162-8655, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
9
|
Ohlendieck K, Swandulla D. Complexity of skeletal muscle degeneration: multi-systems pathophysiology and organ crosstalk in dystrophinopathy. Pflugers Arch 2021; 473:1813-1839. [PMID: 34553265 PMCID: PMC8599371 DOI: 10.1007/s00424-021-02623-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy is a highly progressive muscle wasting disorder due to primary abnormalities in one of the largest genes in the human genome, the DMD gene, which encodes various tissue-specific isoforms of the protein dystrophin. Although dystrophinopathies are classified as primary neuromuscular disorders, the body-wide abnormalities that are associated with this disorder and the occurrence of organ crosstalk suggest that a multi-systems pathophysiological view should be taken for a better overall understanding of the complex aetiology of X-linked muscular dystrophy. This article reviews the molecular and cellular effects of deficiency in dystrophin isoforms in relation to voluntary striated muscles, the cardio-respiratory system, the kidney, the liver, the gastrointestinal tract, the nervous system and the immune system. Based on the establishment of comprehensive biomarker signatures of X-linked muscular dystrophy using large-scale screening of both patient specimens and genetic animal models, this article also discusses the potential usefulness of novel disease markers for more inclusive approaches to differential diagnosis, prognosis and therapy monitoring that also take into account multi-systems aspects of dystrophinopathy. Current therapeutic approaches to combat muscular dystrophy are summarised.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Co. Kildare, Maynooth, W23F2H6, Ireland.
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, W23F2H6, Ireland.
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
10
|
Fujimoto T, Yaoi T, Tanaka H, Itoh K. Dystroglycan regulates proper expression, submembranous localization and subsequent phosphorylation of Dp71 through physical interaction. Hum Mol Genet 2021; 29:3312-3326. [PMID: 32996569 DOI: 10.1093/hmg/ddaa217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/28/2020] [Accepted: 09/25/2020] [Indexed: 11/12/2022] Open
Abstract
Dystrophin-dystroglycan complex (DGC) plays important roles for structural integrity and cell signaling, and its defects cause progressive muscular degeneration and intellectual disability. Dystrophin short product, Dp71, is abundantly expressed in multiple tissues other than muscle and is suspected of contributing to cognitive functions; however, its molecular characteristics and relation to dystroglycan (DG) remain unknown. Here, we report that DG physically interacts with Dp71 in cultured cells. Intriguingly, DG expression positively and DG knockdown negatively affected the steady-state expression, submembranous localization and subsequent phosphorylation of Dp71. Mechanistically, two EF-hand regions along with a ZZ motif of Dp71 mediate its association with the transmembrane proximal region, amino acid residues 788-806, of DG cytoplasmic domain. Most importantly, the pathogenic point mutations of Dp71, C272Y in the ZZ motif or L170del in the second EF-hand region, impaired its binding to DG, submembranous localization and phosphorylation of Dp71, indicating the relevance of DG-dependent Dp71 regulatory mechanism to pathophysiological conditions. Since Dp140, another dystrophin product, was also regulated by DG in the same manner as Dp71, our results uncovered a tight molecular relation between DG and dystrophin, which has broad implications for understanding the DGC-related cellular physiology and pathophysiology.
