1
|
Entrenas-García C, Suárez-Cárdenas JM, Fernández-Rodríguez R, Bautista R, Claros MG, Garrido JJ, Zaldívar-López S. miR-215 Modulates Ubiquitination to Impair Inflammasome Activation and Autophagy During Salmonella Typhimurium Infection in Porcine Intestinal Cells. Animals (Basel) 2025; 15:431. [PMID: 39943201 PMCID: PMC11815736 DOI: 10.3390/ani15030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
The host response to S. Typhimurium infection can be post-transcriptionally regulated by miRNAs. In this study, we investigated the role of miR-215 using both in vivo porcine infection models and in vitro intestinal epithelial cell lines. Several miRNAs were found to be dysregulated in the porcine ileum during infection with wild-type and SPI2-defective mutant strains of S. Typhimurium, with some changes being SPI2-dependent. Notably, miR-215 was significantly downregulated during infection. To explore its functional role, gain-of-function experiments were performed by transfecting porcine intestinal epithelial cells (IPEC-J2) with a miR-215-5p mimic, followed by label-free quantitative (LFQ) proteomic analysis. This analysis identified 157 proteins, of which 35 were downregulated in response to miR-215 overexpression, suggesting they are potential targets of this miRNA. Among these, E2 small ubiquitin-like modifier (SUMO)-conjugating enzyme UBC9 and E3 ubiquitin-ligase HUWE1 were identified as key targets, both of which are upregulated during S. Typhimurium infection. The miR-215-mediated downregulation of these proteins resulted in a significant decrease in overall ubiquitination, a process crucial for regulating inflammasome activation and autophagy. Consistently, inflammasome markers caspase 1 (CASP1) and apoptosis-associated speck-like protein containing a CARD (ASC), as well as autophagy markers microtubule-associated protein 1A/1B-light chain 3 (LC3B) and Ras-related protein Rab-11 (RAB11A), showed decreased expression in miR-215 mimic-transfected and infected IPEC-J2 cells. To further validate these findings, human intestinal epithelial cells (HT29) were used as a complementary model, providing additional insights into conserved immune pathways and extending the observations made in the porcine system. Overall, our findings demonstrate that miR-215 plays a significant role in modulating host inflammasome activation and autophagy by targeting proteins involved in ubiquitination during S. Typhimurium infection.
Collapse
Affiliation(s)
- Carmen Entrenas-García
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonosis and Emergent Diseases ENZOEM, Department of Genetics, University of Cordoba, 14014 Cordoba, Spain; (C.E.-G.); (J.M.S.-C.); (R.F.-R.)
| | - José M. Suárez-Cárdenas
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonosis and Emergent Diseases ENZOEM, Department of Genetics, University of Cordoba, 14014 Cordoba, Spain; (C.E.-G.); (J.M.S.-C.); (R.F.-R.)
- GA-14 Research Group, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Cordoba, Spain
| | - Raúl Fernández-Rodríguez
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonosis and Emergent Diseases ENZOEM, Department of Genetics, University of Cordoba, 14014 Cordoba, Spain; (C.E.-G.); (J.M.S.-C.); (R.F.-R.)
- GA-14 Research Group, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Cordoba, Spain
| | - Rocío Bautista
- Plataforma Andaluza de Bioinformática, Supercomputing and Bioinnovation Center (SCBI), Universidad de Málaga, 29590 Malaga, Spain; (R.B.); (M.G.C.)
- Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, 29590 Malaga, Spain
| | - M. Gonzalo Claros
- Plataforma Andaluza de Bioinformática, Supercomputing and Bioinnovation Center (SCBI), Universidad de Málaga, 29590 Malaga, Spain; (R.B.); (M.G.C.)
- Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, 29590 Malaga, Spain
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-UMA-CSIC), 29590 Malaga, Spain
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, 29010 Malaga, Spain
- CIBER de Enfermedades Raras (CIBERER) U741, 29071 Malaga, Spain
| | - Juan J. Garrido
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonosis and Emergent Diseases ENZOEM, Department of Genetics, University of Cordoba, 14014 Cordoba, Spain; (C.E.-G.); (J.M.S.-C.); (R.F.-R.)
- GA-14 Research Group, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Cordoba, Spain
| | - Sara Zaldívar-López
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonosis and Emergent Diseases ENZOEM, Department of Genetics, University of Cordoba, 14014 Cordoba, Spain; (C.E.-G.); (J.M.S.-C.); (R.F.-R.)
- GA-14 Research Group, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Cordoba, Spain
| |
Collapse
|
2
|
Monson MS, Gurung M, Bearson BL, Whelan SJ, Trachsel JM, Looft T, Sylte MJ, Bearson SM. Evaluating two live-attenuated vaccines against Salmonella enterica serovar Reading in turkeys: reduced tissue colonization and cecal tonsil transcriptome responses. Front Vet Sci 2024; 11:1502303. [PMID: 39748866 PMCID: PMC11694450 DOI: 10.3389/fvets.2024.1502303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Vaccines that cross-protect across serovars of Salmonella enterica (Salmonella) would be a beneficial intervention against emerging and persistent Salmonella isolates of concern for the turkey industry. The 2017-2019 foodborne outbreak of Salmonella enterica serovar Reading (S. Reading) revealed the need for effective control of this serovar in turkey production. This study evaluated two live-attenuated Salmonella vaccines, an internally developed cross-protective vaccine and a commercially available vaccine, against an outbreak-associated strain of S. Reading in turkeys. At 1 day and 3 weeks of age, male turkey poults were either mock-vaccinated with phosphate buffered saline (PBS) or given one of the vaccines by oral gavage (primary and booster) or aerosol spray (primary) then drinking water (booster). At 7 weeks of age, poults were challenged with 109 colony forming units (CFU) of S. Reading; a mock-vaccinated group was mock-challenged with PBS. Colonization of the cecal contents and cecal tonsil was 1.5-3 log10 CFU/g lower in vaccinated birds than mock-vaccinated birds at 7 and/or 14 days post-inoculation (DPI). Salmonella dissemination to the spleen was significantly reduced by both vaccines. Gene expression of intestinal transporters (such as SCNN1B and SLC10A2) and tight junction proteins was significantly decreased in the turkey cecal tonsil transcriptome at 2 DPI with S. Reading. Vaccination with either vaccine mitigated most cecal tonsil gene expression responses to S. Reading challenge. Therefore, both the internally developed vaccine and commercial vaccine were cross-protective against colonization and dissemination, and both were able to limit transcriptional changes from challenge in intestinal health-related genes in the cecal tonsil, thereby providing vaccination efficacy and impact data against S. Reading in turkeys.
Collapse
Affiliation(s)
- Melissa S. Monson
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Ames, IA, United States
| | - Manoj Gurung
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Ames, IA, United States
- Oak Ridge Institute for Science and Education, Agricultural Research Service (ARS) Research Participation Program, Oak Ridge, TN, United States
| | - Bradley L. Bearson
- Agroecosystems Management Research Unit, National Laboratory for Agriculture and the Environment, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Ames, IA, United States
| | - Samuel J. Whelan
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Ames, IA, United States
- Oak Ridge Institute for Science and Education, Agricultural Research Service (ARS) Research Participation Program, Oak Ridge, TN, United States
| | - Julian M. Trachsel
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Ames, IA, United States
| | - Torey Looft
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Ames, IA, United States
| | - Matthew J. Sylte
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Ames, IA, United States
| | - Shawn M.D. Bearson
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Ames, IA, United States
| |
Collapse
|
3
|
Jia H, Dong N. Effects of bile acid metabolism on intestinal health of livestock and poultry. J Anim Physiol Anim Nutr (Berl) 2024; 108:1258-1269. [PMID: 38649786 DOI: 10.1111/jpn.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Bile acids are synthesised in the liver and are essential amphiphilic steroids for maintaining the balance of cholesterol and energy metabolism in livestock and poultry. They can be used as novel feed additives to promote fat utilisation in the diet and the absorption of fat-soluble substances in the feed to improve livestock performance and enhance carcass quality. With the development of understanding of intestinal health, the balance of bile acid metabolism is closely related to the composition and growth of livestock intestinal microbiota, inflammatory response, and metabolic diseases. This paper systematically reviews the effects of bile acid metabolism on gut health and gut microbiology in livestock. In addition, our paper summarised the role of bile acid metabolism in performance and disease control.
Collapse
Affiliation(s)
- Hongpeng Jia
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
4
|
Yi SW, Lee HG, Kim E, Jung YH, Bok EY, Cho A, Do YJ, So KM, Hur TY, Oh SI. Gut microbiota alteration with growth performance, histopathological lesions, and immune responses in Salmonella Typhimurium-infected weaned piglets. Vet Anim Sci 2023; 22:100324. [PMID: 38125715 PMCID: PMC10730377 DOI: 10.1016/j.vas.2023.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Salmonella Typhimurium can cause gastroenteritis in weaned piglets, which are particularly vulnerable to dietary changes and dysfunction of their immature organs. The colonization of S. Typhimurium could disrupt the gut microbiota and increase susceptibility to the bacterium. This study aimed to investigate the alterations of gut microbiota in S. Typhimurium-infected weaned piglets. Ten 49-day-old pigs were divided into two groups: S. Typhimurium-inoculated (ST, n = 6) and negative control (NC, n = 4) groups. The body weight and S. Typhimurium fecal shedding were monitored for 14 days after S. Typhimurium inoculation (dpi). The intestinal tissues were collected at 14 dpi; histopathological lesions and cytokine gene expression were evaluated. The gut microbiome composition and short-chain fatty acid concentrations were analyzed in fecal samples collected at 14 dpi. The average daily gain and gut microbiota alpha diversity in ST group tended to be lower than NC group at 14 dpi. Linear discriminant analysis effect size results showed a significant increase in the abundance of two genera and five species, while a significant decrease was observed in the five genera and nine species within the gut microbiota of ST group. Among the significantly less abundant bacteria in the ST group, Lachnospira eligens and Anaerobium acetethylicum produce acetate and butyrate, and may be considered as key S. Typhimurium infection-preventing bacteria. The overall results provide invaluable information about changes in the gut microbiota of S. Typhimurium-infected weaned piglets, which can be used to develop alternative measures to antibiotics and prevent ST bacterial infection.
