1
|
Abd El-Ghany WA, Algammal AM, Hetta HF, Elbestawy AR. Gallibacterium anatis infection in poultry: a comprehensive review. Trop Anim Health Prod 2023; 55:383. [PMID: 37889324 PMCID: PMC10611880 DOI: 10.1007/s11250-023-03796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
Gallibacterium anatis (G. anatis), a member of the Pasteurellaceae family, normally inhabits the upper respiratory and lower genital tracts of poultry. However, under certain circumstances of immunosuppression, co-infection (especially with Escherichia coli or Mycoplasma), or various stressors, G. anatis caused respiratory, reproductive, and systemic diseases. Infection with G. anatis has emerged in different countries worldwide. The bacterium affects mainly chickens; however, other species of domestic and wild birds may get infected. Horizontal, vertical, and venereal routes of G. anatis infection have been reported. The pathogenicity of G. anatis is principally related to the presence of some essential virulence factors such as Gallibacterium toxin A, fimbriae, haemagglutinin, outer membrane vesicles, capsule, biofilms, and protease. The clinical picture of G. anatis infection is mainly represented as tracheitis, oophoritis, salpingitis, and peritonitis, while other lesions may be noted in cases of concomitant infection. Control of such infection depends mainly on applying biosecurity measures and vaccination. The antimicrobial sensitivity test is necessary for the correct treatment of G. anatis. However, the development of multiple drug resistance is common. This review article sheds light on G. anatis regarding history, susceptibility, dissemination, virulence factors, pathogenesis, clinical picture, diagnosis, and control measures.
Collapse
Affiliation(s)
- Wafaa A Abd El-Ghany
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Abdelazeem M Algammal
- Bacteriology, Immunology, and Mycology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Helal F Hetta
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, El-Beheira, 22511, Egypt
| |
Collapse
|
2
|
Sanchez-Alonso P, Cobos-Justo E, Avalos-Rangel MA, López-Reyes L, Paniagua-Contreras GL, Vaca-Paniagua F, Anastacio-Marcelino E, López-Ochoa AJ, Pérez Marquez VM, Negrete-Abascal E, Vázquez-Cruz C. A Maverick-like cluster in the genome of a pathogenic, moderately virulent strain of Gallibacterium anatis, ESV200, a transient biofilm producer. Front Microbiol 2023; 14:1084766. [PMID: 36778889 PMCID: PMC9909271 DOI: 10.3389/fmicb.2023.1084766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Gallibacterium anatis causes gallibacteriosis in birds. These bacteria produce biofilms and secrete several fimbrial appendages as tools to cause disease in animals. G. anatis strains contain up to three types of fimbriae. Complete genome sequencing is the strategy currently used to determine variations in the gene content of G. anatis, although today only the completely circularized genome of G. anatis UMN179 is available. Methods The appearance of growth of various strains of G. anatis in liquid culture medium was studied. Biofilm production and how the amount of biofilm was affected by DNase, Proteinase K, and Pronase E enzymes were analyzed. Fimbrial gene expression was performed by protein analysis and qRT-PCR. In an avian model, the pathogenesis generated by the strains G. anatis ESV200 and 12656-12 was investigated. Using bioinformatic tools, the complete genome of G. anatis ESV200 was comparatively studied to search for virulence factors that would help explain the pathogenic behavior of this strain. Results and Discussion G. anatis ESV200 strain differs from the 12656-12 strain because it produces a biofilm at 20%. G. anatis ESV200 strain express fimbrial genes and produces biofilm but with a different structure than that observed for strain 12656-12. ESV200 and 12656-12 strains are pathogenic for chickens, although the latter is the most virulent. Here, we show that the complete genome of the ESV200 strain is similar to that of the UNM179 strain. However, these strains have evolved with many structural rearrangements; the most striking chromosomal arrangement is a Maverick-like element present in the ESV200 strain.
