1
|
Toyohara J, Tago T, Sakata M. Process validation and preclinical development of a new PET cerebral blood flow tracer [ 11C]MMP for initial clinical trials. EJNMMI Radiopharm Chem 2024; 9:53. [PMID: 39042331 PMCID: PMC11266321 DOI: 10.1186/s41181-024-00285-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is commonly used for diagnosis of dementia because brain glucose metabolism reflects neuronal activity. However, as [18F]FDG is an analogue of glucose, accumulation of tracer in the brain is affected by plasma glucose levels. In contrast, cerebral blood flow (CBF) tracers are theoretically unaffected by plasma glucose levels and are therefore expected to be useful alternatives for the diagnosis of dementia in patients with diabetes. The techniques currently used for CBF imaging using single photon emission computed tomography (SPECT) and [15O]H2O positron emission tomography (PET), but these are limited by their insufficient resolution and sensitivity for regional brain imaging, especially in patients with brain atrophy. N-isopropyl-4-[11C]methylamphetamine ([11C]MMP) is a possible CBF tracer with high resolution and sensitivity that exhibits comparable performance to that of [15O]H2O in conscious monkey brains. We performed process validation of the radiosynthesis and preclinical development of [11C]MMP prior to clinical translation. RESULTS The decay-corrected yields of [11C]MMP at the end of synthesis were 41.4 ± 6.5%, with 99.7 ± 0.3% radiochemical purity, and 192.3 ± 22.5 MBq/nmol molar activity. All process validation batches complied with the product specifications. The acute toxicity of MMP was evaluated at a dose of 3.55 mg/kg body weight, which is 10,000 times the potential maximum clinical dose of [11C]MMP. The acute toxicity of [11C]MMP injection at 150 or 200 times, to administer a postulated dose of 740 MBq of [11C]MMP, was also evaluated after the decay-out of 11C. No acute toxicity of MMP and [11C]MMP injection was found. No mutagenic activity was observed for MMP. The effective dose calculated according to the Medical Internal Radiation Dose (MIRD) method was 5.4 µSv/MBq, and the maximum absorbed dose to the bladder wall was 57.6 µGy/MBq. MMP, a derivative of phenylalkylamine, showed binding to the sigma receptor, but had approximately 1/100 of the affinity of existing sigma receptor imaging agents. The affinity for other brain neuroreceptors was low. CONCLUSIONS [11C]MMP shows acceptable pharmacological safety at the dose required for adequate PET imaging. The potential risk associated with [11C]MMP PET imaging is well within the acceptable dose limit.
Collapse
Affiliation(s)
- Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae- cho, Itabashi-ku, Tokyo, 173-0015, Japan.
| | - Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae- cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Muneyuki Sakata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae- cho, Itabashi-ku, Tokyo, 173-0015, Japan
| |
Collapse
|
2
|
Tago T, Toyohara J. Step-by-step optimisation of the radiosynthesis of the brain HDAC6 radioligand [ 18F]FSW-100 for clinical applications. EJNMMI Radiopharm Chem 2024; 9:45. [PMID: 38831171 PMCID: PMC11147973 DOI: 10.1186/s41181-024-00277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Histone deacetylase 6 (HDAC6) is an emerging target for the treatment and diagnosis of proteinopathies. [18F]FSW-100 was recently developed as a promising brain-penetrating radioligand for HDAC6 PET imaging and the process validation of [18F]FSW-100 radiosynthesis for clinical use is complete, but no detailed synthetic strategy nor process optimisation has been reported. Here, we describe the optimisation of several processes in [18F]FSW-100 radiosynthesis, including the 18F-fluorination reaction, semipurification of the 18F-intermediate, and purification of the product by high-performance liquid chromatography (HPLC), to achieve a radiochemical yield (RCY) adequate for clinical applications of the radioligand. Our findings will aid optimisation of radiosynthesis processes in general. RESULTS In the 18F-fluorination reaction, the amount of copper reagent was reduced without reducing the nonisolated RCY of the intermediate (50%), thus reducing the risk of copper contamination in the product injection solution. Optimising the solid-phase extraction (SPE) conditions for semipurification of the intermediate improved its recovery efficiency. The addition of anti-radiolysis reagents to the mobile phase for the HPLC purification of [18F]FSW-100 increased its activity yield in radiosynthesis using a high [18F]fluoride radioactivity of approximately 50 GBq. The SPE-based formulation method and additives for the injection solution were optimised, and the resulting [18F]FSW-100 injection solution was stable for over 2 h with a radiochemical purity of greater than 95%. CONCLUSIONS Of all the reconsidered processes, we found that optimisation of the SPE-based semipurification of the intermediate and of the mobile phase for HPLC purification in particular improved the RCY of [18F]FSW-100, doubling it compared to that of the original protocol. The radioactivity of [18F]FSW-100 synthesized using the optimized protocol was sufficient for multiple doses for a clinical study.