Collapse
Affiliation(s)
- Seung-Won Yi
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Han Gyu Lee
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Eunju Kim
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Young-Hun Jung
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Eun-Yeong Bok
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Ara Cho
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Yoon Jung Do
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Kyoung-Min So
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Tai-Young Hur
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Sang-Ik Oh
- Laboratory of Veterinary Pathology and Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do 54596, South Korea
| |
Collapse
|
5
|
Bernad-Roche M, Marín-Alcalá CM, Vico JP, Mainar-Jaime RC. Salmonella Control in Fattening Pigs through the Use of Esterified Formic Acid in Drinking Water Shortly before Slaughter. Animals (Basel) 2023; 13:2814. [PMID: 37760214 PMCID: PMC10525106 DOI: 10.3390/ani13182814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The presence of Salmonella in pig feces is a major source of abattoir and carcass contamination, and one of the main sources of human salmonellosis. This study assessed whether using a form of esterified formic acid (30% formic acid) in drinking water (10 kg/1000 L) 5 days before slaughter could be a helpful strategy to mitigate this public health issue. Thus, 240 pigs from three Salmonella-positive commercial fattening farms were selected. From each farm, 40 pigs were allocated to a control group (CG) and 40 to a treatment group (TG). At the abattoir, fecal samples from both groups were collected for Salmonella detection (ISO 6579-1:2017) and quantification (ISO/TS 6579-2:2012). Salmonella was present in 35% (95% IC = 29.24-41.23) of the samples collected. The prevalence was significantly higher in the CG than in the TG (50% vs. 20%; p < 0.001). In all farms, the TG showed a lower percentage of shedders than the CG. A random-effects logistic model showed that the odds of shedding Salmonella were 5.63 times higher (95% CI = 2.92-10.8) for the CG than for the TG. Thus, the proportion of pigs shedding Salmonella that was prevented in the TG due to the use of this form of organic acid was 82.2%. In addition, a Chi-squared analysis for trends showed that the higher the Salmonella count, the higher the odds of the sample belonging to the CG. These results suggest that adding this type of acid to drinking water 5 days before slaughter could reduce the proportion of Salmonella-shedding pigs and the Salmonella loads in the guts of shedder pigs.
Collapse
Affiliation(s)
- María Bernad-Roche
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain;
| | - Clara María Marín-Alcalá
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50059 Zaragoza, Spain;
| | - Juan Pablo Vico
- IRNASUS-CONICET-Universidad Católica de Córdoba, Facultad de Ciencias Agropecuarias, Universidad Católica de Córdoba, Córdoba 5000, Argentina;
| | - Raúl Carlos Mainar-Jaime
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain;
| |
Collapse
|
6
|
Weiss J, Vacher H, Trouillet AC, Leinders-Zufall T, Zufall F, Chamero P. Sensing and avoiding sick conspecifics requires Gαi2 + vomeronasal neurons. BMC Biol 2023; 21:152. [PMID: 37424020 DOI: 10.1186/s12915-023-01653-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Rodents utilize chemical cues to recognize and avoid other conspecifics infected with pathogens. Infection with pathogens and acute inflammation alter the repertoire and signature of olfactory stimuli emitted by a sick individual. These cues are recognized by healthy conspecifics via the vomeronasal or accessory olfactory system, triggering an innate form of avoidance behavior. However, the molecular identity of the sensory neurons and the higher neural circuits involved in the detection of sick conspecifics remain poorly understood. RESULTS We employed mice that are in an acute state of inflammation induced by systemic administration of lipopolysaccharide (LPS). Through conditional knockout of the G-protein Gαi2 and deletion of other key sensory transduction molecules (Trpc2 and a cluster of 16 vomeronasal type 1 receptors), in combination with behavioral testing, subcellular Ca2+ imaging, and pS6 and c-Fos neuronal activity mapping in freely behaving mice, we show that the Gαi2+ vomeronasal subsystem is required for the detection and avoidance of LPS-treated mice. The active components underlying this avoidance are contained in urine whereas feces extract and two selected bile acids, although detected in a Gαi2-dependent manner, failed to evoke avoidance behavior. Our analyses of dendritic Ca2+ responses in vomeronasal sensory neurons provide insight into the discrimination capabilities of these neurons for urine fractions from LPS-treated mice, and how this discrimination depends on Gαi2. We observed Gαi2-dependent stimulation of multiple brain areas including medial amygdala, ventromedial hypothalamus, and periaqueductal grey. We also identified the lateral habenula, a brain region implicated in negative reward prediction in aversive learning, as a previously unknown target involved in these tasks. CONCLUSIONS Our physiological and behavioral analyses indicate that the sensing and avoidance of LPS-treated sick conspecifics depend on the Gαi2 vomeronasal subsystem. Our observations point to a central role of brain circuits downstream of the olfactory periphery and in the lateral habenula in the detection and avoidance of sick conspecifics, providing new insights into the neural substrates and circuit logic of the sensing of inflammation in mice.
Collapse
Affiliation(s)
- Jan Weiss
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany.
| | - Hélène Vacher
- Laboratoire de Physiologie de la Reproduction et des Comportements, UMR 0085 INRAE-CNRS-IFCE-University of Tours, Nouzilly, France
| | - Anne-Charlotte Trouillet
- Laboratoire de Physiologie de la Reproduction et des Comportements, UMR 0085 INRAE-CNRS-IFCE-University of Tours, Nouzilly, France
| | - Trese Leinders-Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany.
| | - Pablo Chamero
- Laboratoire de Physiologie de la Reproduction et des Comportements, UMR 0085 INRAE-CNRS-IFCE-University of Tours, Nouzilly, France.
| |
Collapse
|
7
|
Zaldívar-López S, Herrera-Uribe J, Bautista R, Jiménez Á, Moreno Á, Claros MG, Garrido JJ. Salmonella Typhimurium induces genome-wide expression and phosphorylation changes that modulate immune response, intracellular survival and vesicle transport in infected neutrophils. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104597. [PMID: 36450302 DOI: 10.1016/j.dci.2022.104597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Salmonella Typhimurium is a food-borne pathogen that causes salmonellosis. When in contact with the host, neutrophils are rapidly recruited to act as first line of defense. To better understand the pathogenesis of this infection, we used an in vitro model of neutrophil infection to perform dual RNA-sequencing (both host and pathogen). In addition, and given that many pathogens interfere with kinase-mediated phosphorylation in host signaling, we performed a phosphoproteomic analysis. The immune response was overall diminished in infected neutrophils, mainly JAK/STAT and toll-like receptor signaling pathways. We found decreased expression of proinflammatory cytokine receptor genes and predicted downregulation of the mitogen-activated protein (MAPK) signaling pathway. Also, Salmonella infection inhibited interferons I and II signaling pathways by upregulation of SOCS3 and subsequent downregulation of STAT1 and STAT2. Additionally, phosphorylation of PSMC2 and PSMC4, proteasome regulatory proteins, was decreased in infected neutrophils. Cell viability and survival was increased by p53 signaling, cell cycle arrest and NFkB-proteasome pathways activation. Combined analysis of RNA-seq and phosphoproteomics also revealed inhibited vesicle transport mechanisms mediated by dynein/dynactin and exocyst complexes, involved in ER-to-Golgi transport and centripetal movement of lysosomes and endosomes. Among the overexpressed virulence genes from Salmonella we found potential effectors responsible of these dysregulations, such as spiC, sopD2, sifA or pipB2, all of them involved in intracellular replication. Our results suggest that Salmonella induces (through overexpression of virulence factors) transcriptional and phosphorylation changes that increases neutrophil survival and shuts down immune response to minimize host response, and impairing intracellular vesicle transport likely to keep nutrients for replication and Salmonella-containing vacuole formation and maintenance.
