1
|
Niebora J, Data K, Domagała D, Józkowiak M, Barrett S, Norizadeh Abbariki T, Bryja A, Kulus M, Woźniak S, Ziemak H, Piotrowska-Kempisty H, Antosik P, Bukowska D, Mozdziak P, Dzięgiel P, Kempisty B. Avian Models for Human Carcinogenesis-Recent Findings from Molecular and Clinical Research. Cells 2024; 13:1797. [PMID: 39513904 PMCID: PMC11544849 DOI: 10.3390/cells13211797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Birds, especially the chick and hen, have been important biomedical research models for centuries due to the accessibility of the avian embryo and the early discovery of avian viruses. Comprehension of avian tumor virology was a milestone in basic cancer research, as was that of non-viral genesis, as it enabled the discovery of oncogenes. Furthermore, studies on avian viruses provided initial insights into Kaposi's sarcoma and EBV-induced diseases. However, the role of birds in human carcinogenesis extends beyond the realm of virology research. Utilization of CAM, the chorioallantoic membrane, an easily accessible extraembryonic tissue with rich vasculature, has enabled studies on tumor-induced angiogenesis and metastasis and the efficient screening of potential anti-cancer compounds. Also, the chick embryo alone is an effective preclinical in vivo patient-derived xenograft model, which is important for the development of personalized therapies. Furthermore, adult birds may also closely resemble human oncogenesis, as evidenced by the laying hen, which is the only animal model of a spontaneous form of ovarian cancer. Avian models may create an interesting alternative compared with mammalian models, enabling the creation of a relatively cost-effective and easy-to-maintain platform to address key questions in cancer biology.
Collapse
Affiliation(s)
- Julia Niebora
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Małgorzata Józkowiak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Saoirse Barrett
- Human Clinical Embryology & Assisted Conception, School of Medicine, University of Dundee, Dundee DD1 4HN, UK
| | | | - Artur Bryja
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Sławomir Woźniak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Hanna Ziemak
- Veterinary Clinic of the Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Science, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
| |
Collapse
|
2
|
Al-Zebeeby A, Abbas AH, Alsaegh HA, Alaraji FS. The First Record of an Aggressive Form of Ocular Tumour Enhanced by Marek's Disease Virus Infection in Layer Flock in Al-Najaf, Iraq. Vet Med Int 2024; 2024:1793189. [PMID: 39376215 PMCID: PMC11458278 DOI: 10.1155/2024/1793189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/13/2024] [Indexed: 10/09/2024] Open
Abstract
Marek's disease (MD) is a highly infectious poultry illness with a tendency to form tumours in peripheral nerves and internal organs of affected birds. Tumours accompany MD, mostly caused by oncogenic Gallid alpha herpesvirus 2 (MD Herpes virus serotype I). Studies on avian tumours associated with MD infection are limited in Iraq. In the presented study, the positive samples of ocular tumour were 168 out of 282 MD positive samples, which accomplished in farm suffered from an unexpectedly high mortality rate. We investigated a rapidly developed tumour mass that was observed in an MD-vaccinated layer flock that showed obvious clinical signs of MD, accompanied by forming a small lump in one eye at age 21 weeks, which developed to a big lump at week 28 of age, leading to death. The diagnosis MD infection was confirmed by a Polymerase Chain Reaction (PCR) amplification of a specific region of the target gene meq of the causative agent, followed by Sanger sequencing and BLASTn search of the sequence against the NCBI nucleic acid database, resulted in Gallid alpha herpes virus 2 strain, and according to the phylogenetic analysis, the sequence from this study was uniquely clustered in its own branch in the tree. Histopathological examination of the ocular tumour core revealed aggregation of neoplastic cells and haemorrhage that replaced the normal eye tissue, as well as early tumour formation in internal organs such as the lung and liver. In addition, abnormal lesions are susceptible to tumours in the gizzard and spleen. To our knowledge, this is the first record of an aggressive MD virus infection-mediated ocular tumour in a layer flock in Al-Najaf province, Iraq.
Collapse
Affiliation(s)
- Aoula Al-Zebeeby
- Department of Pathology and Poultry DiseasesFaculty of Veterinary MedicineUniversity of Kufa, Al-Najaf Al-Ashraf, Kufa, Iraq
| | - Ali Hadi Abbas
- Department of Veterinary MicrobiologyFaculty of Veterinary MedicineUniversity of Kufa, Al-Najaf Al-Ashraf, Kufa, Iraq
| | - Haider Abas Alsaegh
- Department of Pathology and Poultry DiseasesFaculty of Veterinary MedicineUniversity of Kufa, Al-Najaf Al-Ashraf, Kufa, Iraq
| | - Furkan Sabbar Alaraji
- Department of Pathology and Poultry DiseasesFaculty of Veterinary MedicineUniversity of Kufa, Al-Najaf Al-Ashraf, Kufa, Iraq
| |
Collapse
|
3
|
Liu X, Wang M, Cheng A, Yang Q, Tian B, Ou X, Sun D, He Y, Wu Z, Zhao X, Wu Y, Zhang S, Huang J, Jia R, Chen S, Liu M, Zhu D. Functions of the UL51 protein during the herpesvirus life cycle. Front Microbiol 2024; 15:1457582. [PMID: 39252835 PMCID: PMC11381400 DOI: 10.3389/fmicb.2024.1457582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The herpesvirus UL51 protein is a multifunctional tegument protein involved in the regulation of multiple aspects of the viral life cycle. This article reviews the biological characteristics of the UL51 protein and its functions in herpesviruses, including participating in the maintenance of the viral assembly complex (cVAC) during viral assembly, affecting the production of mature viral particles and promoting primary and secondary envelopment, as well as its positive impact on viral cell-to-cell spread (CCS) through interactions with multiple viral proteins and its key role in the proliferation and pathogenicity of the virus in the later stage of infection. This paper discusses how the UL51 protein participates in the life cycle of herpesviruses and provides new ideas for further research on UL51 protein function.