Collapse
Affiliation(s)
- Takahiro Fujimoto
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takeshi Yaoi
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hidekazu Tanaka
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
11
|
Dowling P, Gargan S, Murphy S, Zweyer M, Sabir H, Swandulla D, Ohlendieck K. The Dystrophin Node as Integrator of Cytoskeletal Organization, Lateral Force Transmission, Fiber Stability and Cellular Signaling in Skeletal Muscle. Proteomes 2021; 9:9. [PMID: 33540575 PMCID: PMC7931087 DOI: 10.3390/proteomes9010009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
The systematic bioanalytical characterization of the protein product of the DMD gene, which is defective in the pediatric disorder Duchenne muscular dystrophy, led to the discovery of the membrane cytoskeletal protein dystrophin. Its full-length muscle isoform Dp427-M is tightly linked to a sarcolemma-associated complex consisting of dystroglycans, sarcoglyans, sarcospan, dystrobrevins and syntrophins. Besides these core members of the dystrophin-glycoprotein complex, the wider dystrophin-associated network includes key proteins belonging to the intracellular cytoskeleton and microtubular assembly, the basal lamina and extracellular matrix, various plasma membrane proteins and cytosolic components. Here, we review the central role of the dystrophin complex as a master node in muscle fibers that integrates cytoskeletal organization and cellular signaling at the muscle periphery, as well as providing sarcolemmal stabilization and contractile force transmission to the extracellular region. The combination of optimized tissue extraction, subcellular fractionation, advanced protein co-purification strategies, immunoprecipitation, liquid chromatography and two-dimensional gel electrophoresis with modern mass spectrometry-based proteomics has confirmed the composition of the core dystrophin complex at the sarcolemma membrane. Importantly, these biochemical and mass spectrometric surveys have identified additional members of the wider dystrophin network including biglycan, cavin, synemin, desmoglein, tubulin, plakoglobin, cytokeratin and a variety of signaling proteins and ion channels.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23F2H6 Maynooth, Co. Kildare, Ireland; (P.D.); (S.G.)
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23F2H6 Maynooth, Co. Kildare, Ireland; (P.D.); (S.G.)
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23F2H6 Maynooth, Co. Kildare, Ireland
| | - Sandra Murphy
- Newcastle Fibrosis Research Group, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE24HH, UK;
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children’s Hospital, University of Bonn, D53113 Bonn, Germany; (M.Z.); (H.S.)
| | - Hemmen Sabir
- Department of Neonatology and Paediatric Intensive Care, Children’s Hospital, University of Bonn, D53113 Bonn, Germany; (M.Z.); (H.S.)
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23F2H6 Maynooth, Co. Kildare, Ireland; (P.D.); (S.G.)
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
12
|
Hildyard JCW, Rawson F, Wells DJ, Piercy RJ. Multiplex in situ hybridization within a single transcript: RNAscope reveals dystrophin mRNA dynamics. PLoS One 2020; 15:e0239467. [PMID: 32970731 PMCID: PMC7514052 DOI: 10.1371/journal.pone.0239467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/08/2020] [Indexed: 01/22/2023] Open
Abstract
Dystrophin plays a vital role in maintaining muscle health, yet low mRNA expression, lengthy transcription time and the limitations of traditional in-situ hybridization (ISH) methodologies mean that the dynamics of dystrophin transcription remain poorly understood. RNAscope is highly sensitive ISH method that can be multiplexed, allowing detection of individual transcript molecules at sub-cellular resolution, with different target mRNAs assigned to distinct fluorophores. We instead multiplex within a single transcript, using probes targeted to the 5' and 3' regions of muscle dystrophin mRNA. Our approach shows this method can reveal transcriptional dynamics in health and disease, resolving both nascent myonuclear transcripts and exported mature mRNAs in quantitative fashion (with the latter absent in dystrophic muscle, yet restored following therapeutic intervention). We show that even in healthy muscle, immature dystrophin mRNA predominates (60-80% of total), with the surprising implication that the half-life of a mature transcript is markedly shorter than the time invested in transcription: at the transcript level, supply may exceed demand. Our findings provide unique spatiotemporal insight into the behaviour of this long transcript (with implications for therapeutic approaches), and further suggest this modified multiplex ISH approach is well-suited to long genes, offering a highly tractable means to reveal complex transcriptional dynamics.