Collapse
Affiliation(s)
- Patricia Sanchez-Alonso
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico,*Correspondence: Patricia Sanchez-Alonso,
| | - Elena Cobos-Justo
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel Angel Avalos-Rangel
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Lucía López-Reyes
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Gloria Luz Paniagua-Contreras
- Carrera de Biología, Facultad de Estudios Superiores de Iztacala, UNAM, Los Reyes Iztacala, Estado de, México, Mexico
| | - Felipe Vaca-Paniagua
- Carrera de Biología, Facultad de Estudios Superiores de Iztacala, UNAM, Los Reyes Iztacala, Estado de, México, Mexico,Subdirección de Investigación Basica, Instituto Nacional de Cancerología, CDMX, México
| | - Estela Anastacio-Marcelino
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ana Jaqueline López-Ochoa
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Victor M. Pérez Marquez
- Diagnóstico y Patobiología Aviar, Biotecnología Veterinaria S.A.-Biovetsa, BIOVETSA, Tehuacán, Mexico
| | - Erasmo Negrete-Abascal
- Carrera de Biología, Facultad de Estudios Superiores de Iztacala, UNAM, Los Reyes Iztacala, Estado de, México, Mexico
| | - Candelario Vázquez-Cruz
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico,Candelario Vázquez-Cruz,
| |
Collapse
|
3
|
Narasinakuppe Krishnegowda D, Dhama K, Kumar Mariappan A, Munuswamy P, Iqbal Yatoo M, Tiwari R, Karthik K, Bhatt P, Reddy MR. Etiology, epidemiology, pathology, and advances in diagnosis, vaccine development, and treatment of Gallibacterium anatis infection in poultry: a review. Vet Q 2020; 40:16-34. [PMID: 31902298 PMCID: PMC7006735 DOI: 10.1080/01652176.2020.1712495] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gallibacterium anatis is a Gram-negative bacterium of the Pasteurellaceae family that resides normally in the respiratory and reproductive tracts in poultry. It is a major cause of oophoritis, salpingitis, and peritonitis, decreases egg production and mortality in hens thereby severely affecting animal welfare and overall productivity by poultry industries across Europe, Asia, America, and Africa. In addition, it has the ability to infect wider host range including domesticated and free-ranging avian hosts as well as mammalian hosts such as cattle, pigs and human. Evaluating the common virulence factors including outer membrane vesicles, fimbriae, capsule, metalloproteases, biofilm formation, hemagglutinin, and determining novel factors such as the RTX–like toxin GtxA, elongation factor-Tu, and clustered regularly interspaced short palindromic repeats (CRISPR) has pathobiological, diagnostic, prophylactic, and therapeutic significance. Treating this bacterial pathogen with traditional antimicrobial drugs is discouraged owing to the emergence of widespread multidrug resistance, whereas the efficacy of preventing this disease by classical vaccines is limited due to its antigenic diversity. It will be necessary to acquire in-depth knowledge on important virulence factors, pathogenesis and, concerns of rising antibiotic resistance, improvised treatment regimes, and novel vaccine candidates to effectively tackle this pathogen. This review substantially describes the etio-epidemiological aspects of G. anatis infection in poultry, and updates the recent development in understanding the pathogenesis, organism evolution and therapeutic and prophylactic approaches to counter G. anatis infection for safeguarding the welfare and health of poultry.
Collapse
Affiliation(s)
| | - Kuldeep Dhama
- Division of Pathology, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Asok Kumar Mariappan
- Division of Pathology, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Palanivelu Munuswamy
- Division of Pathology, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, GovindBallabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | | |
Collapse
|
4
|
Antenucci F, Arak H, Gao J, Allahgadry T, Thøfner I, Bojesen AM. Hydrostatic Filtration Enables Large-Scale Production of Outer Membrane Vesicles That Effectively Protect Chickens against Gallibacterium anatis. Vaccines (Basel) 2020; 8:vaccines8010040. [PMID: 31979285 PMCID: PMC7158690 DOI: 10.3390/vaccines8010040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/09/2023] Open
Abstract
Gallibacterium anatis is a Gram-negative opportunistic avian pathogen representing an emerging threat to poultry meat and egg production worldwide. To date, no vaccine able to effectively prevent the morbidity associated with G. anatis infections has been developed yet. Our group previously reported that inoculation of different combinations of G. anatis outer membrane vesicles (OMVs), FlfA and GtxA-N proteins is effective in preventing lesions caused by G. anatis infections in layer chickens. Here we report the testing of the efficacy as vaccine prototypes of G. anatis OMVs isolated by hydrostatic filtration, a simple technique that allows the cost-effective isolation of high yields of OMVs. Layer chickens were immunized with OMVs alone or in combination with FlfA and/or GtxA-N proteins. Subsequent challenge with a heterologous G. anatis strain showed that immunization with OMVs alone could significantly reduce the lesions following a G. anatis infection. A second study was carried out to characterize the dose-response (0.25, 2.5 and 25 µg) relationship of G. anatis OMVs as immunogens, showing that 2.5 μg of OMVs represent the optimal dose to elicit protection in the immunized animals after a similar challenge. Additionally, administration of ≥2.5 μg of G. anatis OMVs induced specific IgY titers and possibly vertical transfer of immunity.