Collapse
Affiliation(s)
- Xiaolan Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Sabsabi MA, Kheimar A, You Y, von La Roche D, Härtle S, Göbel TW, von Heyl T, Schusser B, Kaufer BB. Unraveling the role of γδ T cells in the pathogenesis of an oncogenic avian herpesvirus. mBio 2024; 15:e0031524. [PMID: 38953352 PMCID: PMC11323538 DOI: 10.1128/mbio.00315-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
Marek's disease virus (MDV) is an oncogenic alphaherpesvirus that causes deadly lymphomas in chickens. In chickens, up to 50% of all peripheral T cells are gamma delta (γδ) T cells. Until now, their role in MDV pathogenesis and tumor formation remains poorly understood. To investigate the role of γδ T cells in MDV pathogenesis, we infected recently generated γδ T cell knockout chickens with very virulent MDV. Strikingly, disease and tumor incidence were highly increased in the absence of γδ T cells, indicating that γδ T cells play an important role in the immune response against MDV. In the absence of γδ T cells, virus replication was drastically increased in the thymus and spleen, which are potential sites of T cell transformation. Taken together, our data provide the first evidence that γδ T cells play an important role in the pathogenesis and tumor formation of this highly oncogenic herpesvirus.IMPORTANCEGamma delta (γδ) T cells are the most abundant T cells in chickens, but their role in fighting pathogens remains poorly understood. Marek's disease virus (MDV) is an important veterinary pathogen, that causes one of the most frequent cancers in animals and is used as a model for virus-induced tumor formation. Our study revealed that γδ T cells play a crucial role in combating MDV, as disease and tumor incidence drastically increased in the absence of these cells. γδ T cells restricted virus replication in the key lymphoid organs, thereby decreasing the likelihood of causing tumors and disease. This study provides novel insights into the role of γδ T cells in the pathogenesis of this highly oncogenic virus.
Collapse
Affiliation(s)
| | - Ahmed Kheimar
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Yu You
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Dominik von La Roche
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, München, Germany
| | - Sonja Härtle
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, München, Germany
| | - Thomas W. Göbel
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, München, Germany
| | - Theresa von Heyl
- Reproductive Biotechnology, TUM School of Life Sciences, Technische Universität München, München, Germany
| | - Benjamin Schusser
- Reproductive Biotechnology, TUM School of Life Sciences, Technische Universität München, München, Germany
- Center for Infection Prevention (ZIP), Technische Universität München, München, Germany
| | - Benedikt B. Kaufer
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Zafar HS, Akbar H, Xu H, Ponnuraj N, Van Etten K, Jarosinski KW. Oncogenic Animal Herpesviruses. Curr Opin Virol 2024; 67:101424. [PMID: 38981163 DOI: 10.1016/j.coviro.2024.101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/26/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Oncogenic viruses play a pivotal role in oncology due to their unique role in unraveling the complexities of cancer development. Understanding the role viruses play in specific cancers is important to provide basic insights into the transformation process, which will help identify potential cellular targets for treatment. This review discusses the diverse role of animal herpesviruses in initiating and promoting various forms of cancer. We will summarize the mechanisms that underlie the development of animal herpesvirus-induced cancer that may provide a basis for developing potential therapeutic interventions or preventative strategies in the future.
Collapse
Affiliation(s)
- Hafiz S Zafar
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Haji Akbar
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huai Xu
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nagendraprabhu Ponnuraj
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kathrine Van Etten
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Keith W Jarosinski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
6
|
Fazel F, Doost JS, Raj S, Boodhoo N, Karimi K, Sharif S. The mRNA vaccine platform for veterinary species. Vet Immunol Immunopathol 2024; 274:110803. [PMID: 39003921 DOI: 10.1016/j.vetimm.2024.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Vaccination has proven to be an effective means of controlling pathogens in animals. Since the introduction of veterinary vaccines in the 19th century, several generations of vaccines have been introduced. These vaccines have had a positive impact on global animal health and production. Despite, the success of veterinary vaccines, there are still some pathogens for which there are no effective vaccines available, such as African swine fever. Further, animal health is under the constant threat of emerging and re-emerging pathogens, some of which are zoonotic and can pose a threat to human health. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has highlighted the need for new vaccine platforms that are safe and efficacious, but also importantly, are adaptable and can be modified rapidly to match the circulating pathogens. mRNA vaccines have been shown to be an effective vaccine platform against various viral and bacterial pathogens. This review will cover some of the recent advances in the field of mRNA vaccines for veterinary species. Moreover, various mRNA vaccines and their delivery methods, as well as their reported efficacy, will be discussed. Current limitations and future prospects of this vaccine platform in veterinary medicine will also be discussed.
Collapse
Affiliation(s)
- Fatemeh Fazel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Janan Shoja Doost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
7
|
Fazel F, Matsuyama-Kato A, Alizadeh M, Zheng J, Fletcher C, Gupta B, St-Denis M, Boodhoo N, Sharif S. A Marek's Disease Virus Messenger RNA-Based Vaccine Modulates Local and Systemic Immune Responses in Chickens. Viruses 2024; 16:1156. [PMID: 39066318 PMCID: PMC11281610 DOI: 10.3390/v16071156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Marek's disease (MD), caused by the Marek's disease virus, is a lymphoproliferative disease in chickens that can be controlled by vaccination. However, the current vaccines can limit tumor growth and death but not virus replication and transmission. The present study aimed to evaluate host responses following intramuscular injection of an mRNA vaccine encoding gB and pp38 proteins of the MDV within the first 36 h. The vaccine was injected in low and high doses using prime and prime-boost strategies. The expression of type I and II interferons (IFNs), a panel of interferon-stimulated genes, and two key antiviral cytokines, IL-1β and IL-2, were measured in spleen and lungs after vaccination. The transcriptional analysis of the above genes showed significant increases in the expression of MDA5, Myd88, IFN-α, IFN-β, IFN-γ, IRF7, OAS, Mx1, and IL-2 in both the spleen and lungs within the first 36 h of immunization. Secondary immunization increased expression of all the above genes in the lungs. In contrast, only IFN-γ, MDA5, MyD88, Mx1, and OAS showed significant upregulation in the spleen after the secondary immunization. This study shows that two doses of the MDV mRNA vaccine encoding gB and pp38 antigens activate innate and adaptive responses and induce an antiviral state in chickens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