Collapse
Affiliation(s)
- John C. W. Hildyard
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, United Kingdom
| | - Faye Rawson
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, United Kingdom
| | - Dominic J. Wells
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Richard J. Piercy
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
13
|
Petkova MV, Stantzou A, Morin A, Petrova O, Morales‐Gonzalez S, Seifert F, Bellec‐Dyevre J, Manoliu T, Goyenvalle A, Garcia L, Richard I, Laplace‐Builhé C, Schuelke M, Amthor H. Live‐imaging of revertant and therapeutically restored dystrophin in the
Dmd
EGFP‐mdx
mouse model for Duchenne muscular dystrophy. Neuropathol Appl Neurobiol 2020; 46:602-614. [DOI: 10.1111/nan.12639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 01/01/2023]
Affiliation(s)
- M. V. Petkova
- Université Paris‐SaclayUVSQInsermEND‐ICAP Versailles France
- Department of Neuropediatrics Charité–Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of Health (BIH)NeuroCure Clinical Research Center Berlin Germany
| | - A. Stantzou
- Université Paris‐SaclayUVSQInsermEND‐ICAP Versailles France
| | - A. Morin
- Université Paris‐SaclayUVSQInsermEND‐ICAP Versailles France
| | - O. Petrova
- Université Paris‐SaclayUVSQInsermEND‐ICAP Versailles France
| | - S. Morales‐Gonzalez
- Department of Neuropediatrics Charité–Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of Health (BIH)NeuroCure Clinical Research Center Berlin Germany
| | - F. Seifert
- Department of Neuropediatrics Charité–Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of Health (BIH)NeuroCure Clinical Research Center Berlin Germany
| | - J. Bellec‐Dyevre
- Integrare (UMR_S951)InsermGénéthonUniv EvryUniversité Paris‐Saclay Evry France
| | - T. Manoliu
- Gustave RoussyUniversité Paris‐SaclayPlate‐forme Imagerie et Cytométrie.UMS AMMCa. Villejuif France
| | - A. Goyenvalle
- Université Paris‐SaclayUVSQInsermEND‐ICAP Versailles France
- LIA BAHN Centre scientifique de Monaco Monaco
| | - L. Garcia
- Université Paris‐SaclayUVSQInsermEND‐ICAP Versailles France
- LIA BAHN Centre scientifique de Monaco Monaco
| | - I. Richard
- Integrare (UMR_S951)InsermGénéthonUniv EvryUniversité Paris‐Saclay Evry France
| | - C. Laplace‐Builhé
- Gustave RoussyUniversité Paris‐SaclayPlate‐forme Imagerie et Cytométrie.UMS AMMCa. Villejuif France
| | - M. Schuelke
- Department of Neuropediatrics Charité–Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of Health (BIH)NeuroCure Clinical Research Center Berlin Germany
| | - H. Amthor
- Université Paris‐SaclayUVSQInsermEND‐ICAP Versailles France
- Pediatric Department University Hospital Raymond Poincaré Garches France
| |
Collapse
|
14
|
Hildyard JCW, Crawford AH, Rawson F, Riddell DO, Harron RCM, Piercy RJ. Single-transcript multiplex in situ hybridisation reveals unique patterns of dystrophin isoform expression in the developing mammalian embryo. Wellcome Open Res 2020; 5:76. [PMID: 32724863 PMCID: PMC7372313 DOI: 10.12688/wellcomeopenres.15762.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 12/24/2022] Open
Abstract
Background: The dystrophin gene has multiple isoforms: full-length dystrophin (dp427) is principally known for its expression in skeletal and cardiac muscle, but is also expressed in the brain, and several internal promoters give rise to shorter, N-terminally truncated isoforms with wider tissue expression patterns (dp260 in the retina, dp140 in the brain and dp71 in many tissues). These isoforms are believed to play unique cellular roles both during embryogenesis and in adulthood, but their shared sequence identity at both mRNA and protein levels makes study of distinct isoforms challenging by conventional methods. Methods: RNAscope is a novel in-situ hybridisation technique that offers single-transcript resolution and the ability to multiplex, with different target sequences assigned to distinct fluorophores. Using probes designed to different regions of the dystrophin transcript (targeting 5', central and 3' sequences of the long dp427 mRNA), we can simultaneously detect and distinguish multiple dystrophin mRNA isoforms at sub-cellular histological levels. We have used these probes in healthy and dystrophic canine embryos to gain unique insights into isoform expression and distribution in the developing mammal. Results: Dp427 is found in developing muscle as expected, apparently enriched at nascent myotendinous junctions. Endothelial and epithelial surfaces express dp71 only. Within the brain and spinal cord, all three isoforms are expressed in spatially distinct regions: dp71 predominates within proliferating germinal layer cells, dp140 within maturing, migrating cells and dp427 appears within more established cell populations. Dystrophin is also found within developing bones and teeth, something previously unreported, and our data suggests orchestrated involvement of multiple isoforms in formation of these tissues. Conclusions: Overall, shorter isoforms appear associated with proliferation and migration, and longer isoforms with terminal lineage commitment: we discuss the distinct structural contributions and transcriptional demands suggested by these findings.