Collapse
Affiliation(s)
- Sara Zaldívar-López
- Grupo de Inmunogenómica y Patogénesis Molecular, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain.
| | - Juber Herrera-Uribe
- Grupo de Inmunogenómica y Patogénesis Molecular, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - Rocío Bautista
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, Málaga, Spain
| | - Ángeles Jiménez
- Grupo de Inmunogenómica y Patogénesis Molecular, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - Ángela Moreno
- Grupo de Inmunogenómica y Patogénesis Molecular, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - M Gonzalo Claros
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, Málaga, Spain; Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | - Juan J Garrido
- Grupo de Inmunogenómica y Patogénesis Molecular, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| |
Collapse
|
8
|
Nguyen TX, Agazzi A, McGill S, Weidt S, Han QH, Gelemanović A, McLaughlin M, Savoini G, Eckersall PD, Burchmore R. Proteomic changes associated with maternal dietary low ω6:ω3 ratio in piglets supplemented with seaweed Part II: Ileum proteomes. J Proteomics 2023; 270:104739. [PMID: 36174954 DOI: 10.1016/j.jprot.2022.104739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 02/01/2023]
Abstract
This study evaluates how long-term dietary low ω6:ω3 ratio in sows and offspring's seaweed (SW) intake affects piglet intestinal function and growth through modifying ileum proteome. Sows were assigned to either control diet (CR, ω6:ω3 ratio = 13:1) or treatment diet (LR, ω6:ω3 = 4:1) during gestation and lactation (n = 8 each). The male weaned offspring were received a basal diet with or without SW powder supplementation (4 g/kg) for 21 days, denoted as SW and CT groups, respectively. In total, four groups of weaned piglets were formed following maternal and offspring's diets combination, represented by CRCT, CRSW, LRCT, and LRSW (n = 10 each). Piglet ileum tissue was collected on day 22 post-weaning and analysed using TMT-based quantitative proteomics. The differentially abundant proteins (n = 300) showed the influence of maternal LR diet on protein synthesis, cell proliferation, and cell cycle regulation. In contrast, the SW diet lowered the inflammation severity and promoted ileal tissue development in CRSW piglets but reduced the fat absorption capacity in LRSW piglets. These results uncovered the mechanism behind the anti-inflammation and intestinal-boosting effects of maternal LR diet in piglets supplemented with SW.
Collapse
Affiliation(s)
- Thi Xuan Nguyen
- Università degli Studi di Milano, Via dell'Università, 6, 26900 Lodi, Italy; University of Glasgow, Bearsden Rd, G61 1QH, United Kingdom; Vietnam National University of Agriculture, Hanoi, Viet Nam.
| | - Alessandro Agazzi
- Università degli Studi di Milano, Via dell'Università, 6, 26900 Lodi, Italy
| | - Suzanne McGill
- University of Glasgow, Bearsden Rd, G61 1QH, United Kingdom
| | - Stefan Weidt
- University of Glasgow, Bearsden Rd, G61 1QH, United Kingdom
| | - Quang Hanh Han
- University of Glasgow, Bearsden Rd, G61 1QH, United Kingdom; Vietnam National University of Agriculture, Hanoi, Viet Nam
| | - Andrea Gelemanović
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000 Split, Croatia
| | | | - Giovanni Savoini
- Università degli Studi di Milano, Via dell'Università, 6, 26900 Lodi, Italy
| | | | | |
Collapse
|
9
|
Lessard M, Talbot G, Bergeron N, Lo Verso L, Morissette B, Yergeau É, Matte JJ, Bissonnette N, Blais M, Gong J, Wang Q, Quessy S, Guay F. Weaning diet supplemented with health-promoting feed additives influences microbiota and immune response in piglets challenged with Salmonella. Vet Immunol Immunopathol 2023; 255:110533. [PMID: 36563567 DOI: 10.1016/j.vetimm.2022.110533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/09/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
The aim of this study was to evaluate the potential of micronutrients and feed additives to modulate intestinal microbiota and systemic and mucosal immune responses in weaned pigs infected with Salmonella. At weaning, 32 litters of 12 piglets each were allocated to four dietary treatments: 1) control diet (CTRL), 2) CTRL supplemented with chlortetracycline (ATB), 3) CTRL supplemented with a cocktail of feed additives (CKTL); and 4) CKTL diet containing bovine colostrum in replacement of spray-dry animal plasma (CKTL+COL). The CKTL supplement included cranberry extract, encapsulated carvacrol and yeast-derived products and an enriched selenium and vitamin premix. Three weeks after weaning, four pigs per litter were orally inoculated with Salmonella Typhimurium DT104. Half of them were euthanized 3 days post-infection (dpi) and the other half, 7 dpi. The expression of IL6, TNF, IL8, monocyte chemoattractant protein 1 (MCP1), IFNG, cyclooxygenase 2 (COX2), glutathione peroxidase 2 (GPX2) and β-defensin 2 (DEFB2) showed a peaked response at 3 dpi (P < 0.05). Results also revealed that DEFB2 expression was higher at 3 dpi in CTRL and CKTL groups than in ATB (P = 0.01 and 0.06, respectively) while GPX2 gene was markedly increased at 3 and 7 dpi in pigs fed CKTL or CKTL+COL diet compared to CTRL pigs (P < 0.05). In piglets fed CKTL or CKTL+COL diet, intestinal changes in microbial communities were less pronounced after exposure to Salmonella compared to CTRL and progressed faster toward the status before Salmonella challenge (AMOVA P < 0.01). Furthermore, the relative abundance of several families was either up- or down-regulated in pigs fed CKTL or CKTL+COL diet after Salmonella challenge. In conclusion, weaning diet enriched with bovine colostrum, vitamins and mixture of feed additives mitigated the influence of Salmonella infection on intestinal microbial populations and modulate systemic and intestinal immune defences.
Collapse
Affiliation(s)
- Martin Lessard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine (FMV), Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada; Département de Biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada; Faculté des sciences de l'agriculture et de l'alimentation, Département de sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
| | - Guylaine Talbot
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine (FMV), Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada; Département de Biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.
| | - Nadia Bergeron
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine (FMV), Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada
| | - Luca Lo Verso
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; Faculté des sciences de l'agriculture et de l'alimentation, Département de sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
| | - Bruno Morissette
- Département de Biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Étienne Yergeau
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine (FMV), Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada; Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Université du Québec, Laval, QC, Canada
| | - Jacques J Matte
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada
| | - Mylène Blais
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine (FMV), Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Qi Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Sylvain Quessy
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine (FMV), Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada
| | - Frédéric Guay
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine (FMV), Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada; Faculté des sciences de l'agriculture et de l'alimentation, Département de sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
10
|
Larabi AB, Masson HLP, Bäumler AJ. Bile acids as modulators of gut microbiota composition and function. Gut Microbes 2023; 15:2172671. [PMID: 36740850 PMCID: PMC9904317 DOI: 10.1080/19490976.2023.2172671] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/16/2023] [Indexed: 02/07/2023] Open
Abstract
Changes in the composition of gut-associated microbial communities are associated with many human illnesses, but the factors driving dysbiosis remain incompletely understood. One factor governing the microbiota composition in the gut is bile. Bile acids shape the microbiota composition through their antimicrobial activity and by activating host signaling pathways that maintain gut homeostasis. Although bile acids are host-derived, their functions are integrally linked to bacterial metabolism, which shapes the composition of the intestinal bile acid pool. Conditions that change the size or composition of the bile acid pool can trigger alterations in the microbiota composition that exacerbate inflammation or favor infection with opportunistic pathogens. Therefore, manipulating the composition or size of the bile acid pool might be a promising strategy to remediate dysbiosis.
Collapse
Affiliation(s)
- Anaïs B. Larabi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, USA
| | - Hugo L. P. Masson
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, USA
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, USA
| |
Collapse
|
11
|
Quercetin Ameliorates Lipopolysaccharide-Induced Duodenal Inflammation through Modulating Autophagy, Programmed Cell Death and Intestinal Mucosal Barrier Function in Chicken Embryos. Animals (Basel) 2022; 12:ani12243524. [PMID: 36552443 PMCID: PMC9774289 DOI: 10.3390/ani12243524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Diarrhea has been a global health problem for centuries, and the treatment has become increasingly difficult duo to the antibiotics overuse and resistance. Quercetin is a common flavonoid of extracts of vegetables, fruits, and traditional Chinese herbs, however, the mechanism of quercetin alleviating LPS-induced duodenal inflammation remains elusive. Specific pathogen-free chicken embryos (n = 120) were allocated to groups including control, PBS with or without alcohol, LPS (125 ng/egg) with or without quercetin (10, 20, or 40 nmol/egg, respectively), and quercetin groups (10, 20, or 40 nmol/egg). Fifteen day-old embryonated eggs were inoculated with abovementioned solutions via the allantoic cavity. At embryonic day 19, the duodena of the embryos were collected for histopathological examination, RNA extraction and real-time polymerase chain reaction, immunohistochemical investigations, and Western blotting. The results demonstrated quercetin enhanced the inflammatory cell infiltration in the Peyer's patch of the intestinal mucosa after LPS induction. The LPS-induced expressions of these inflammation-related factors (TLR4, IL-1β, MMP3, MMP9, NFKB1, IFNγ, IL-8, IL-6) were completely blocked by quercetin. Quercetin also decreased the protein expression of TLR4, IL-1β, MMP3, and MMP9 after LPS induction. Quercetin could down-regulate autophagy gene expression (ATG5, LC3-1, LC3-2, and LKB1), and decreased the protein expression of ATG5, and LC3-1/LC3-2 after LPS induction. Quercetin treatment prevented LPS-induced increases of the gene expressions of programmed cell death factors (TNFα, Fas, CASP1, CASP3, CASP12, Drp1, and RIPK1); meanwhile, quercetin decreased the protein expression of CASP1 and CASP3 after LPS challenge. LPS reduced the gene expression of mucin 2, but upregulated the mRNA and protein expression of claudin 1, occludin, and ZO-1, and this was balanced by quercetin. This evidence suggests that quercetin can alleviate duodenal inflammation induced by LPS through modulating autophagy, programmed cell death, intestinal barrier function.