Collapse
Affiliation(s)
- Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan.
| |
Collapse
|
3
|
Alberto S, Ordonez AA, Arjun C, Aulakh GK, Beziere N, Dadachova E, Ebenhan T, Granados U, Korde A, Jalilian A, Lestari W, Mukherjee A, Petrik M, Sakr T, Cuevas CLS, Welling MM, Zeevaart JR, Jain SK, Wilson DM. The Development and Validation of Radiopharmaceuticals Targeting Bacterial Infection. J Nucl Med 2023; 64:1676-1682. [PMID: 37770110 PMCID: PMC10626374 DOI: 10.2967/jnumed.123.265906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
The International Atomic Energy Agency organized a technical meeting at its headquarters in Vienna, Austria, in 2022 that included 17 experts representing 12 countries, whose research spanned the development and use of radiolabeled agents for imaging infection. The meeting focused largely on bacterial pathogens. The group discussed and evaluated the advantages and disadvantages of several radiopharmaceuticals, as well as the science driving various imaging approaches. The main objective was to understand why few infection-targeted radiotracers are used in clinical practice despite the urgent need to better characterize bacterial infections. This article summarizes the resulting consensus, at least among the included scientists and countries, on the current status of radiopharmaceutical development for infection imaging. Also included are opinions and recommendations regarding current research standards in this area. This and future International Atomic Energy Agency-sponsored collaborations will advance the goal of providing the medical community with innovative, practical tools for the specific image-based diagnosis of infection.
Collapse
Affiliation(s)
- Signore Alberto
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome "Sapienza," Rome, Italy
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chanda Arjun
- Radiopharmaceutical Program, Board of Radiation and Isotope Technology, Mumbai, India
| | - Gurpreet Kaur Aulakh
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Nicolas Beziere
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Thomas Ebenhan
- Nuclear Medicine, University of Pretoria, and Radiochemistry, Applied Radiation, South African Nuclear Energy Corporation, Pelindaba, South Africa
| | - Ulises Granados
- Department of Nuclear Medicine, Hospital Internacional de Colombia-Fundación Cardiovascular de Colombia, Piedecuesta, Colombia
| | - Aruna Korde
- Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Amirreza Jalilian
- Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Wening Lestari
- National Nuclear Energy Agency, South Tangerang, Indonesia
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Milos Petrik
- Institute of Molecular and Translational Medicine and Czech Advanced Technology and Research Institute, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Tamer Sakr
- Radioactive Isotopes and Generator Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | | | - Mick M Welling
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Jan Rijn Zeevaart
- Nuclear Medicine, University of Pretoria, and Radiochemistry, Applied Radiation, South African Nuclear Energy Corporation, Pelindaba, South Africa
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| |
Collapse
|
4
|
Toyohara J, Sakata M, Ishibashi K, Mossel P, Imai M, Wagatsuma K, Tago T, Imabayashi E, Colabufo NA, Luurtsema G, Ishii K. First clinical assessment of [ 18F]MC225, a novel fluorine-18 labelled PET tracer for measuring functional P-glycoprotein at the blood-brain barrier. Ann Nucl Med 2021; 35:1240-1252. [PMID: 34368924 DOI: 10.1007/s12149-021-01666-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/02/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE 5-(1-(2-[18F]fluoroethoxy))-[3-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-propyl]-5,6,7,8-tetrahydronaphthalen ([18F]MC225) is a selective substrate for P-glycoprotein (P-gp), possessing suitable properties for measuring overexpression of P-gp in the brain. This is the first-in-human study to examine safety, radiation dosimetry and P-gp function at the blood-brain barrier (BBB) of [18F]MC225 in healthy subjects. METHODS [18F]MC225 biodistribution and dosimetry were determined in 3 healthy male subjects, using serial 2 h and intermittent 4 and 6 h whole-body PET scans acquired after [18F]MC225 injection. Dynamic [18F]MC225 brain PET (90 min) was obtained in 5 healthy male subjects. Arterial blood was sampled at various time intervals during scanning and the fraction of unchanged [18F]MC225 in plasma was determined. T1-weighted