8
|
Akbar H, Jarosinski KW. Temporal Dynamics of Purinergic Receptor Expression in the Lungs of Marek's Disease (MD) Virus-Infected Chickens Resistant or Susceptible to MD. Viruses 2024; 16:1130. [PMID: 39066292 PMCID: PMC11281646 DOI: 10.3390/v16071130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Marek's disease virus (MDV) is an economic concern for the poultry industry due to its poorly understood pathophysiology. Purinergic receptors (PRs) are potential therapeutic targets for viral infections, including herpesviruses, prompting our investigation into their role in MDV pathogenesis. The current study is part of an experimental series analyzing the expression of PRs during MDV infection. To address the early or short-acting P2 PR responses during natural MDV infection, we performed an "exposure" experiment where age-matched chickens were exposed to experimentally infected shedders to initiate natural infection. In addition, select non-PR regulatory gene responses were measured. Two groups of naïve contact chickens (n = 5/breed/time point) from MD-resistant (White Leghorns: WL) and -susceptible (Pure Columbian) chicken lines were housed separately with experimentally infected PC (×PC) and WL (×WL) chickens for 6 or 24 h. Whole lung lavage cells (WLLC) were collected, RNA was extracted, and RT-qPCR assays were used to measure specific PR responses. In addition, other potentially important markers in pathophysiology were measured. Our study revealed that WL chickens exhibited higher P1 PR expression during natural infection. WL chickens also showed higher expression of P1A3 and P2X3 at 6 and 24 h when exposed to PC-infected chickens. P2X5 and P2Y1 showed higher expression at 6 h, while P2Y5 showed higher expression at 6 and 24 h; regardless of the chicken line, PC chickens exhibited higher expression of P2X2, P2Y8, P2Y10, P2Y13, and P2Y14 when exposed to either group of infected chickens. In addition, MDV infection altered the expression of DDX5 in both WL and PC groups exposed to PC-infected birds only. However, irrespective of the source of exposure, BCL2 and ANGPTL4 showed higher expression in both WL and PC. The expression of STAT1A and STAT5A was influenced by time and breed, with major changes observed in STAT5A. CAT and SOD1 expression significantly increased in both WL and PC birds, regardless of the source of infection. GPX1 and GPX2 expression also increased in both WL and PC, although overall lower expression was observed in PC chickens at 24 h compared to 6 h. Our data suggest systemic changes in the host during early infection, indicated by the altered expression of PRs, DDX5, BCL2, ANGPTL4, and other regulatory genes during early MDV infection. The relative expression of these responses in PC and WL chickens suggests they may play a key role in their response to natural MDV infection in the lungs and long-term pathogenesis and survival.
Collapse
Affiliation(s)
| | - Keith W. Jarosinski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA;
| |
Collapse
|
9
|
Khaled N, Kulkarni RR, Käser T, Gimeno IM. Temporal Changes in Splenic Immune Cell Populations following Infection with a Very Virulent plus MDV in Commercial Meat-Type Chickens. Viruses 2024; 16:1092. [PMID: 39066253 PMCID: PMC11281429 DOI: 10.3390/v16071092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Marek's disease virus (MDV) can cause severe immunosuppression in chickens. Our previous study showed that infection with very virulent plus (vv+) MDV strains of one-day-old commercial meat-type chickens possessing maternal antibodies against MDV resulted in severe depletion of splenocytes at 28-30 days of age. In the present study, we have investigated the effect of vv+MDV strain 686 on splenic immunophenotypes at 6, 20, and 30 days post-infection (dpi). Both live and dead cells were analyzed, and the data were statistically compared to the uninfected control. The results revealed a decrease in the total live cell population starting on day 20, primarily affecting B cells, CD8β+, and gamma delta (γδ) T cells, while the frequencies of both live and dead CD3+ and CD4+ T cells were increased. The MHC-I expression of CD3+ and CD4+ T cells was higher at 20 and 30 dpi, while the expression of MHC-II on these cells was downregulated at 6 dpi but was upregulated at 30 dpi. Collectively, these results suggest that maternal antibodies seem to delay the negative effects of vv+MDV on the splenic lymphoid populations, albeit being non-protective. Our results emphasize the importance of MD vaccination in vv+MDV endemic areas.
Collapse
Affiliation(s)
- Nagwa Khaled
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (N.K.); (R.R.K.); (T.K.)
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Monofiya 23511, Egypt
| | - Raveendra R. Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (N.K.); (R.R.K.); (T.K.)
| | - Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (N.K.); (R.R.K.); (T.K.)
| | - Isabel M. Gimeno
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (N.K.); (R.R.K.); (T.K.)
| |
Collapse
|
10
|
Zhu ZJ, Teng M, Liu Y, Chen FJ, Yao Y, Li EZ, Luo J. Immune escape of avian oncogenic Marek's disease herpesvirus and antagonistic host immune responses. NPJ Vaccines 2024; 9:109. [PMID: 38879650 PMCID: PMC11180173 DOI: 10.1038/s41541-024-00905-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
Marek's disease virus (MDV) is a highly pathogenic and oncogenic alpha herpesvirus that causes Marek's disease (MD), which is one of the most important immunosuppressive and rapid-onset neoplastic diseases in poultry. The onset of MD lymphomas and other clinical diseases can be efficiently prevented by vaccination; these vaccines are heralded as the first demonstration of a successful vaccination strategy against a cancer. However, the persistent evolution of epidemic MDV strains towards greater virulence has recently resulted in frequent outbreaks of MD in vaccinated chicken flocks worldwide. Herein, we provide an overall review focusing on the discovery and identification of the strategies by which MDV evades host immunity and attacks the immune system. We have also highlighted the decrease in the immune efficacy of current MD vaccines. The prospects, strategies and new techniques for the development of efficient MD vaccines, together with the possibilities of antiviral therapy in MD, are also discussed.
Collapse
Affiliation(s)
- Zhi-Jian Zhu
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China
- Institute for Animal Health & UK-China Center of Excellence for Research on Avian Disease, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China
| | - Man Teng
- Institute for Animal Health & UK-China Center of Excellence for Research on Avian Disease, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China
| | - Yu Liu
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China
| | - Fu-Jia Chen
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK
| | - En-Zhong Li
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China.
| | - Jun Luo
- Institute for Animal Health & UK-China Center of Excellence for Research on Avian Disease, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China.
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China.