Collapse
|
12
|
Trachsel JM, Bearson BL, Kerr BJ, Shippy DC, Byrne KA, Loving CL, Bearson SMD. Short Chain Fatty Acids and Bacterial Taxa Associated with Reduced Salmonella enterica serovar I 4,[5],12:i:- Shedding in Swine Fed a Diet Supplemented with Resistant Potato Starch. Microbiol Spectr 2022; 10:e0220221. [PMID: 35532355 PMCID: PMC9241843 DOI: 10.1128/spectrum.02202-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/17/2022] [Indexed: 12/03/2022] Open
Abstract
Salmonella enterica serovar I 4,[5],12:i:- is a foodborne pathogen of concern because many isolates are multidrug-resistant (resistant to ≥3 antimicrobial classes) and metal tolerant. In this study, three in-feed additives were individually tested for their ability to reduce Salmonella I 4,[5],12:i:- shedding in swine: resistant potato starch (RPS), high amylose corn starch, and a fatty acid blend, compared with a standard control diet over 21 days. Only RPS-fed pigs exhibited a reduction in Salmonella fecal shedding, different bacterial community compositions, and different cecal short chain fatty acid (SCFA) profiles relative to control animals. Within the RPS treatment group, pigs shedding the least Salmonella tended to have greater cecal concentrations of butyrate, valerate, caproate, and succinate. Additionally, among RPS-fed pigs, several bacterial taxa (Prevotella_7, Olsenella, and Bifidobacterium, and others) exhibited negative relationships between their abundances of and the amount of Salmonella in the feces of their hosts. Many of these same taxa also had significant positive associations with cecal concentrations of butyrate, valerate, caproate, even though they are not known to produce these SCFAs. Together, these data suggest the RPS-associated reduction in Salmonella shedding may be dependent on the establishment of bacterial cross feeding interactions that result in the production of certain SCFAs. However, directly feeding a fatty acid mix did not replicate the effect. RPS supplementation could be an effective means to reduce multidrug-resistant (MDR) S. enterica serovar I 4,[5],12:i:- in swine, provided appropriate bacterial communities are present in the gut. IMPORTANCE Prebiotics, such as resistant potato starch (RPS), are types of food that help to support beneficial bacteria and their activities in the intestines. Salmonella enterica serovar I 4,[5],12:i:- is a foodborne pathogen that commonly resides in the intestines of pigs without disease, but can make humans sick if unintentionally consumed. Here we show that in Salmonella inoculated pigs, feeding them a diet containing RPS altered the colonization and activity of certain beneficial bacteria in a way that reduced the amount of Salmonella in their feces. Additionally, within those fed RPS, swine with higher abundance of these types of beneficial bacteria had less Salmonella I 4,[5],12:i:- in their feces. This work illustrates likely synergy between the prebiotic RPS and the presence of certain gut microorganisms to reduce the amount of Salmonella in the feces of pigs and therefore reduce the risk that humans will become ill with MDR Salmonella serovar I 4,[5],12:i:-.
Collapse
Affiliation(s)
- Julian M. Trachsel
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| | - Bradley L. Bearson
- Agroecosystems Management Research Unit, National Laboratory for Agriculture and the Environment, USDA, ARS, Ames, Iowa, USA
| | - Brian J. Kerr
- Agroecosystems Management Research Unit, National Laboratory for Agriculture and the Environment, USDA, ARS, Ames, Iowa, USA
| | - Daniel C. Shippy
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| | - Kristen A. Byrne
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| | - Shawn M. D. Bearson
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| |
Collapse
|
13
|
Herrera-Uribe J, Zaldívar-López S, Aguilar C, Entrenas-García C, Bautista R, Claros MG, Garrido JJ. Study of microRNA expression in Salmonella Typhimurium-infected porcine ileum reveals miR-194a-5p as an important regulator of the TLR4-mediated inflammatory response. Vet Res 2022; 53:35. [PMID: 35598011 PMCID: PMC9123658 DOI: 10.1186/s13567-022-01056-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Infection with Salmonella Typhimurium (S. Typhimurium) is a common cause of food-borne zoonosis leading to acute gastroenteritis in humans and pigs, causing economic losses to producers and farmers, and generating a food security risk. In a previous study, we demonstrated that S. Typhimurium infection produces a severe transcriptional activation of inflammatory processes in ileum. However, little is known regarding how microRNAs regulate this response during infection. Here, small RNA sequencing was used to identify 28 miRNAs differentially expressed (DE) in ileum of S. Typhimurium-infected pigs, which potentially regulate 14 target genes involved in immune system processes such as regulation of cytokine production, monocyte chemotaxis, or cellular response to interferon gamma. Using in vitro functional and gain/loss of function (mimics/CRISPR-Cas system) approaches, we show that porcine miR-194a-5p (homologous to human miR-194-5p) regulates TLR4 gene expression, an important molecule involved in pathogen virulence, recognition and activation of innate immunity in Salmonella infection.
Collapse
Affiliation(s)
- Juber Herrera-Uribe
- Immunogenomics and Molecular Pathogenesis Group, Department of Genetics, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain.,Viral Immunology Group, School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Sara Zaldívar-López
- Immunogenomics and Molecular Pathogenesis Group, Department of Genetics, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain. .,Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Research Group GA-14, Córdoba, Spain.
| | - Carmen Aguilar
- Immunogenomics and Molecular Pathogenesis Group, Department of Genetics, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain.,Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Carmen Entrenas-García
- Immunogenomics and Molecular Pathogenesis Group, Department of Genetics, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain.,Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Research Group GA-14, Córdoba, Spain
| | - Rocío Bautista
- Andalusian Platform of Bioinformatics-SCBI, University of Málaga, Málaga, Spain
| | - M Gonzalo Claros
- Andalusian Platform of Bioinformatics-SCBI, University of Málaga, Málaga, Spain.,Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Spain
| | - Juan J Garrido
- Immunogenomics and Molecular Pathogenesis Group, Department of Genetics, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain.,Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Research Group GA-14, Córdoba, Spain
| |
Collapse
|
14
|
Peng SS, Li Y, Chen Q, Hu Q, He Y, Che L, Jiang PP. Intestinal and Mucosal Microbiome Response to Oral Challenge of Enterotoxigenic Escherichia coli in Weaned Pigs. Pathogens 2022; 11:pathogens11020160. [PMID: 35215105 PMCID: PMC8879466 DOI: 10.3390/pathogens11020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/10/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is closely associated with diarrhoea in children in resource-limited countries. This study aims to investigate the change of the mucosal microbiome and protein expression in the ileum induced by E. coli K88 (ETEC) using pigs as a model. Seven weaned male pigs were orally given ETEC (1 × 109 CFU, n = 7), and the other seven received saline (CON, n = 7). Ileal tissues were obtained 48 hours after the ETEC challenge for both proteomic and mucosal microbiome analyses. Nine proteins were found with altered abundance between the two groups, including a decrease in FABP1 and FABP6, involved in bile acid circulation. The TLR-9 mediated pathway was also affected showing increased transcription of genes SIGIRR and MyD88. Correlations between the ileal proteins and mucosal bacterial taxa found included a positive correlation between Lactobacilllus and PPP3CA (r = 0.9, p < 0.001) and a negative correlation between Prevotella with CTNND1 (r = −0.7, p < 0.01). In conclusion, ETEC infection caused inflammation and impaired the circulation of bile acids and the mucosal microbiome may affect the expression of intestinal proteins. Further studies are needed to explain the exact roles of these affected processes in the pathogenesis of ETEC-triggered diarrhoea.
Collapse
Affiliation(s)
- Shan-Shan Peng
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China;
| | - Yingjie Li
- Key Laboratory for Animal Disease Resistance and Nutrition of the Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Q.C.); (Y.H.)
| | - Qiuhong Chen
- Key Laboratory for Animal Disease Resistance and Nutrition of the Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Q.C.); (Y.H.)
| | - Qi Hu
- The Neomics Institute, Shenzhen 518122, China;
| | - Ying He
- Key Laboratory for Animal Disease Resistance and Nutrition of the Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Q.C.); (Y.H.)
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance and Nutrition of the Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Q.C.); (Y.H.)
- Correspondence: (L.C.); (P.-P.J.)
| | - Ping-Ping Jiang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China;
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
- Correspondence: (L.C.); (P.-P.J.)
| |
Collapse
|
15
|
Zhao N, Jia L, Li G, He X, Zhu C, Zhang B. Comparative Mucous miRomics in Cynoglossus semilaevis Related to Vibrio harveyi Caused Infection. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:766-776. [PMID: 34480240 DOI: 10.1007/s10126-021-10062-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Epidermal mucus is an important barrier and regulating mediator in fish. MicroRNAs (miRNAs) are proved to be involved in various biological processes, also as promising biomarkers for disease diagnosis. Vibrio harveyi has long been a noticeable bacterial pathogen in Cynoglossus semilaevis aquaculture. To find the evidence whether there are indicating miRNAs in mucus and whether the miRNAs are related to infections caused by V. harveyi, miRNA profiles of mucus from V. harveyi infected fish and healthy controls were screened by small RNA sequencing and verified by quantitative real-time PCR. This is the first report about miRNA profiling of flatfish mucus, aiming at illustrating the pathogenesis of V. harveyi caused infection and developing disease-related biomarkers. The results revealed significant differences in expression levels of some miRNAs between infected fish and healthy ones. Three hundred differentially expressed miRNAs were obtained after filtering through FC > 2 or FC < 0.5 and most of the differential miRNAs were downregulated. After verification through qRT-PCR, four unique miRNAs, dre-miR-451, dre-miR-184, dre-miR-205-5p > ssa-miR-205b-5p, and dre-miR-181a-5p > ssa-miR-181a-5p, were identified as V. harveyi infection-related signatures, consistent with sequencing trend. The expression levels of these four miRNAs in the infected fish were all significantly lower than controls. These miRNAs in mucus could be used to differentiate diseased and healthy fish in a non-invasive way with practical value for large-scale disease screening. They also provided new insights into the mechanism underlying the bacterial infections in fish.