MRI was performed for anatomical coregistration. Total distribution volume (VT) was estimated using 1- and 2-tissue-compartment models (1-TCM and 2-TCM, respectively). VT was also estimated using the Logan graphical method (Logan plot) (t* = 20 min). Surrogate parameters without blood sampling (area-under the curve [AUC] of regional time-activity curves [TACs] and negative slope of calculated TACs) were compared with the VT values. RESULTS No serious adverse events occurred throughout the study period. Although biodistribution implied hepatobiliary excretion, secretion of radioactivity from liver to small intestine through the gallbladder was very slow. Total renal excreted radioactivity recovered during 6 h after injection was < 2%ID. Absorbed dose was the highest in the pancreas (mean ± SD, 203 ± 45 μGy/MBq) followed by the liver (83 ± 11 μGy/MBq). Mean effective dose with and without urination was 17 ± 1 μSv/MBq. [18F]MC225 readily entered the brain, distributing homogeneously in grey matter regions. 2-TCM provided lower Akaike information criterion scores than did 1-TCM. VT estimated by Logan plot was well correlated with that of 2-TCM (r2 > 0.9). AUCs of TACs were positively correlated with VT (2-TCM) values (r2: AUC0-60 min = 0.61, AUC0-30 min = 0.62, AUC30-60 min = 0.59, p < 0.0001). Negative slope of SUV TACs was negatively correlated with VT (2-TCM) values (r2 = 0.53, p < 0.0001). CONCLUSIONS This initial evaluation indicated that [18F]MC225 is a suitable and safe PET tracer for measuring P-gp function at the BBB.
Collapse
Affiliation(s)
- Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.
| | - Muneyuki Sakata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kenji Ishibashi
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Pascalle Mossel
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Masamichi Imai
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kei Wagatsuma
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
- School of Allied Health Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan
| | - Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Etsuko Imabayashi
- Department of Diagnostic Radiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Nicola A Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, via Orabona 4, 70125, Bari, Italy
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| |
Collapse
|
5
|
Head-to-head comparison of (R)-[ 11C]verapamil and [ 18F]MC225 in non-human primates, tracers for measuring P-glycoprotein function. Eur J Nucl Med Mol Imaging 2021; 48:4307-4317. [PMID: 34117508 PMCID: PMC8566421 DOI: 10.1007/s00259-021-05411-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/11/2021] [Indexed: 11/03/2022]
Abstract
Purpose P-glycoprotein (P-gp) function is altered in several brain disorders; thus, it is of interest to monitor the P-gp function in vivo using PET. (R)-[11C]verapamil is considered the gold standard tracer to measure the P-gp function; however, it presents some drawbacks that limit its use. New P-gp tracers have been developed with improved properties, such as [18F]MC225. This study compares the characteristics of (R)-[11C]verapamil and [18F]MC225 in the same subjects. Methods Three non-human primates underwent 4 PET scans: 2 with (R)-[11C]verapamil and 2 with [18F]MC225, at baseline and after P-gp inhibition. The 30-min PET data were analyzed using 1-Tissue Compartment Model (1-TCM) and metabolite-corrected plasma as input function. Tracer kinetic parameters at baseline and after inhibition were compared. Regional differences and simplified methods to quantify the P-gp function were also assessed. Results At baseline, [18F]MC225 VT values were higher, and k2 values were lower than those of (R)-[11C]verapamil, whereas K1 values were not significantly different. After inhibition, VT values of the 2 tracers were similar; however, (R)-[11C]verapamil K1 and k2 values were higher than those of [18F]MC225. Significant regional differences between tracers were found at baseline, which disappeared after inhibition. The positive slope of the SUV-TAC was positively correlated to the K1 and VT of both tracers. Conclusion [18F]MC225 and (R)-[11C]verapamil show comparable sensitivity to measure the P-gp function in non-human primates. Moreover, this study highlights the 30-min VT as the best parameter to measure decreases in the P-gp function with both tracers. [18F]MC225 may become the first radiofluorinated tracer able to measure decreases and increases in the P-gp function due to its higher baseline VT. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05411-2.