Collapse
Affiliation(s)
- John C. W. Hildyard
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Abbe H. Crawford
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Faye Rawson
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Dominique O. Riddell
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Rachel C. M. Harron
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Richard J. Piercy
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| |
Collapse
|
15
|
Hildyard JCW, Crawford AH, Rawson F, Riddell DO, Harron RCM, Piercy RJ. Single-transcript multiplex in situ hybridisation reveals unique patterns of dystrophin isoform expression in the developing mammalian embryo. Wellcome Open Res 2020; 5:76. [PMID: 32724863 PMCID: PMC7372313 DOI: 10.12688/wellcomeopenres.15762.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2020] [Indexed: 07/30/2023] Open
Abstract
Background: The dystrophin gene has multiple isoforms: full-length dystrophin (dp427) is principally known for its expression in skeletal and cardiac muscle, but is also expressed in the brain, and several internal promoters give rise to shorter, N-terminally truncated isoforms with wider tissue expression patterns (dp260 in the retina, dp140 in the brain and dp71 in many tissues). These isoforms are believed to play unique cellular roles both during embryogenesis and in adulthood, but their shared sequence identity at both mRNA and protein levels makes study of distinct isoforms challenging by conventional methods. Methods: RNAscope is a novel in-situ hybridisation technique that offers single-transcript resolution and the ability to multiplex, with different target sequences assigned to distinct fluorophores. Using probes designed to different regions of the dystrophin transcript (targeting 5', central and 3' sequences of the long dp427 mRNA), we can simultaneously detect and distinguish multiple dystrophin mRNA isoforms at sub-cellular histological levels. We have used these probes in healthy and dystrophic canine embryos to gain unique insights into isoform expression and distribution in the developing mammal. Results: Dp427 is found in developing muscle as expected, apparently enriched at nascent myotendinous junctions. Endothelial and epithelial surfaces express dp71 only. Within the brain and spinal cord, all three isoforms are expressed in spatially distinct regions: dp71 predominates within proliferating germinal layer cells, dp140 within maturing, migrating cells and dp427 appears within more established cell populations. Dystrophin is also found within developing bones and teeth, something previously unreported, and our data suggests orchestrated involvement of multiple isoforms in formation of these tissues. Conclusions: Overall, shorter isoforms appear associated with proliferation and migration, and longer isoforms with terminal lineage commitment: we discuss the distinct structural contributions and transcriptional demands suggested by these findings.