Collapse
Affiliation(s)
- Na Zhao
- Guangdong Research Centre On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Guangdong Ocean University, Zhanjiang, 524000, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences At, Shanghai Ocean University, Ocean University, Shanghai, 201306, China
| | - Lei Jia
- Tianjin Fisheries Research Institute, Tianjin, 300200, China
| | - Guangli Li
- Guangdong Research Centre On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Guangdong Ocean University, Zhanjiang, 524000, China
| | - Xiaoxu He
- Tianjin Fisheries Research Institute, Tianjin, 300200, China
| | - Chunhua Zhu
- Guangdong Research Centre On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Guangdong Ocean University, Zhanjiang, 524000, China
| | - Bo Zhang
- Guangdong Research Centre On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Guangdong Ocean University, Zhanjiang, 524000, China.
- Tianjin Fisheries Research Institute, Tianjin, 300200, China.
| |
Collapse
|
16
|
Schroyen M, Li B, Arévalo Sureda E, Zhang Y, Leblois J, Deforce D, Van Nieuwerburgh F, Wavreille J, Everaert N. Pre-Weaning Inulin Supplementation Alters the Ileal Transcriptome in Pigs Regarding Lipid Metabolism. Vet Sci 2021; 8:vetsci8100207. [PMID: 34679037 PMCID: PMC8539436 DOI: 10.3390/vetsci8100207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022] Open
Abstract
Prebiotics, such as inulin, are non-digestible compounds that stimulate the growth of beneficial microbiota, which results in improved gut and overall health. In this study, we were interested to see if, and how, the ileal transcriptome altered after inulin administration in the pre-weaning period in pigs. Seventy-two Piétrain–Landrace newborn piglets were divided into three groups: (a) a control (CON) group (n = 24), (b) an inulin (IN)-0.5 group (n = 24), and (c) an IN-0.75 group (n = 24). Inulin was provided as a solution and administered twice a day. At week 4, eight piglets per group, those closest to the average in body weight, were sacrificed, and ileal scrapings were collected and analyzed using 3′ mRNA massively parallel sequencing. Only minor differences were found, and three genes were differentially expressed between the CON and IN-0.5 group, at an FDR of 10%. All three genes were downregulated in the IN-0.5 group. When comparing the CON group with the IN-0.75 group, five genes were downregulated in the IN-0.75 group, including the three genes seen earlier as differentially expressed between CON and IN-0.5. No genes were found to be differential expressed between IN-0.5 and IN-0.75. Validation of a selection of these genes was done using qRT-PCR. Among the downregulated genes were Angiopoietin-like protein 4 (ANGPTL4), Aquaporin 7 (AQP7), and Apolipoprotein A1 (APOA1). Thus, although only a few genes were found to be differentially expressed, several of them were involved in lipid metabolism, belonging to the peroxisome proliferator-activated receptor (PPAR) signaling pathway and known to promote lipolysis. We, therefore, conclude that these lipid metabolism genes expressed in the ileum may play an important role when supplementing piglets with inulin early in life, before weaning.
Collapse
Affiliation(s)
- Martine Schroyen
- Precision Livestock and Nutrition Laboratory, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, B-5030 Gembloux, Belgium; (M.S.); (B.L.); (E.A.S.); (Y.Z.)
| | - Bing Li
- Precision Livestock and Nutrition Laboratory, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, B-5030 Gembloux, Belgium; (M.S.); (B.L.); (E.A.S.); (Y.Z.)
| | - Ester Arévalo Sureda
- Precision Livestock and Nutrition Laboratory, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, B-5030 Gembloux, Belgium; (M.S.); (B.L.); (E.A.S.); (Y.Z.)
| | - Yuping Zhang
- Precision Livestock and Nutrition Laboratory, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, B-5030 Gembloux, Belgium; (M.S.); (B.L.); (E.A.S.); (Y.Z.)
| | - Julie Leblois
- Association Wallonne de l’Élevage asbl (AWÉ), B-5590 Ciney, Belgium;
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium; (D.D.); (F.V.N.)
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium; (D.D.); (F.V.N.)
| | - José Wavreille
- Walloon Agricultural Research Center, Department of Production and Sectors, B-5030 Gembloux, Belgium;
| | - Nadia Everaert
- Precision Livestock and Nutrition Laboratory, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, B-5030 Gembloux, Belgium; (M.S.); (B.L.); (E.A.S.); (Y.Z.)
- Correspondence: ; Tel.: +32-81-62-24-48
| |
Collapse
|
17
|
Stacy A, Andrade-Oliveira V, McCulloch JA, Hild B, Oh JH, Perez-Chaparro PJ, Sim CK, Lim AI, Link VM, Enamorado M, Trinchieri G, Segre JA, Rehermann B, Belkaid Y. Infection trains the host for microbiota-enhanced resistance to pathogens. Cell 2021; 184:615-627.e17. [PMID: 33453153 PMCID: PMC8786454 DOI: 10.1016/j.cell.2020.12.011] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/19/2020] [Accepted: 12/08/2020] [Indexed: 01/13/2023]
Abstract
The microbiota shields the host against infections in a process known as colonization resistance. How infections themselves shape this fundamental process remains largely unknown. Here, we show that gut microbiota from previously infected hosts display enhanced resistance to infection. This long-term functional remodeling is associated with altered bile acid metabolism leading to the expansion of taxa that utilize the sulfonic acid taurine. Notably, supplying exogenous taurine alone is sufficient to induce this alteration in microbiota function and enhance resistance. Mechanistically, taurine potentiates the microbiota's production of sulfide, an inhibitor of cellular respiration, which is key to host invasion by numerous pathogens. As such, pharmaceutical sequestration of sulfide perturbs the microbiota's composition and promotes pathogen invasion. Together, this work reveals a process by which the host, triggered by infection, can deploy taurine as a nutrient to nourish and train the microbiota, promoting its resistance to subsequent infection.
Collapse
Affiliation(s)
- Apollo Stacy
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Vinicius Andrade-Oliveira
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John A McCulloch
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Benedikt Hild
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ji Hoon Oh
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - P Juliana Perez-Chaparro
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Choon K Sim
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michel Enamorado
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Godínez-Oviedo A, Cuellar-Núñez ML, Luzardo-Ocampo I, Campos-Vega R, Hernández-Iturriaga M. A dynamic and integrated in vitro/ex vivo gastrointestinal model for the evaluation of the probability and severity of infection in humans by Salmonella spp. vehiculated in different matrices. Food Microbiol 2020; 95:103671. [PMID: 33397606 DOI: 10.1016/j.fm.2020.103671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
The lack of proper gastrointestinal models assessing the inter-strain virulence variability of foodborne pathogens and the effect of the vehicle (food matrix) affects the risk estimation. This research aimed to propose a dynamic and integrated in vitro/ex vivo gastrointestinal model to evaluate the probability and severity of infection of foodborne pathogens at different matrices. An everted gut sac was used to determine the adhesion and invasion of Salmonella enterica and tissue damage. S. Typhimurium ATCC 14028 was used as a representative bacterium, and two matrices (water and cheese) were used as vehicles. No differences (p > 0.05) in the probability of infection (Pinf) were found for intra-experimental repeatability. However, the Pinf of cheese-vehiculated S. Typhimurium was different compared to water- vehiculated S. Typhimurium, 7.2-fold higher. The histological analysis revealed Salmonella-induced tissue damage, compared with the control (p < 0.05). In silico proposed interactions between two major Salmonella outer membrane proteins (OmpA and Rck) and digested peptides from cheese casein showed high binding affinity and stability, suggesting a potential protective function from the food matrix. The results showed that the everted gut sac model is suitable to evaluate the inter-strain virulence variability, considering both physiological conditions and the effect of the food matrix.