Collapse
|
5
|
Tang B, Pors SE, Kristensen BM, Skjerning RBJ, Olsen RH, Bojesen AM. GtxA is a virulence factor that promotes a Th2-like response during Gallibacterium anatis infection in laying hens. Vet Res 2020; 51:40. [PMID: 32156313 PMCID: PMC7065373 DOI: 10.1186/s13567-020-00764-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/31/2020] [Indexed: 01/07/2023] Open
Abstract
GtxA, a leukotoxic RTX-toxin, has been proposed a main virulence factor of Gallibacterium anatis. To evaluate the impact of GtxA during infection, we experimentally infected laying hens with a G. anatis wild-type (WT) strain and its isogenic gtxA deletion mutant (ΔgtxA), respectively, and monitored the birds during a 6 day period. Birds inoculated with ΔgtxA had significantly reduced gross lesions and microscopic changes compared to the birds inoculated with the WT strain. To assess the host response further, we quantified the expression of pro-inflammatory cytokines and apoptosis genes by RT-qPCR. In the ovarian tissue, the expression levels of IL-4 and TNF-α were significantly lower in the ΔgtxA group compared to the WT group, while IL-6 and IL-10 levels appeared similar in the two groups. In the spleen tissue of ΔgtxA infected chickens, IL-4 expression was also lower compared to the WT infected chickens. The results indicated that GtxA plays a key role in an acute cytokine-mediated Th2-like response against G. anatis infection in the ovary tissue. The pro-inflammatory response in the ovary tissue of birds inoculated with ΔgtxA mutant was thus significantly lower than the wild-type response. This was, at least partly, supported by the apoptosis gene expression levels, which were significantly higher in the ΔgtxA mutant compared to the wild-type infected chickens. In conclusion, GtxA clearly plays an important role in the pathogenesis of G. anatis infections in laying hens. Further investigations into the specific factors regulating the host response is however needed to provide a more complete understanding of the bacteria-host interaction.
Collapse
Affiliation(s)
- Bo Tang
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Susanne E. Pors
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Bodil M. Kristensen
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Ragnhild Bager J. Skjerning
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Rikke H. Olsen
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Anders M. Bojesen
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| |
Collapse
|
6
|
Frey J. RTX Toxins of Animal Pathogens and Their Role as Antigens in Vaccines and Diagnostics. Toxins (Basel) 2019; 11:toxins11120719. [PMID: 31835534 PMCID: PMC6950323 DOI: 10.3390/toxins11120719] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/19/2023] Open
Abstract
Exotoxins play a central role in the pathologies caused by most major bacterial animal pathogens. The large variety of vertebrate and invertebrate hosts in the animal kingdom is reflected by a large variety of bacterial pathogens and toxins. The group of repeats in the structural toxin (RTX) toxins is particularly abundant among bacterial pathogens of animals. Many of these toxins are described as hemolysins due to their capacity to lyse erythrocytes in vitro. Hemolysis by RTX toxins is due to the formation of cation-selective pores in the cell membrane and serves as an important marker for virulence in bacterial diagnostics. However, their physiologic relevant targets are leukocytes expressing β2 integrins, which act as specific receptors for RTX toxins. For various RTX toxins, the binding to the CD18 moiety of β2 integrins has been shown to be host specific, reflecting the molecular basis of the host range of RTX toxins expressed by bacterial pathogens. Due to the key role of RTX toxins in the pathogenesis of many bacteria, antibodies directed against specific RTX toxins protect against disease, hence, making RTX toxins valuable targets in vaccine research and development. Due to their specificity, several structural genes encoding for RTX toxins have proven to be essential in modern diagnostic applications in veterinary medicine.