Collapse
Affiliation(s)
- John C. W. Hildyard
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Abbe H. Crawford
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Faye Rawson
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Dominique O. Riddell
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Rachel C. M. Harron
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Richard J. Piercy
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| |
Collapse
|
16
|
Lee CY, Petkova M, Morales-Gonzalez S, Gimber N, Schmoranzer J, Meisel A, Böhmerle W, Stenzel W, Schuelke M, Schwarz JM. A spontaneous missense mutation in the chromodomain helicase DNA-binding protein 8 (CHD8) gene: a novel association with congenital myasthenic syndrome. Neuropathol Appl Neurobiol 2020; 46:588-601. [PMID: 32267004 DOI: 10.1111/nan.12617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 03/23/2020] [Indexed: 12/13/2022]
Abstract
AIMS Congenital myasthenic syndromes (CMS) are characterized by muscle weakness, ptosis and episodic apnoea. Mutations affect integral protein components of the neuromuscular junction (NMJ). Here we searched for the genetic basis of CMS in female monozygotic twins. METHODS We employed whole-exome sequencing for mutation detection and Sanger sequencing for segregation analysis. Immunohistology was done with antibodies against CHD8, rapsyn, β-catenin (βCAT) and golgin on fi-bro-blasts, human and mouse muscle. We recorded superresolution images of the NMJ using 3D-structured illumination microscopy. RESULTS We discovered a spontaneous missense mutation in CHD8 [chr14:g.21,884,051G>A, GRCh37.p11 | c.1732C>T, NM_00117062 | p.(R578C)], the gene encoding chromodomain helicase DNA-binding protein 8. This is the first missense mutation affecting Duplin, the short 110 kDa isoform of CHD8. It is known that CHD8/Duplin negatively regulates βCAT signalling in the WNT pathway and plays a role in chromatin remodelling. Inactivating CHD8 mutations are associated with autism spectrum disorder and intellectual disability in combination with facial dysmorphism, overgrowth and macrocephalus. No muscle-specific phenotype has been reported to date. Co-immunostaining with rapsyn on human and mouse muscle revealed a strong presence of CHD8 at the NMJ being located towards the sarcoplasmic side of the rapsyn cluster, where it co-localizes with βCAT. CONCLUSION We hypothesize CHD8 to have a role in the maintenance of the structural integrity and function of the NMJ. Both patients benefited from treatment with 3,4-diaminopyridine, a reversible blocker of voltage-gated potassium channels at the nerve terminal that prolongs the action potential and increases acetylcholine release.
Collapse
Affiliation(s)
- C Y Lee
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - M Petkova
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - S Morales-Gonzalez
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - N Gimber
- Advanced Medical Bioimaging Core Facility (AMBIO), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - J Schmoranzer
- Advanced Medical Bioimaging Core Facility (AMBIO), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - A Meisel
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - W Böhmerle
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - W Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - M Schuelke
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - J M Schwarz
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
17
|
Uezu A, Hisey E, Kobayashi Y, Gao Y, Bradshaw TWA, Devlin P, Rodriguiz R, Tata PR, Soderling S. Essential role for InSyn1 in dystroglycan complex integrity and cognitive behaviors in mice. eLife 2019; 8:e50712. [PMID: 31829939 PMCID: PMC6944460 DOI: 10.7554/elife.50712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
Human mutations in the dystroglycan complex (DGC) result in not only muscular dystrophy but also cognitive impairments. However, the molecular architecture critical for the synaptic organization of the DGC in neurons remains elusive. Here, we report Inhibitory Synaptic protein 1 (InSyn1) is a critical component of the DGC whose loss alters the composition of the GABAergic synapses, excitatory/inhibitory balance in vitro and in vivo, and cognitive behavior. Association of InSyn1 with DGC subunits is required for InSyn1 synaptic localization. InSyn1 null neurons also show a significant reduction in DGC and GABA receptor distribution as well as abnormal neuronal network activity. Moreover, InSyn1 null mice exhibit elevated neuronal firing patterns in the hippocampus and deficits in fear conditioning memory. Our results support the dysregulation of the DGC at inhibitory synapses and altered neuronal network activity and specific cognitive tasks via loss of a novel component, InSyn1.