Collapse
Affiliation(s)
- A Godínez-Oviedo
- Departamento de Investigación y Posgrado de Alimentos (DIPA), Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Col. Las Campanas, 76010, Querétaro, Qro, Mexico
| | - M L Cuellar-Núñez
- Facultad de Medicina, Universidad Autónoma de Querétaro, Clavel 200, Col. Prados de la Capilla, 76176, Querétaro, Qro, Mexico
| | - I Luzardo-Ocampo
- Departamento de Investigación y Posgrado de Alimentos (DIPA), Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Col. Las Campanas, 76010, Querétaro, Qro, Mexico
| | - R Campos-Vega
- Departamento de Investigación y Posgrado de Alimentos (DIPA), Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Col. Las Campanas, 76010, Querétaro, Qro, Mexico.
| | - M Hernández-Iturriaga
- Departamento de Investigación y Posgrado de Alimentos (DIPA), Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Col. Las Campanas, 76010, Querétaro, Qro, Mexico.
| |
Collapse
|
19
|
Wang Q, Sun Q, Wang J, Qiu X, Qi R, Huang J. Identification of differentially expressed miRNAs after Lactobacillus reuteri treatment in the ileum mucosa of piglets. Genes Genomics 2020; 42:1327-1338. [PMID: 32980994 DOI: 10.1007/s13258-020-00998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Lactobacillus reuteri I5007 possesses many excellent probiotic characteristics in piglets. miRNA plays important role in host-microbiota interactions, but the mechanism by which L. reuteri I5007 regulates intestinal function through its influence on miRNA expression is unknown. OBJECTIVE This study analyzed the miRNA expression patterns in the ileum mucosa tissue of piglets by L. reuteri I5007 treatment, aim to clarify its molecular mechanism for regulating intestinal function through miRNA. METHODS Neonatal piglets were orally administered L. reuteri I5007 or a placebo daily starting on day 1, and differential expression of ileal miRNAs was analyzed at 10 and 20 days of age by small RNA sequencing. RESULTS 361 known porcine miRNAs were identified, and ten miRNAs were highly expressed in the ileum mucosa in both treatments. Nineteen differentially expressed (DE) miRNAs were identified in response to L. reuteri treatment, and four DE miRNAs (ssc-miR-196a, -196b-5p, -1285 and -10386) were differentially expressed at both time points. The KEGG pathway analyses showed the targets of 19 DE miRNAs were involved in 63 significantly enriched pathways, including the PI3K-Akt and MAPK pathways, which were confirmed to play important roles in probiotic-host communication. L. reuteri I5007 exerted anti-inflammatory effects by influencing the levels of inflammatory cytokines. Suppressor of cytokine signalling 4 gene was the target gene of ssc-miR-196a/-196b-5p, overexpression of ssc-miR-196a/-196b-5p downregulated the mRNA expression of IL-1β and TNFα in IPEC-J2 cells. CONCLUSION Our study provides new insight into the role of miRNAs in the intestinal function of piglets after L. reuteri I5007 treatment.
Collapse
Affiliation(s)
- Qi Wang
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Rongchang, Chongqing, 402460, China.,Chongqing Key Laboratory of Pig Industry Sciences, Rongchang, Chongqing, 402460, China
| | - Qian Sun
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, 402460, China
| | - Jing Wang
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Rongchang, Chongqing, 402460, China.,Chongqing Key Laboratory of Pig Industry Sciences, Rongchang, Chongqing, 402460, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, 402460, China
| | - Renli Qi
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Rongchang, Chongqing, 402460, China.,Chongqing Key Laboratory of Pig Industry Sciences, Rongchang, Chongqing, 402460, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, 402460, China. .,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Rongchang, Chongqing, 402460, China. .,Chongqing Key Laboratory of Pig Industry Sciences, Rongchang, Chongqing, 402460, China.
| |
Collapse
|
20
|
Sell SL, Widen SG, Prough DS, Hellmich HL. Principal component analysis of blood microRNA datasets facilitates diagnosis of diverse diseases. PLoS One 2020; 15:e0234185. [PMID: 32502186 PMCID: PMC7274418 DOI: 10.1371/journal.pone.0234185] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Early, ideally pre-symptomatic, recognition of common diseases (e.g., heart disease, cancer, diabetes, Alzheimer’s disease) facilitates early treatment or lifestyle modifications, such as diet and exercise. Sensitive, specific identification of diseases using blood samples would facilitate early recognition. We explored the potential of disease identification in high dimensional blood microRNA (miRNA) datasets using a powerful data reduction method: principal component analysis (PCA). Using Qlucore Omics Explorer (QOE), a dynamic, interactive visualization-guided bioinformatics program with a built-in statistical platform, we analyzed publicly available blood miRNA datasets from the Gene Expression Omnibus (GEO) maintained at the National Center for Biotechnology Information at the National Institutes of Health (NIH). The miRNA expression profiles were generated from real time PCR arrays, microarrays or next generation sequencing of biologic materials (e.g., blood, serum or blood components such as platelets). PCA identified the top three principal components that distinguished cohorts of patients with specific diseases (e.g., heart disease, stroke, hypertension, sepsis, diabetes, specific types of cancer, HIV, hemophilia, subtypes of meningitis, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s disease, mild cognitive impairment, aging, and autism), from healthy subjects. Literature searches verified the functional relevance of the discriminating miRNAs. Our goal is to assemble PCA and heatmap analyses of existing and future blood miRNA datasets into a clinical reference database to facilitate the diagnosis of diseases using routine blood draws.
Collapse
Affiliation(s)
- Stacy L. Sell
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Steven G. Widen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Donald S. Prough
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Helen L. Hellmich
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
21
|
Splichal I, Donovan SM, Jenistova V, Splichalova I, Salmonova H, Vlkova E, Neuzil Bunesova V, Sinkora M, Killer J, Skrivanova E, Splichalova A. High Mobility Group Box 1 and TLR4 Signaling Pathway in Gnotobiotic Piglets Colonized/Infected with L. amylovorus, L. mucosae, E. coli Nissle 1917 and S. Typhimurium. Int J Mol Sci 2019; 20:E6294. [PMID: 31847111 PMCID: PMC6940798 DOI: 10.3390/ijms20246294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a DNA-binding nuclear protein that can be actively secreted by immune cells after different immune stimuli or passively released from cells undergoing necrosis. HMGB1 amplifies inflammation, and its hypersecretion contributes to multiple organ dysfunction syndrome and death. We tested possible immunomodulatory effect of commensal Lactobacillus amylovorus (LA), Lactobacillus mucosae (LM) or probiotic Escherichia coli Nissle 1917 (EcN) in infection of gnotobiotic piglets with Salmonella Typhimurium (ST). Transcription of HMGB1 and Toll-like receptors (TLR) 2, 4, and 9 and receptor for advanced glycation end products (RAGE), TLR4-related molecules (MD-2, CD14, and LBP), and adaptor proteins (MyD88 and TRIF) in the ileum and colon were measured by RT-qPCR. Expression of TLR4 and its related molecules were highly upregulated in the ST-infected intestine, which was suppressed by EcN, but not LA nor LM. In contrast, HMGB1 expression was unaffected by ST infection or commensal/probiotic administration. HMGB1 protein levels in the intestine measured by ELISA were increased in ST-infected piglets, but they were decreased by previous colonization with E. coli Nissle 1917 only. We conclude that the stability of HMGB1 mRNA expression in all piglet groups could show its importance for DNA transcription and physiological cell functions. The presence of HMGB1 protein in the intestinal lumen probably indicates cellular damage.
Collapse
Affiliation(s)
- Igor Splichal
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (I.S.); (V.J.); (M.S.)
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA;
| | - Vera Jenistova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (I.S.); (V.J.); (M.S.)
| | - Iva Splichalova
- Laboratory of Immunobiology, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic;
| | - Hana Salmonova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, 165 00 Prague, Czech Republic; (H.S.); (E.V.); (V.N.B.); (J.K.); (E.S.)
| | - Eva Vlkova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, 165 00 Prague, Czech Republic; (H.S.); (E.V.); (V.N.B.); (J.K.); (E.S.)
| | - Vera Neuzil Bunesova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, 165 00 Prague, Czech Republic; (H.S.); (E.V.); (V.N.B.); (J.K.); (E.S.)
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (I.S.); (V.J.); (M.S.)
| | - Jiri Killer
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, 165 00 Prague, Czech Republic; (H.S.); (E.V.); (V.N.B.); (J.K.); (E.S.)
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Eva Skrivanova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, 165 00 Prague, Czech Republic; (H.S.); (E.V.); (V.N.B.); (J.K.); (E.S.)
| | - Alla Splichalova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (I.S.); (V.J.); (M.S.)
| |
Collapse
|
22
|
Analyses of miRNA in the ileum of diarrheic piglets caused by Clostridium perfringens type C. Microb Pathog 2019; 136:103699. [PMID: 31472261 DOI: 10.1016/j.micpath.2019.103699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/28/2019] [Accepted: 08/27/2019] [Indexed: 12/26/2022]
Abstract
Clostridium perfringens (C. perfringens) type C is one of major pathogenic causing diarrhea and other intestinal inflammatory diseases in piglets, which seriously affects the healthy development of the swine industries. Studies have found that miRNAs play important roles in regulating piglet diarrhea challenged by pathogenic E. coli and Salmonella. However, little is known miRNAs in the ileum of diarrheic piglets caused by C. perfringens type C. Therefore, we studied the expression profiles of the ileum miRNAs of 7-day-old piglets infected with C. perfringens type C using small RNA-Seq, including control (IC), susceptible (IS) and resistant (IR) groups. As a result, 53 differentially expressed miRNAs were found. KEGG pathway analysis for target genes revealed that these miRNAs were involved in ErbB signaling pathway, MAPK signaling pathway, Jak-STAT signaling pathway and Wnt signaling pathway. The expression correlation analysis between miRNAs and target genes revealed that the expression of miR-7134-5p had negative correlation with target NFATC4, miR-500 had negative correlation with target ELK1, HSPA2 and IL7R, and miR-92b-3p had negative correlation with target CLCF1 in ileum of IR vs IS group, suggesting that miR-7134-5p targeting to NFATC4, miR-500 targeting to ELK1, HSPA2 and IL7R, and miR-92b-3p targeting to CLCF1 were probably involved in piglet resisting C. perfringens type C. The results will provide value resources for better understanding of the genetic basis of C. perfringens type C resistance in piglet and lays a new foundation for identifying novel markers of C. perfringens type C resistance.