Collapse
Affiliation(s)
- Joachim Frey
- Vetsuisse Facutly, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
7
|
Zhang JJ, Kang TY, Kwon T, Koh H, Chandimali N, Huynh DL, Wang XZ, Kim N, Jeong DK. Specific Chicken Egg Yolk Antibody Improves the Protective Response against Gallibacterium anatis Infection. Infect Immun 2019; 87:e00619-18. [PMID: 30559219 PMCID: PMC6386540 DOI: 10.1128/iai.00619-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/10/2018] [Indexed: 11/20/2022] Open
Abstract
Gallibacterium anatis is a pathogen associated with peritonitis and salpingitis in chickens and other avian species. Novel safety prevention strategies are urgently needed because of widespread multidrug resistance and antigenic diversity. The objective of this study was to produce a specific chicken egg yolk antibody and evaluate its protective response against a G. anatis infection model in 4-week-old chicks. Enzyme-linked immunosorbent assays showed that hens immunized with the recombinant N terminus of Gallibacterium toxin A (GtxA-N) had significantly increased antibody titers against GtxA-N in serum and egg yolk IgY. Western blotting showed that IgY antibody had specificity against GtxA-N in the egg yolks of immunized hens. The growth of G. anatis in brain heart infusion (BHI) broth and agar was significantly inhibited by the GtxA-N-specific IgY antibody. The protective effects of the specific IgY antibody were evaluated in G. anatis-infected chicks after intramuscular injection (10 mg/ml). The anti-GtxA-N antibody titers in the sera of G. anatis-challenged chicks following an injection of specific IgY antibody were significantly higher than those of the control and the nonspecific IgY groups, but lower lesion scores for the peritoneum, liver, and duodenum were found after specific IgY antibody treatment. The results from this study suggest that the GtxA-N-specific IgY antibody could potentially improve the protective response against G. anatis infection in chicks.
Collapse
Affiliation(s)
- Jiao Jiao Zhang
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, Republic of Korea
- Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, People's Republic of China
| | - Tae Yoon Kang
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, Republic of Korea
| | - Taeho Kwon
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Republic of Korea
| | - Hyebin Koh
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, Republic of Korea
| | - Nisansala Chandimali
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, Republic of Korea
| | - Do Luong Huynh
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, Republic of Korea
| | - Xian Zhong Wang
- Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, People's Republic of China
| | - Nameun Kim
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, Republic of Korea
| | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
8
|
Persson G, Pors SE, Thøfner ICN, Bojesen AM. Vaccination with outer membrane vesicles and the fimbrial protein FlfA offers improved protection against lesions following challenge with Gallibacterium anatis. Vet Microbiol 2018; 217:104-111. [PMID: 29615242 DOI: 10.1016/j.vetmic.2018.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/16/2018] [Accepted: 03/09/2018] [Indexed: 01/25/2023]
Abstract
Gallibacterium anatis is an opportunistic poultry pathogen belonging to the Pasteurellaceae family. It has been shown to cause oophoritis, salpingitis and peritonitis in hens, as well as being associated with reduced semen quality in cockerels. Widespread multidrug resistance and substantial antigenic variation among strains of Gallibacterium anatis is a major constraint to treatment with antimicrobials and prevention of infection by vaccination. Novel vaccine strategies targeting G. anatis are therefore necessary. Outer membrane vesicles (OMVs) are nanosized vesicles formed from the outer membrane of Gram-negative bacteria. These vesicles have shown promising potential as both adjuvants and as vaccine candidates against numerous bacterial species. A high vesiculating mutant of G. anatis (G. anatis ΔtolR) has previously been made, enabling production of OMVs in large scale. In this study, we elucidated the potential of G. anatis ΔtolR OMVs as adjuvant for the conserved antigens GtxA-N (the N-terminal part of the RTX like toxin Gallibacterium toxin A) and FlfA (F17-like fimbria), as well as evaluated if combinations of OMVs together with antigens could facilitate cross-protective immunity against three different strains of G. anatis. We showed that ΔtolR OMVs function as an adjuvant for GtxA-N by inducing antigen specific antibody production. However, OMVs in combination with GtxA-N failed to induce protection against lesions after challenge infection. In contrast, vaccination with OMVs in combination with FlfA protected against lesions, especially in the salpinx, caused by two diverse strains of G. anatis, thereby indicating a cross-protective potential. No protection against the third G. anatis strain 7990 could be obtained in any of the experimental settings. In conclusion, ΔtolR OMVs and FlfA could serve as potential future vaccine components againt G. anatis.