Collapse
|
6
|
Tago T, Toyohara J, Ishii K. Preclinical Evaluation of an 18F-Labeled SW-100 Derivative for PET Imaging of Histone Deacetylase 6 in the Brain. ACS Chem Neurosci 2021; 12:746-755. [PMID: 33502174 DOI: 10.1021/acschemneuro.0c00774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylase 6 (HDAC6), an enzyme involved in protein degradation, exhibits several unique properties, such as cytoplasmic localization and ubiquitin binding. HDAC6 has emerged as an interesting therapeutic target in the treatment of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Techniques enabling noninvasive HDAC6 imaging in the brain could enhance understanding of its pathologic role, but development of brain-penetrating radioligands for HDACs imaging by positron emission tomography (PET) remains challenging. Here, we report the synthesis and evaluation of an 18F-labeled tetrahydroquinoline derivative, [18F]2, based on the HDAC6 selective inhibitor SW-100 as a brain HDAC6 imaging radioligand. [18F]2 was synthesized via copper-mediated radiofluorination from an arylboronic precursor, followed by removal of the catalyst by solid-phase extraction and then hydroxamic acid formation. [18F]2 demonstrated good penetration and moderate stability in the mouse brain. In mouse plasma, however, [18F]2 was rapidly metabolized to a corresponding carboxylic acid form. Blocking studies in mice with unlabeled compound 2 and HDAC6 selective inhibitors, including tubastatin A and ACY-775, demonstrated that the HDAC6 inhibitors displaced over 80% of [18F]2 taken up in the brain, indicating selective binding of [18F]2. These results suggest that [18F]2 is a potentially useful PET radioligand for brain HDAC6 imaging.
Collapse
Affiliation(s)
- Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho,
Itabashi-ku, Tokyo 173-0015, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho,
Itabashi-ku, Tokyo 173-0015, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho,
Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
7
|
García-Varela L, Arif WM, Vállez García D, Kakiuchi T, Ohba H, Harada N, Tago T, Elsinga PH, Tsukada H, Colabufo NA, Dierckx RAJO, van Waarde A, Toyohara J, Boellaard R, Luurtsema G. Pharmacokinetic Modeling of [ 18F]MC225 for Quantification of the P-Glycoprotein Function at the Blood-Brain Barrier in Non-Human Primates with PET. Mol Pharm 2020; 17:3477-3486. [PMID: 32787277 PMCID: PMC7482398 DOI: 10.1021/acs.molpharmaceut.0c00514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
[18F]MC225 has been developed as a weak substrate of
P-glycoprotein (P-gp) aimed to measure changes in the P-gp function
at the blood–brain barrier with positron emission tomography.
This study evaluates [18F]MC225 kinetics in non-human primates
and investigates the effect of both scan duration and P-gp inhibition.
Three rhesus monkeys underwent two 91-min dynamic scans with blood
sampling at baseline and after P-gp inhibition (8 mg/kg tariquidar).
Data were analyzed using the 1-tissue compartment model (1-TCM) and
2-tissue compartment model (2-TCM) fits using metabolite-corrected
plasma as the input function and for various scan durations (10, 20,
30, 60, and 91 min). The preferred model was chosen according to the
Akaike information criterion and the standard errors (%) of the estimated
parameters. For the 91-min scan duration, the influx constant K1 increased by 40.7% and the volume of distribution
(VT) by 30.4% after P-gp inhibition, while
the efflux constant k2 did not change
significantly. Similar changes were found for all evaluated scan durations. K1 did not depend on scan duration (10 min—K1 = 0.2191 vs 91 min—K1 = 0.2258), while VT and k2 did. A scan duration of 10 min seems sufficient
to properly evaluate the P-gp function using K1 obtained with 1-TCM. For the 91-min scan, VT and K1 can be estimated
with a 2-TCM, and both parameters can be used to assess P-gp function.
Collapse
Affiliation(s)
- Lara García-Varela
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9713 GZ, the Netherlands
| | - Wejdan M Arif
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9713 GZ, the Netherlands.,Department of Radiological Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - David Vállez García
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9713 GZ, the Netherlands
| | - Takeharu Kakiuchi
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita, Hamamatsu, Shizuoka 434-8601, Japan
| | - Hiroyuki Ohba
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita, Hamamatsu, Shizuoka 434-8601, Japan
| | - Norihiro Harada
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita, Hamamatsu, Shizuoka 434-8601, Japan
| | - Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9713 GZ, the Netherlands
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita, Hamamatsu, Shizuoka 434-8601, Japan
| | - Nicola Antonio Colabufo
- Department of Pharmacy, University of Bari Aldo Moro, Bari 70121, Italy.,Biofordrug, Spin-off Università degli Studi di Bari "A. Moro", via Dante 99, Triggiano, Bari 70019, Italy
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9713 GZ, the Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9713 GZ, the Netherlands
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9713 GZ, the Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9713 GZ, the Netherlands
| |
Collapse
|