Collapse
|
23
|
Bian H, Zhou Y, Zhou D, Zhang Y, Shang D, Qi J. The latest progress on miR-374 and its functional implications in physiological and pathological processes. J Cell Mol Med 2019; 23:3063-3076. [PMID: 30772950 PMCID: PMC6484333 DOI: 10.1111/jcmm.14219] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/10/2019] [Accepted: 01/23/2019] [Indexed: 12/17/2022] Open
Abstract
Non‐coding RNAs (ncRNAs) have been emerging players in cell development, differentiation, proliferation and apoptosis. Based on their differences in length and structure, they are subdivided into several categories including long non‐coding RNAs (lncRNAs >200nt), stable non‐coding RNAs (60‐300nt), microRNAs (miRs or miRNAs, 18‐24nt), circular RNAs, piwi‐interacting RNAs (26‐31nt) and small interfering RNAs (about 21nt). Therein, miRNAs not only directly regulate gene expression through pairing of nucleotide bases between the miRNA sequence and a specific mRNA that leads to the translational repression or degradation of the target mRNA, but also indirectly affect the function of downstream genes through interactions with lncRNAs and circRNAs. The latest studies have highlighted their importance in physiological and pathological processes. MiR‐374 family member are located at the X‐chromosome inactivation center. In recent years, numerous researches have uncovered that miR‐374 family members play an indispensable regulatory role, such as in reproductive disorders, cell growth and differentiation, calcium handling in the kidney, various cancers and epilepsy. In this review, we mainly focus on the role of miR‐374 family members in multiple physiological and pathological processes. More specifically, we also summarize their promising potential as novel prognostic biomarkers and therapeutic targets from bench to bedside.
Collapse
Affiliation(s)
- Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yi Zhou
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Dawei Zhou
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yongsheng Zhang
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Deya Shang
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
24
|
Splichalova A, Jenistova V, Splichalova Z, Splichal I. Colonization of preterm gnotobiotic piglets with probiotic Lactobacillus rhamnosus GG and its interference with Salmonella Typhimurium. Clin Exp Immunol 2018; 195:381-394. [PMID: 30422309 DOI: 10.1111/cei.13236] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2018] [Indexed: 12/13/2022] Open
Abstract
A balanced microbiota of the gastrointestinal tract (GIT) is a prerequisite for a healthy host. The GIT microbiota in preterm infants is determined by the method of delivery and nutrition. Probiotics can improve the GIT microbiota balance and suitable animal models are required to verify their harmlessness. Preterm gnotobiotic piglets were colonized with Lactobacillus rhamnosus GG (LGG) to evaluate its safety and possible protective action against infection with an enteric pathogen, Salmonella Typhimurium (ST). Clinical signs (anorexia, somnolence, fever and diarrhea), bacterial interference and translocation, intestinal histopathology, transcriptions of claudin-1, occludin and interferon (IFN)-γ, intestinal and systemic protein levels of interleukin (IL)-8, IL-12/23 p40 and IFN-γ were compared among (i) germ-free, (ii) LGG-colonized, (iii) ST-infected and (iv) LGG-colonized and subsequently ST-infected piglets for 24 h. Both LGG and ST-colonized the GIT; LGG translocated in some cases into mesenteric lymph nodes and the spleen but did not cause bacteremia and clinical changes. ST caused clinical signs of gastroenteritis, translocated into mesenteric lymph nodes, the spleen, liver and blood, increased claudin-1 and IFN-γ transcriptions, but decreased occludin transcription and increased local and systemic levels of IL-8 and IL-12/23 p40. Previous colonization with LGG reduced ST colonization in the jejunum and translocation into the liver, spleen and blood. It partially ameliorated histopathological changes in the intestine, reduced IL-8 levels in the jejunum and plasma and IL-12/23 p40 in the jejunum. The preterm gnotobiotic piglet model of the vulnerable preterm immunocompromised infant is useful to verify the safety of probiotics and evaluate their protective effect.
Collapse
Affiliation(s)
- A Splichalova
- Laboratory of Gnotobiology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Novy Hradek, Czech Republic
| | - V Jenistova
- Laboratory of Gnotobiology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Novy Hradek, Czech Republic
| | - Z Splichalova
- Laboratory of Gnotobiology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Novy Hradek, Czech Republic
| | - I Splichal
- Laboratory of Gnotobiology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Novy Hradek, Czech Republic
| |
Collapse
|
25
|
Shippy DC, Bearson BL, Cai G, Brunelle BW, Kich JD, Bearson SM. Modulation of porcine microRNAs associated with apoptosis and NF-κB signaling pathways in response to Salmonella enterica serovar Typhimurium. Gene 2018; 676:290-297. [DOI: 10.1016/j.gene.2018.08.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/31/2018] [Accepted: 08/08/2018] [Indexed: 01/08/2023]
|
26
|
Wang Y, Yi L, Zhang J, Sun L, Wen W, Zhang C, Wang S. Functional analysis of superoxide dismutase ofSalmonellatyphimurium in serum resistance and biofilm formation. J Appl Microbiol 2018; 125:1526-1533. [DOI: 10.1111/jam.14044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/17/2018] [Accepted: 07/05/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Y. Wang
- College of Animal Science and Technology; Henan University of Science and Technology; Luoyang China
| | - L. Yi
- College of Life Science; Luoyang Normal University; Luoyang China
| | - J. Zhang
- College of Animal Science and Technology; Henan University of Science and Technology; Luoyang China
| | - L. Sun
- College of Animal Science and Technology; Henan University of Science and Technology; Luoyang China
| | - W. Wen
- College of Animal Science and Technology; Henan University of Science and Technology; Luoyang China
| | - C. Zhang
- College of Animal Science and Technology; Henan University of Science and Technology; Luoyang China
| | - S. Wang
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Sciences; Shanghai China
| |
Collapse
|
27
|
Cevallos-Almeida M, Houdayer C, Rose V, Bailly Y, Paboeuf F, Fablet C, Denis M, Kerouanton A. Colonization of Pigs Experimentally Infected with a Monophasic Variant of Salmonella Typhimurium. Foodborne Pathog Dis 2018; 15:576-582. [PMID: 30010414 DOI: 10.1089/fpd.2018.2427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The monophasic variant of Salmonella Typhimurium is highly prevalent in human and in pork. However, little is known about colonization dynamics and serology in pigs. We orally inoculated 24 seven-week-old piglets with 109 CFU/pig of a porcine strain of monophasic Salmonella Typhimurium in an experimental trial. Three groups of eight piglets were orally inoculated and monitored for 21, 49, or 84 days post-inoculation until necropsied. From 3 days post-inoculation to necropsy, individual feces were sampled twice weekly and blood once weekly. At necropsy, the tonsils, mesenteric lymph nodes, and the contents of the duodenum, jejunum, ileum, and cecum were collected from each pig. We determined the number of CFU/g in all the samples and measured also Salmonella antibodies in OD% in all blood samples. At different times during the trial, we tested by MLVA (Multilocus Variable Number Tandem Repeat Analysis) the genomic stability of the strain after passing through the intestinal tract. Salmonella was continuously excreted by pigs, ranging from 1.4 to 5.8 log10 CFU/g. At necropsy, Salmonella was present in all samples, but the tonsils were particularly infected. Salmonella antibodies were detected in five pigs 7 days post-inoculation. At 49 days post-inoculation, all the pigs were seropositive. We observed new MLVA types for 3.3% of the isolates tested over the trial. Our study allowed us to show the serovar's ability to persist in pigs after infection up to 84 days post-inoculation. We demonstrated that Salmonella seroconversion appeared earlier than in naturally infected pigs and that the strain's genome can evolve after passing through the digestive tract of pigs.