Collapse
Affiliation(s)
- Gry Persson
- Department of Veterinary and Animals Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Clinical Biochemistry, Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark
| | - Susanne E Pors
- Department of Veterinary and Animals Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Ida C N Thøfner
- Department of Veterinary and Animals Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Anders M Bojesen
- Department of Veterinary and Animals Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
9
|
Abstract
1. Infectious diseases have a large impact on poultry health and economics. Elucidating the pathogenesis of a certain disease is crucial to implement control strategies. 2. Multiplication of a pathogen and its characterisation in vitro are basic requirements to perform experimental studies. However, passaging of the pathogen in vitro can influence the pathogenicity, a process targeted for live vaccine development, but limits the reproduction of clinical signs. 3. Numerous factors can influence the outcome of experimental infections with some importance on the pathogen, application route and host as exemplarily outlined for Histomonas meleagridis, Gallibacterium anatis and fowl aviadenoviruses (FAdVs). 4. In future, more comprehensive and detailed settings are needed to obtain as much information as possible from animal experiments. Processing of samples with modern diagnostic tools provides the option to closely monitor the host–pathogen interaction.
Collapse
Affiliation(s)
- M Hess
- a Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health , University of Veterinary Medicine , Vienna , Austria
| |
Collapse
|
10
|
Pors SE, Pedersen IJ, Skjerning RB, Thøfner ICN, Persson G, Bojesen AM. Outer membrane vesicles of Gallibacterium anatis induce protective immunity in egg-laying hens. Vet Microbiol 2016; 195:123-127. [PMID: 27771057 DOI: 10.1016/j.vetmic.2016.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/05/2016] [Accepted: 09/27/2016] [Indexed: 11/29/2022]
Abstract
Gallibacterium anatis causes infections in the reproductive tract of egg-laying hens and induce increased mortality and decreased egg production. New prophylactic measures are needed in order to improve animal welfare and production efficiency. Bacterial outer membrane vesicles (OMVs) have previously shown promising results in protection against infections and we hypothesized that OMVs could serve as an immunogen to protect egg-laying hens against G. anatis. To investigate the immunogenic potential of G. anatis OMVs, two in vivo studies in egg-laying hens were made. The trials assessedthe degree of protection provided by immunization with G. anatis OMV against challenge and the IgY responses in serum after immunization and challenge, respectively. A total of 64 egg-laying hens were included in the trials. OMVs for immunization were produced and purified from a high-producing G. anatis ΔtolR mutant. Challenge was done with G. anatis 12656-12 and evaluated by scoring lesions and bacterial re-isolation rates from peritoneum. Finally, levels of OMV-specific IgY in sera were assayed by ELISA. Immunization with OMVs decreased the lesions scores significantly, while the bacterial re-isolation remained unchanged. Furthermore, a high OMV-specific IgY response was induced by immunization and subsequent challenge of the hens. The results strongly indicate that immunization with G. anatis OMVs provides significant protection against G. anatis challenge and induces specific antibody responses with high titers of OMV-specific IgY in serum. The results therefore show great promise for OMV based vaccines aiming at providing protecting against G. anatis in egg-laying hens.
Collapse
Affiliation(s)
- Susanne E Pors
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Ida J Pedersen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Ragnhild Bager Skjerning
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Ida C N Thøfner
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Gry Persson
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Anders M Bojesen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|