Collapse
Affiliation(s)
- Akiyoshi Uezu
- Department of Cell BiologyDuke University Medical SchoolDurhamUnited States
| | - Erin Hisey
- Department of Cell BiologyDuke University Medical SchoolDurhamUnited States
| | | | - Yudong Gao
- Department of Cell BiologyDuke University Medical SchoolDurhamUnited States
| | - Tyler WA Bradshaw
- Department of Cell BiologyDuke University Medical SchoolDurhamUnited States
| | - Patrick Devlin
- Department of Cell BiologyDuke University Medical SchoolDurhamUnited States
| | - Ramona Rodriguiz
- Department of Psychiatry and Behavioral SciencesDuke University Medical SchoolDurhamUnited States
- Mouse Behavioral and Neuroendocrine Analysis Core FacilityDuke University Medical SchoolDurhamUnited States
| | | | - Scott Soderling
- Department of Cell BiologyDuke University Medical SchoolDurhamUnited States
- Department of NeurobiologyDuke University Medical SchoolDurhamUnited States
| |
Collapse
|
18
|
Xu F, Han Y, Zhu D, Tian H, Zhu H, Ren J, Gu D, Duan Y. Construction of a recombinant pIRES2-EGFP-ARTS plasmid and its effect on LX-2 cells. Mol Med Rep 2017; 16:4737-4743. [PMID: 28791356 PMCID: PMC5647026 DOI: 10.3892/mmr.2017.7172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/13/2017] [Indexed: 11/05/2022] Open
Abstract
The inhibition of the activation of hepatic stellate cells (HSCs) and the induction of their apoptosis have been investigated as potential strategies to counteract the development and progression of liver fibrosis. Previous research has suggested that apoptosis‑related protein in the transforming growth factor‑β signaling pathway (ARTS) may serve a significant role in numerous cell types; however, little is known regarding its roles in HSCs. Total RNA was extracted from LX‑2 cells, and the human full‑length ARTS gene was obtained by reverse transcription‑polymerase chain reaction and inserted into the pIRES2‑EGFP cloning vector. Subsequently, the recombinant pIRES2‑EGFP‑ARTS plasmid was transfected into LX‑2 cells by FuGENE 6 transfection reagent, and the expression of ARTS was detected by western blotting and fluorescent microscopy. In addition, the effects of pIRES2‑EGFP‑ARTS on the activation, apoptosis, viability and migration of LX‑2 cells were assessed by western blot analysis, TUNEL staining, an MTT assay, and scratch and Transwell assays, respectively. The present results demonstrated that the pIRES2‑EGFP‑ARTS vector expressing human ARTS was successfully constructed, and the overexpression of ARTS contributed to enhance the apoptosis and inhibit the activation of human LX‑2 HSCs. The present findings suggested that ARTS overexpression may have potential as a novel therapeutic strategy to reverse hepatic fibrosis.
Collapse
Affiliation(s)
- Feifan Xu
- Clinical Laboratory, The Sixth People's Hospital of Nantong, Nantong, Jiangsu 226011, P.R. China
| | - Yuanlong Han
- Clinical Laboratory, The Sixth People's Hospital of Nantong, Nantong, Jiangsu 226011, P.R. China
| | - Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226009, P.R. China
| | - Hua Tian
- Clinical Laboratory, The Sixth People's Hospital of Nantong, Nantong, Jiangsu 226011, P.R. China
| | - Huiming Zhu
- Clinical Laboratory, The Sixth People's Hospital of Nantong, Nantong, Jiangsu 226011, P.R. China
| | - Jingjing Ren
- Clinical Laboratory, The Sixth People's Hospital of Nantong, Nantong, Jiangsu 226011, P.R. China
| | - Delin Gu
- Clinical Laboratory, The Sixth People's Hospital of Nantong, Nantong, Jiangsu 226011, P.R. China
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226009, P.R. China
| |
Collapse
|