Collapse
Affiliation(s)
- María Cevallos-Almeida
- 1 ANSES, Hygiene and Quality of Poultry and Pig Products Unit, Bretagne Loire University , Ploufragan, France .,2 Faculty of Veterinary Medicine and Zootechnics, Central University of Ecuador , Quito, Ecuador
| | - Catherine Houdayer
- 1 ANSES, Hygiene and Quality of Poultry and Pig Products Unit, Bretagne Loire University , Ploufragan, France
| | - Valérie Rose
- 1 ANSES, Hygiene and Quality of Poultry and Pig Products Unit, Bretagne Loire University , Ploufragan, France
| | - Yann Bailly
- 3 ANSES, SPF Pig Production and Experimental Unit, Bretagne Loire University , Ploufragan, France
| | - Frédéric Paboeuf
- 3 ANSES, SPF Pig Production and Experimental Unit, Bretagne Loire University , Ploufragan, France
| | - Christelle Fablet
- 4 ANSES, Swine Epidemiology and Welfare Research Unit, Bretagne Loire University , Ploufragan, France
| | - Martine Denis
- 1 ANSES, Hygiene and Quality of Poultry and Pig Products Unit, Bretagne Loire University , Ploufragan, France
| | - Annaëlle Kerouanton
- 1 ANSES, Hygiene and Quality of Poultry and Pig Products Unit, Bretagne Loire University , Ploufragan, France
| |
Collapse
|
28
|
Argüello H, Estellé J, Zaldívar-López S, Jiménez-Marín Á, Carvajal A, López-Bascón MA, Crispie F, O'Sullivan O, Cotter PD, Priego-Capote F, Morera L, Garrido JJ. Early Salmonella Typhimurium infection in pigs disrupts Microbiome composition and functionality principally at the ileum mucosa. Sci Rep 2018; 8:7788. [PMID: 29773876 PMCID: PMC5958136 DOI: 10.1038/s41598-018-26083-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 05/02/2018] [Indexed: 02/06/2023] Open
Abstract
Salmonella is a major foodborne pathogen which successfully infects animal species for human consumption such as swine. The pathogen has a battery of virulence factors which it uses to colonise and persist within the host. The host microbiota may play a role in resistance to, and may also be indirectly responsible from some of the consequences of, Salmonella infection. To investigate this, we used 16S rRNA metagenomic sequencing to determine the changes in the gut microbiota of pigs in response to infection by Salmonella Typhimurium at three locations: ileum mucosa, ileum content and faeces. Early infection (2 days post-infection) impacted on the microbiome diversity at the mucosa, reflected in a decrease in representatives of the generally regarded as desirable genera (i.e., Bifidobacterium and Lactobacillus). Severe damage in the epithelium of the ileum mucosa correlated with an increase in synergistic (with respect to Salmonella infection; Akkermansia) or opportunistically pathogenic bacteria (Citrobacter) and a depletion in anaerobic bacteria (Clostridium spp., Ruminococcus, or Dialliser). Predictive functional analysis, together with metabolomic analysis revealed changes in glucose and lipid metabolism in infected pigs. The observed changes in commensal healthy microbiota, including the growth of synergistic or potentially pathogenic bacteria and depletion of beneficial or competing bacteria, could contribute to the pathogen's ability to colonize the gut successfully. The findings from this study could be used to form the basis for further research aimed at creating intervention strategies to mitigate the effects of Salmonella infection.
Collapse
Affiliation(s)
- Héctor Argüello
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain.
| | - Jordi Estellé
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Sara Zaldívar-López
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain
| | - Ángeles Jiménez-Marín
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain
| | - Ana Carvajal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Mª Asunción López-Bascón
- Departamento de Química Analítica Universidad de Córdoba, Córdoba, CeiA3 Campus de Excelencia Agroalimentaria, Universidad de Córdoba, 14047, Córdoba, Spain
| | - Fiona Crispie
- Teagasc, Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,APC Microbiome Institute, Cork, Ireland
| | - Orla O'Sullivan
- Teagasc, Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,APC Microbiome Institute, Cork, Ireland
| | - Paul D Cotter
- Teagasc, Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,APC Microbiome Institute, Cork, Ireland
| | - Feliciano Priego-Capote
- Departamento de Química Analítica Universidad de Córdoba, Córdoba, CeiA3 Campus de Excelencia Agroalimentaria, Universidad de Córdoba, 14047, Córdoba, Spain
| | - Luis Morera
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain
| | - Juan J Garrido
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain
| |
Collapse
|
29
|
Keck J, Gupta R, Christenson LK, Arulanandam BP. MicroRNA mediated regulation of immunity against gram-negative bacteria. Int Rev Immunol 2017; 36:287-299. [PMID: 28800263 PMCID: PMC6904929 DOI: 10.1080/08830185.2017.1347649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Evidence over the last couple decades has comprehensively established that short, highly conserved, non-coding RNA species called microRNA (miRNA) exhibit the ability to regulate expression and function of host genes at the messenger RNA (mRNA) level. MicroRNAs play key regulatory roles in immune cell development, differentiation, and protective function. Intrinsic host immune response to invading pathogens rely on intricate orchestrated events in the development of innate and adaptive arms of immunity. We discuss the involvement of miRNAs in regulating these processes against gram negative pathogens in this review.
Collapse
Affiliation(s)
- Jonathon Keck
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249
| | - Rishein Gupta
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249
| | - Lane K. Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249
| |
Collapse
|
30
|
Reyes AWB, Hong TG, Hop HT, Arayan LT, Huy TXN, Min W, Lee HJ, Lee KS, Kim S. The in vitro and in vivo protective effects of tannin derivatives against Salmonella enterica serovar Typhimurium infection. Microb Pathog 2017; 109:86-93. [PMID: 28552635 DOI: 10.1016/j.micpath.2017.05.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 11/30/2022]
Abstract
In this study, we investigated the protective effects of tannin-derived components, gallic acid (GA) and tannic acid (TA), in vitro and in vivo against Salmonella infection in mice. Both GA and TA showed antibacterial effects against Salmonella (S.) Typhimurium as well as inhibitory effects on the adherence, invasion, and intracellular growth of the pathogens in macrophages. Following a lethal dose of Salmonella infection in mice, reduced virulence in both GA- and TA-treated groups was observed based on reduced mortality rates. In the non-infected groups, the average weights of the spleens and livers of GA- or TA-treated mice were not significantly different with the control group. In addition, the average weights of these organs in all of the Salmonella-infected groups were not significantly different but the numbers of bacteria in the spleens and livers in both GA- and TA-treated mice were significantly reduced. The levels of cytokine production in non-infected mice revealed that GA-treated and TA-treated mice elicited an increased level of IFN-γ, and both IFN-γ and MCP-1, respectively, as compared with the PBS-treated group. These findings highlight the potential of GA and TA as alternatives for the treatment of salmonellosis and as supplements to conventional antimicrobial food additives.
Collapse
Affiliation(s)
- Alisha Wehdnesday Bernardo Reyes
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea; Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, College, Laguna, 4031, Philippines
| | - Tae Gyu Hong
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Huynh Tan Hop
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Lauren Togonon Arayan
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Wongi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Kang Seok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
31
|
Wu G, Qi Y, Liu X, Yang N, Xu G, Liu L, Li X. Cecal MicroRNAome response to Salmonella enterica serovar Enteritidis infection in White Leghorn Layer. BMC Genomics 2017; 18:77. [PMID: 28086873 PMCID: PMC5237128 DOI: 10.1186/s12864-016-3413-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/12/2016] [Indexed: 01/27/2023] Open
Abstract
Background Salmonella enterica serovar Enteritidis (SE) is a food-borne pathogen and of great threat to human health through consuming the contaminated poultry products. MicroRNAs (miRNAs) play an important role in different biological activities and have been shown to regulate the innate immunity in the bacterial infection. The objective of this study is to identify miRNAs associated with SE infection in laying chicken cecum. Results Average number of reads of three libraries constructed from infected and non-infected chickens was 12,476,156 and 10,866,976, respectively. There were 598 miRNAs including 194 potential novel miRNAs identified in which 37 miRNAs were significantly differentially expressed between infected and non-infected chickens. In total, 2897 unique target genes regulated by differentially expressed miRNAs were predicted, in which, 841 genes were uniquely regulated by up-regulated miRNAs (G1), 636 genes were uniquely regulated by down-regulated miRNAs (G2), and 1420 were co-regulated by both up and down- regulated miRNAs (G3). There were 118, 73 and 178 GO (Gene ontology) BP (Biological process) terms significantly enriched in G1, G2 and G3 groups, respectively. More immune-related GO BP terms than metabolism-related terms were found in G1. Expression of 12 immune-related genes of four differentially expressed miRNAs was detected through qRT-PCR. The regulatory direction of gga-miR-1416-5p, gga-miR-1662, and gga-miR-34a-5p were opposite with the target genes of TLR21, BCL10, TLR1LA, NOTCH2 and THBS1, respectively. Conclusion The miRNAs contribute to the response to SE infection at the onset of egg laying through regulating the homeostasis between metabolism and immunity. The gga-miR-125b-5p, gga-miR-34a-5p, gga-miR-1416-5p and gga-miR-1662 could play an important role in SE infection through regulating their target genes. The finding herein will pave the foundation for the studies of microRNA regulation in SE infection in laying hens. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3413-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guixian Wu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yukai Qi
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiaoyi Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ning Yang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guiyun Xu
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Liying Liu
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Xianyao Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China. .,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China.
| |
Collapse
|
32
|
Das K, Garnica O, Dhandayuthapani S. Modulation of Host miRNAs by Intracellular Bacterial Pathogens. Front Cell Infect Microbiol 2016; 6:79. [PMID: 27536558 PMCID: PMC4971075 DOI: 10.3389/fcimb.2016.00079] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate the expression of protein coding genes of viruses and eukaryotes at the post-transcriptional level. The eukaryotic genes regulated by miRNAs include those whose products are critical for biological processes such as cell proliferation, metabolic pathways, immune response, and development. It is now increasingly recognized that modulation of miRNAs associated with biological processes is one of the strategies adopted by bacterial pathogens to survive inside host cells. In this review, we present an overview of the recent findings on alterations of miRNAs in the host cells by facultative intracellular bacterial pathogens. In addition, we discuss how the altered miRNAs help in the survival of these pathogens in the intracellular environment.
Collapse
Affiliation(s)
| | | | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl Paso, TX, USA
| |
Collapse
|