- Longhu Laboratory, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
11
|
Emad A, El-Kenawy AA, El-Tholoth M. Molecular characterization of Marek's Disease virus reveals reticuloendotheliosis virus-long terminal repeat integration in the genome of the field isolates in Egypt. Poult Sci 2024; 103:103722. [PMID: 38626691 PMCID: PMC11036097 DOI: 10.1016/j.psj.2024.103722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/02/2024] [Accepted: 03/31/2024] [Indexed: 04/18/2024] Open
Abstract
The highly contagious, immunosuppressive, and cancer-causing Marek's disease virus (MDV) infects chickens. The financial costs of Marek's disease (MD) are significant for the chicken industry. In this study, a total of 180 samples from chicken farms suspected to be MDV-infected were collected. The chickens were sampled during the period between the months of October 2016 and February 2018 at Dakahlia and Damietta Governorates, Egypt. A total of 36 pooled samples were created. The prepared samples were inoculated into embryonated chicken eggs (ECEs). Indirect fluorescent antibody technique (IFAT) and ICP4 gene-based polymerase chain reaction (PCR) were used for MDV identification. For the genetic characterization of the identified virus, The ICP4 gene sequence was identified and compared with the sequences available from various regions of the world. Furthermore, the genomes of all detected MDVs were screened for the long terminal repeat (LTR) region of reticuloendotheliosis (REV) in their genomes. The results showed that 31 out of 36 pooled samples (86.1%) inoculated into ECEs displayed the characteristic pock lesions. By using IFAT and PCR to identify MDV in ECEs, positive results were found in 27 samples (75%). The Egyptian virus is thought to be genetically closely related to MDVs circulating in Ethiopia, China, and India. REV-LTR was amplified from 6 out of 27 field isolates genomes (22.2 %) while MDV vaccine strains were free from REV-LTR insertion. The integrated REV-LTRs depicted a close genetic relationship with those integrated in fowl poxvirus (FWPV) circulating in Egypt as well as those integrated in FWPVs and MDVs from China, USA, South Africa, and Australia. To the best of our knowledge, this investigation represents the first identification and characterization of REV-LTR insertions in Egyptian MDV field isolates. Given the findings above, additional research in the future seems crucial to determine how the REV-LTR insertions affect MDV pathogenesis, virulence, and insufficient vaccination protection.
Collapse
Affiliation(s)
- Aya Emad
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ali A. El-Kenawy
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed El-Tholoth
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Veterinary Science Program, Faculty of Health Sciences, Al Ain Men's Campus, Higher Colleges of Technology, 17155, UAE
| |
Collapse
|
12
|
Khairat J, Hatta M, Abdullah N, Azman A, Calvin S, Syed Hassan S. Unearthing the role of septins in viral infections. Biosci Rep 2024; 44:BSR20231827. [PMID: 38372298 PMCID: PMC10920062 DOI: 10.1042/bsr20231827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Septin proteins are a subfamily of closely related GTP-binding proteins conserved in all species except for higher plants and perform essential biological processes. Septins self-assemble into heptameric or octameric complexes and form higher-order structures such as filaments, rings, or gauzes by end-to-end binding. Their close association with cell membrane components makes them central in regulating critical cellular processes. Due to their organisation and properties, septins function as diffusion barriers and are integral in providing scaffolding to support the membrane's curvature and stability of its components. Septins are also involved in vesicle transport and exocytosis through the plasma membrane by co-localising with exocyst protein complexes. Recently, there have been emerging reports of several human and animal diseases linked to septins and abnormalities in their functions. Most of our understanding of the significance of septins during microbial diseases mainly pertains to their roles in bacterial infections but not viruses. This present review focuses on the known roles of septins in host-viral interactions as detailed by various studies.
Collapse
Affiliation(s)
- Jasmine Elanie Khairat
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Muhammad Nur Adam Hatta
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nurshariza Abdullah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Adzzie Shazleen Azman
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Shee Yin Ming Calvin
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
13
|
Zhang L, Xie Q, Chang S, Ai Y, Dong K, Zhang H. Epigenetic Factor MicroRNAs Likely Mediate Vaccine Protection Efficacy against Lymphomas in Response to Tumor Virus Infection in Chickens through Target Gene Involved Signaling Pathways. Vet Sci 2024; 11:139. [PMID: 38668407 PMCID: PMC11053969 DOI: 10.3390/vetsci11040139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024] Open
Abstract
Epigenetic factors, including microRNAs (miRNAs), play an important role in affecting gene expression and, therefore, are involved in various biological processes including immunity protection against tumors. Marek's disease (MD) is a highly contagious disease of chickens caused by the MD virus (MDV). MD has been primarily controlled by vaccinations. MD vaccine efficacy might, in part, be dependent on modulations of a complex set of factors including host epigenetic factors. This study was designed to identify differentially expressed miRNAs in the primary lymphoid organ, bursae of Fabricius, in response to MD vaccination followed by MDV challenge in two genetically divergent inbred lines of White Leghorns. Small RNA sequencing and bioinformatic analyses of the small RNA sequence reads identified hundreds of miRNAs among all the treatment groups. A small portion of the identified miRNAs was differentially expressed within each of the four treatment groups, which were HVT or CVI988/Rispens vaccinated line 63-resistant birds and line 72-susceptible birds. A direct comparison between the resistant line 63 and susceptible line 72 groups vaccinated with HVT followed by MDV challenge identified five differentially expressed miRNAs. Gene Ontology analysis of the target genes of those five miRNAs revealed that those target genes, in addition to various GO terms, are involved in multiple signaling pathways including MAPK, TGF-β, ErbB, and EGFR1 signaling pathways. The general functions of those pathways reportedly play important roles in oncogenesis, anti-cancer immunity, cancer cell migration, and metastatic progression. Therefore, it is highly likely that those miRNAs may, in part, influence vaccine protection through the pathways.
Collapse
Affiliation(s)
- Lei Zhang
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA 30605, USA;
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China;
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China;
| | - Yongxing Ai
- College of Animal Science, Jilin University, Changchun 130062, China;
| | - Kunzhe Dong
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, USA;
| | - Huanmin Zhang
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA 30605, USA;
| |
Collapse
|
14
|
Fazel F, Matsuyama-Kato A, Alizadeh M, Boodhoo N, Sharif S. Efficacy and tolerability of an mRNA vaccine expressing gB and pp38 antigens of Marek's disease virus in chickens. Virology 2024; 590:109970. [PMID: 38134535 DOI: 10.1016/j.virol.2023.109970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Marek's disease is a contagious proliferative disease of chickens caused by an alphaherpesvirus called Marek's disease virus. A bivalent mRNA vaccine encoding MDV's glycoprotein-B and phosphoprotein-38 antigens was synthesized and encapsulated in lipid nanoparticles. Tumor incidence, lesion score, organ weight indices, MDV genome load and cytokine expression were used to evaluate protection and immunostimulatory effects of the tested mRNA vaccine after two challenge trials. Results from the first trial showed decreased tumor incidence and a reduction in average lesion scores in chickens that received the booster dose. The second trial demonstrated that vaccination with the higher dose of the vaccine (10 μg) significantly decreased tumor incidence, average lesion scores, bursal atrophy, and MDV load in feather tips when compared to the controls. Changes in expression of type I and II interferons suggested a possible role for these cytokines in initiation and maintenance of the vaccine-originated immune responses.
Collapse
Affiliation(s)
- Fatemeh Fazel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Ayumi Matsuyama-Kato
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
15
|
Motai Y, Murata S, Sato J, Nishi A, Maekawa N, Okagawa T, Konnai S, Ohashi K. Characterization of a Very Short Meq Protein Isoform in a Marek's Disease Virus Strain in Japan. Vet Sci 2024; 11:43. [PMID: 38275925 PMCID: PMC10818563 DOI: 10.3390/vetsci11010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Marek's disease virus (MDV) causes malignant lymphoma (Marek's disease; MD) in chickens. The Meq protein is essential for tumorigenesis since it regulates the expression of host and viral genes. Previously, we reported that the deletion of the short isoform of Meq (S-Meq) decreases the pathogenicity of MDV. Recently, we identified a further short isoform of Meq (very short isoform of Meq, VS-Meq) in chickens with MD in Japan. A 64-amino-acid deletion was confirmed at the C-terminus of VS-Meq. We measured the transcriptional regulation by VS-Meq in three gene promoters to investigate the effect of VS-Meq on protein function. Wild-type VS-Meq decreased the transrepression of the pp38 promoter but did not alter the transactivation activity of the Meq and Bcl-2 promoters. The deletion in VS-Meq did not affect the activity of the pp38 promoter but enhanced the transactivation activities of the Meq and Bcl-2 promoters. Collectively, the deletion of VS-Meq potentially enhanced the activity of the Meq promoter, while other amino acid sequences in wild-type VS-Meq seemed to affect the weak transrepression of the pp38 promoter. Further investigation is required to clarify the effects of these changes on pathogenicity.
Collapse
Affiliation(s)
- Yoshinosuke Motai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Shiro Murata
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Jumpei Sato
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Akihito Nishi
- Chuo Livestock Hygiene Service Center, Agriculture Promotion Department, Kochi Prefecture, 3229 Otsu, Takaoka-cho, Tosa 781-1102, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Kazuhiko Ohashi
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| |
Collapse
|
16
|
Boodhoo N, Shojadoost B, Alizadeh M, Astill J, Behboudi S, Sharif S. Effect of treatment with Lactococcus lactis NZ9000 on intestinal microbiota and mucosal immune responses against Clostridium perfringens in broiler chickens. Front Microbiol 2023; 14:1257819. [PMID: 38164397 PMCID: PMC10757962 DOI: 10.3389/fmicb.2023.1257819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Alterations in intestinal microbiota can modulate the developing avian intestinal immune system and, subsequently, may impact on resistance to enteric pathogens. The aim was to demonstrate that early life exposure to Lactococcus lactis, could affect either susceptibility or resistance of broilers to necrotic enteritis (NE). L. lactis NZ9000 (rL. lactis) pre-treatment at 1, 7, 14 and 21 days of age (DOA) led to a significant decrease in NE lesion scores in Clostridium perfringens infected chickens. C. perfringens Infection was associated with spatial and temporal decreases in mononuclear phagocytes and CD4+ αβ T cells. However, rL. Lactis pre-treatment and subsequent C. perfringens infection led to a significant increase in mononuclear phagocytes, CD8α + γδ T, αβ T cells (CD4+ and CD8α+) and B cells (IgM+, IgA+ and IgY+), as well as IL-12p40, IFN-γ and CD40. Differential expression of interleukin (IL)-6, IL-8, IL-10, IL-13, IL-18, IL-22, and transforming growth factor (TGF)-β were observed in L. lactis treated chickens when compared to C. perfringens infected chickens. Microbiota analysis in C. perfringens infected chickens demonstrated an increase in abundance of Bacillota, Bacteroidota, Pseudomonadota and Actinomycetota. These findings suggests that modulation of the chicken intestinal immune system by L. lactis confers partial protection 30 against NE.
Collapse
Affiliation(s)
- Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Bahram Shojadoost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Shahriar Behboudi
- Bristol Veterinary School, University of Bristol, Langford, Bristol, United Kingdom
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
17
|
Maina JN. A critical assessment of the cellular defences of the avian respiratory system: are birds in general and poultry in particular relatively more susceptible to pulmonary infections/afflictions? Biol Rev Camb Philos Soc 2023; 98:2152-2187. [PMID: 37489059 DOI: 10.1111/brv.13000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023]
Abstract
In commercial poultry farming, respiratory diseases cause high morbidities and mortalities, begetting colossal economic losses. Without empirical evidence, early observations led to the supposition that birds in general, and poultry in particular, have weak innate and adaptive pulmonary defences and are therefore highly susceptible to injury by pathogens. Recent findings have, however, shown that birds possess notably efficient pulmonary defences that include: (i) a structurally complex three-tiered airway arrangement with aerodynamically intricate air-flow dynamics that provide efficient filtration of inhaled air; (ii) a specialised airway mucosal lining that comprises air-filtering (ciliated) cells and various resident phagocytic cells such as surface and tissue macrophages, dendritic cells and lymphocytes; (iii) an exceptionally efficient mucociliary escalator system that efficiently removes trapped foreign agents; (iv) phagocytotic atrial and infundibular epithelial cells; (v) phagocytically competent surface macrophages that destroy pathogens and injurious particulates; (vi) pulmonary intravascular macrophages that protect the lung from the vascular side; and (vii) proficiently phagocytic pulmonary extravasated erythrocytes. Additionally, the avian respiratory system rapidly translocates phagocytic cells onto the respiratory surface, ostensibly from the subepithelial space and the circulatory system: the mobilised cells complement the surface macrophages in destroying foreign agents. Further studies are needed to determine whether the posited weak defence of the avian respiratory system is a global avian feature or is exclusive to poultry. This review argues that any inadequacies of pulmonary defences in poultry may have derived from exacting genetic manipulation(s) for traits such as rapid weight gain from efficient conversion of food into meat and eggs and the harsh environmental conditions and severe husbandry operations in modern poultry farming. To reduce pulmonary diseases and their severity, greater effort must be directed at establishment of optimal poultry housing conditions and use of more humane husbandry practices.
Collapse
Affiliation(s)
- John N Maina
- Department of Zoology, University of Johannesburg, Auckland Park Campus, Kingsway Avenue, Johannesburg, 2006, South Africa
| |
Collapse
|
18
|
He L, Spatz S, Dunn JR, Yu Q. Newcastle disease virus (NDV) recombinant expressing Marek's disease virus (MDV) glycoprotein B significantly protects chickens against MDV and NDV challenges. Vaccine 2023; 41:5884-5891. [PMID: 37598026 DOI: 10.1016/j.vaccine.2023.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Marek's disease (MD) is a highly contagious viral neoplastic disease of chickens caused by Marek's disease virus (MDV), resulting in significant economic losses to the poultry industry worldwide. The commonly used live and/or vectored MDV vaccines are expensive to produce and difficult to handle due to the requirement of liquid nitrogen for manufacturing and delivering frozen infected cells that are viable. In this study, we aimed to develop a Newcastle disease virus (NDV) vectored MDV vaccine that can be lyophilized, stored, and transported at 4 °C. Four NDV LaSota (LS) vaccine strain-based recombinant viruses expressing MDV glycoproteins gB, gC, gE, or gI were generated using reverse genetics technology. The biological assessments showed that these recombinant viruses were slightly attenuated in vivo yet retained similar growth kinetics and virus titers in vitro compared to the parental LaSota virus. Vaccination of leghorn chickens (Lines 15I5x71 F1 cross) with these recombinant viruses via intranasal and intraocular routes conferred different levels of protection against virulent MDV challenge. The recombinant expressing the MDV gB protein, rLS/MDV-gB, protected vaccinated birds significantly against MDV-induced tumor formation when challenged at 14 days post-vaccination (DPV) but moderately at 5 DPV. Whereas the other three recombinants provided little protection against the MDV challenge. All four recombinants conferred complete protection against the velogenic NDV challenge. These results demonstrated that the rLS/MDV-gB virus is a safe and efficacious dual vaccine candidate that can be lyophilized and potentially mass-administered via aerosol or drinking water to large chicken populations at a meager cost.
Collapse
Affiliation(s)
- Lei He
- US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan Province 471003, China
| | - Stephen Spatz
- US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - John R Dunn
- US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - Qingzhong Yu
- US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| |
Collapse
|
19
|
Kamble N, Reddy VRAP, Jackson B, Anjum FR, Ubachukwu CC, Patil A, Behboudi S. Inhibition of Marek's Disease Virus Replication and Spread by 25-hydroxycholesterol and 27-hydroxycholesterol In Vitro. Viruses 2023; 15:1652. [PMID: 37631994 PMCID: PMC10457855 DOI: 10.3390/v15081652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Marek's disease virus (MDV) causes a deadly lymphoproliferative disease in chickens, resulting in huge economic losses in the poultry industry. It has been suggested that MDV suppresses the induction of type I interferons and thus escapes immune control. Cholesterol 25-hydroxylase (CH25H), a gene that encodes an enzyme that catalyses cholesterol to 25-hydroxycholesterol (25-HC), is an interferon-stimulating gene (ISG) known to exert antiviral activities. Other oxysterols, such as 27-hydroxycholesterols (27-HC), have also been shown to exert antiviral activities, and 27-HC is synthesised by the catalysis of cholesterol via the cytochrome P450 enzyme oxidase sterol 27-hydroxylase A1 (CYP27A1). At 24 h post infection (hpi), MDV stimulated a type I interferon (IFN-α) response, which was significantly reduced at 48 and 72 hpi, as detected using the luciferase assay for chicken type I IFNs. Then, using RT-PCR, we demonstrated that chicken type I IFN (IFN-α) upregulates chicken CH25H and CYP27A1 genes in chicken embryo fibroblast (CEF) cells. In parallel, our results demonstrate a moderate and transient upregulation of CH25H at 48 hpi and CYP27A1 at 72hpi in MDV-infected CEF cells. A significant reduction in MDV titer and plaque sizes was observed in CEFs treated with 25-HC or 27-HC in vitro, as demonstrated using a standard plaque assay for MDV. Taken together, our results suggest that 25-HC and 27-HC may be useful antiviral agents to control MDV replication and spread.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shahriar Behboudi
- Avian Immunology Group, The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NE, UK (V.R.A.P.R.); (F.R.A.); (C.C.U.); (A.P.)
| |
Collapse
|
20
|
Boodhoo N, Matsuyama-Kato A, Raj S, Fazel F, St-Denis M, Sharif S. Effect of Pre-Treatment with a Recombinant Chicken Interleukin-17A on Vaccine Induced Immunity against a Very Virulent Marek's Disease Virus. Viruses 2023; 15:1633. [PMID: 37631976 PMCID: PMC10459749 DOI: 10.3390/v15081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The host response to pathogenic microbes can lead to expression of interleukin (IL)-17, which has antimicrobial and anti-viral activity. However, relatively little is known about the basic biological role of chicken IL-17A against avian viruses, particularly against Marek's disease virus (MDV). We demonstrate that, following MDV infection, upregulation of IL-17A mRNA and an increase in the frequency of IL-17A+ T cells in the spleen occur compared to control chickens. To elaborate on the role of chIL-17A in MD, the full-length chIL-17A coding sequence was cloned into a pCDNA3.1-V5/HIS TOPO plasmid. The effect of treatment with pcDNA:chIL-17A plasmid in combination with a vaccine (HVT) and very virulent(vv)MDV challenge or vvMDV infection was assessed. In combination with HVT vaccination, chickens that were inoculated with the pcDNA:chIL-17A plasmid had reduced tumor incidence compared to chickens that received the empty vector control or that were vaccinated only (66.6% in the HVT + empty vector group and 73.33% in HVT group versus 53.3% in the HVT + pcDNA:chIL-17A). Further analysis demonstrated that the chickens that received the HVT vaccine and/or plasmid expressing IL-17A had lower MDV-Meq transcripts in the spleen. In conclusion, chIL-17A can influence the immunity conferred by HVT vaccination against MDV infection in chickens.
Collapse
Affiliation(s)
| | | | | | | | | | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (N.B.); (A.M.-K.); (S.R.); (F.F.); (M.S.-D.)
| |
Collapse
|
21
|
Adams JRG, Mehat J, La Ragione R, Behboudi S. Preventing bacterial disease in poultry in the post-antibiotic era: a case for innate immunity modulation as an alternative to antibiotic use. Front Immunol 2023; 14:1205869. [PMID: 37469519 PMCID: PMC10352996 DOI: 10.3389/fimmu.2023.1205869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
The widespread use of antibiotics in the poultry industry has led to the emergence of antibiotic-resistant bacteria, which pose a significant health risk to humans and animals. These public health concerns, which have led to legislation limiting antibiotic use in animals, drive the need to find alternative strategies for controlling and treating bacterial infections. Modulation of the avian innate immune system using immunostimulatory compounds provides a promising solution to enhance poultry immune responses to a broad range of bacterial infections without the risk of generating antibiotic resistance. An array of immunomodulatory compounds have been investigated for their impact on poultry performance and immune responses. However, further research is required to identify compounds capable of controlling bacterial infections without detrimentally affecting bird performance. It is also crucial to determine the safety and effectiveness of these compounds in conjunction with poultry vaccines. This review provides an overview of the various immune modulators known to enhance innate immunity against avian bacterial pathogens in chickens, and describes the mechanisms involved.
Collapse
Affiliation(s)
- James R. G. Adams
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Avian Immunology, The Pirbright Institute, Woking, United Kingdom
| | - Jai Mehat
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Roberto La Ragione
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | |
Collapse
|
22
|
Schaefer EAF, Chu S, Wylie KM, Wylie TN, Griffith OL, Pearce JW, Johnson GC, Bryan JN, Flesner BK. Metagenomic Analysis of DNA Viruses with Targeted Sequence Capture of Canine Lobular Orbital Adenomas and Normal Conjunctiva. Microorganisms 2023; 11:1163. [PMID: 37317137 DOI: 10.3390/microorganisms11051163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
Our study aims are: (1) to evaluate phenotypically normal canine conjunctival and orbital tissue and tissue from canine lobular orbital adenomas (CLOAs) for the presence of viral genomic material and (2) phylogenetically classify detected DNA viruses to determine if a DNA virus is associated with CLOAs. A total of 31 formalin fixed paraffin embedded CLOA tissue samples, 4 papillomas or sarcoid, and 10 fresh clinically normal conjunctival tissues were included in this study. Genomic DNA was isolated from all samples and sequencing libraries were prepared. The libraries were molecularly indexed and pooled and viral DNA was enriched via targeted sequence capture utilizing ViroCap. The libraries were sequenced on the Illumina HiSeq platform and compared to known viral DNA reference genomes to identify viral DNA. Carnivore parvovirus was identified in 6.4% and 20% of CLOA tissue and normal conjunctival samples, respectively. This study showed that conjunctival tissue from healthy dogs and CLOAs uncommonly harbor DNA viruses, and no DNA virus was associated with these tumors. Further studies are needed to evaluate the etiologic cause of CLOAs.
Collapse
Affiliation(s)
- Elizabeth A F Schaefer
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Shirley Chu
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Kristine M Wylie
- McDonnell Genome Institute, Washington University, St. Louis, MO 63108, USA
- Department of Pediatrics, Washington University, St. Louis, MO 63110, USA
| | - Todd N Wylie
- McDonnell Genome Institute, Washington University, St. Louis, MO 63108, USA
- Department of Pediatrics, Washington University, St. Louis, MO 63110, USA
| | - Obi L Griffith
- McDonnell Genome Institute, Washington University, St. Louis, MO 63108, USA
- Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Jacqueline W Pearce
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Gayle C Johnson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Jeffrey N Bryan
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Brian K Flesner
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
23
|
Okoh GR, Lockhart M, Grimsey J, Whitmore D, Ariel E, Butler J, Horwood PF. Development of subfamily-based consensus PCR assays for the detection of human and animal herpesviruses. Eur J Clin Microbiol Infect Dis 2023; 42:741-746. [PMID: 37084118 PMCID: PMC10172264 DOI: 10.1007/s10096-023-04605-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Consensus PCR assays that can be used to sensitively detect several herpesvirus (HV) species across the different subfamilies were developed in this study. Primers containing degenerate bases were designed to amplify regions of the DNA polymerase (DPOL) gene of alpha- and gamma-HVs, and the glycoprotein B (gB) gene of beta-HVs in a singleplex, non-nested touchdown PCR format. The singleplex touchdown consensus PCR (STC-PCR) was used to amplify the DNA of eight human and 24 animal HVs. The assay was able to detect the lowest DNA dilution of 10-5 for alpha-HVs and 10-3 for beta- and gamma-HVs. In comparison, lowest detection limits of 10-5, 10-3, and 10-2 were obtained for alpha-, beta-, and gamma-HVs respectively when a nested PCR was used. The findings in this study suggest that the STC-PCR assays can be employed for the molecular surveys and clinical detection of novel and known HVs.
Collapse
Affiliation(s)
- God'spower Richard Okoh
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Michelle Lockhart
- CSIRO Australian Centre for Disease Preparedness, Geelong, Victoria, 3220, Australia
| | - Joanne Grimsey
- CSIRO Australian Centre for Disease Preparedness, Geelong, Victoria, 3220, Australia
| | - David Whitmore
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
| | - Ellen Ariel
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
| | - Jeff Butler
- CSIRO Australian Centre for Disease Preparedness, Geelong, Victoria, 3220, Australia
| | - Paul F Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia.
| |
Collapse
|
24
|
Akbar H, Fasick JJ, Ponnuraj N, Jarosinski KW. Purinergic signaling during Marek's disease in chickens. Sci Rep 2023; 13:2044. [PMID: 36739336 PMCID: PMC9899245 DOI: 10.1038/s41598-023-29210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Purinergic receptors (PRs) have been reported as potential therapeutic targets for many viral infections including herpesviruses, which urges the investigation into their role in Marek's disease (MD), a herpesvirus induced cancer in chickens that is an important pathogen for the poultry industry. MD is caused by MD virus (MDV) that has a similar viral life cycle as human varicella zoster virus in that it is shed from infected epithelial skin cells and enters the host through the respiratory route. In this report, PR responses during natural MDV infection and disease progression was examined in MD-resistant white Leghorns (WL) and MD-susceptible Pure Columbian (PC) chickens during natural infection. Whole lung lavage cells (WLLC) and liver tissue samples were collected from chickens infected but showing no clinical signs of MD (Infected) or presenting with clinical disease (Diseased). RNA was extracted followed by RT-qPCR analysis with gene specific primers against members of the P1, P2X, and P2Y PR families. Differential expression (p < 0.05) was observed in breed and disease conditions. Some PRs showed tissue specific expression (P1A1, P2X1, and P2X6 in WLLC) whereas others responded to MDV infection only in MD-susceptible (PC) chickens (P1A2A, P2X1, P2X5, P2X7). P2Y PRs had differential expression in both chicken lines in response to MDV infection and MD progression. This study is the first to our knowledge to examine PR responses during MDV infection and disease progression. These results suggest PR signaling may an important area of research for MDV replication and MD.
Collapse
Affiliation(s)
- Haji Akbar
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Julia J Fasick
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nagendraprabhu Ponnuraj
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Keith W Jarosinski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
25
|
Yuan Y, Zheng G, You Z, Wang L, Wang Z, Sun C, Liu C, Li X, Zhao P, Wang Y, Yang N, Lian L. Integrated analysis of methylation profiles and transcriptome of MDV-infected chicken spleens reveal hypomethylation of CD4 and HMGB1 genes might promote MD tumorigenesis. Poult Sci 2023; 102:102594. [PMID: 37043960 PMCID: PMC10140160 DOI: 10.1016/j.psj.2023.102594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/16/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
Marek's disease (MD) is a lymphoproliferative neoplastic disease caused by Marek's disease virus (MDV). Previous studies have showed that DNA methylation was involved in MD development, but systematic studies are still lacking. Herein, we performed whole genome bisulfite sequencing (WGBS) and RNA-seq in MDV-infected tumorous spleens (IN), noninfected spleens (NoIN), and survivor (SUR) spleens of chickens to identify the genes playing important roles in MD tumor transformation. We generated the first genome-wide DNA methylation profile of MDV-infected, noninfected, and survivor chickens. Combined the WGBS and RNA-Seq, we found that the expression of 25% differential expression genes (DEGs) were significantly correlated with methylation of CpG sites in their gene bodies or promoters. Further, we focused on the DEGs with differentially methylated regions (DMRs) on genes' body and promoter, and it showed the expression of 60% DEGs were significantly correlated with methylation of CpG sites in DMRs. Finally, we identified 8 genes, including CD4, CTLA4, DTL, HMGB1, LGMN, NUP210, RAD52, and ZAP70, and their expression was negatively correlated with methylation of DMRs in their promoters in both IN vs. NoIN and IN vs. SUR. These 8 genes showed specifically high expression in IN groups and clustered in module turquoise analyzed by WGCNA. Out of 8 genes, CD4 and HMGB1 were drop in QTLs associated with MD resistance. Thus, we overexpressed the 2 genes to simulate their high expression in the IN group and found they significantly promoted MDCC-MSB-1 cell proliferation, which revealed they might play promoting roles in MD tumorigenesis in IN due to their high expression induced by hypomethylation.
Collapse
|
26
|
Matsuyama-Kato A, Shojadoost B, Boodhoo N, Raj S, Alizadeh M, Fazel F, Fletcher C, Zheng J, Gupta B, Abdul-Careem MF, Plattner BL, Behboudi S, Sharif S. Activated Chicken Gamma Delta T Cells Are Involved in Protective Immunity against Marek's Disease. Viruses 2023; 15:v15020285. [PMID: 36851499 PMCID: PMC9962238 DOI: 10.3390/v15020285] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Gamma delta (γδ) T cells play a significant role in the prevention of viral infection and tumor surveillance in mammals. Although the involvement of γδ T cells in Marek's disease virus (MDV) infection has been suggested, their detailed contribution to immunity against MDV or the progression of Marek's disease (MD) remains unknown. In the current study, T cell receptor (TCR)γδ-activated peripheral blood mononuclear cells (PBMCs) were infused into recipient chickens and their effects were examined in the context of tumor formation by MDV and immunity against MDV. We demonstrated that the adoptive transfer of TCRγδ-activated PBMCs reduced virus replication in the lungs and tumor incidence in MDV-challenged chickens. Infusion of TCRγδ-activated PBMCs induced IFN-γ-producing γδ T cells at 10 days post-infection (dpi), and degranulation activity in circulating γδ T cell and CD8α+ γδ T cells at 10 and 21 dpi in MDV-challenged chickens. Additionally, the upregulation of IFN-γ and granzyme A gene expression at 10 dpi was significant in the spleen of the TCRγδ-activated PBMCs-infused and MDV-challenged group compared to the control group. Taken together, our results revealed that TCRγδ stimulation promotes the effector function of chicken γδ T cells, and these effector γδ T cells may be involved in protection against MD.
Collapse
Affiliation(s)
- Ayumi Matsuyama-Kato
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bahram Shojadoost
- Ceva Animal Health Inc., Research Park Centre, Guelph, ON N1G 4T2, Canada
| | - Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Fatemeh Fazel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Charlotte Fletcher
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jiayu Zheng
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bhavya Gupta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | - Brandon L. Plattner
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 54641); Fax: +1-519-824-5930
| |
Collapse
|
27
|
Lipkin E, Smith J, Soller M, Burt DW, Fulton JE. Sex Differences in Response to Marek's Disease: Mapping Quantitative Trait Loci Regions (QTLRs) to the Z Chromosome. Genes (Basel) 2022; 14:genes14010020. [PMID: 36672761 PMCID: PMC9859034 DOI: 10.3390/genes14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Marek's Disease (MD) has a significant impact on both the global poultry economy and animal welfare. The disease pathology can include neurological damage and tumour formation. Sexual dimorphism in immunity and known higher susceptibility of females to MD makes the chicken Z chromosome (GGZ) a particularly attractive target to study the chicken MD response. Previously, we used a Hy-Line F6 population from a full-sib advanced intercross line to map MD QTL regions (QTLRs) on all chicken autosomes. Here, we mapped MD QTLRs on GGZ in the previously utilized F6 population with individual genotypes and phenotypes, and in eight elite commercial egg production lines with daughter-tested sires and selective DNA pooling (SDP). Four MD QTLRs were found from each analysis. Some of these QTLRs overlap regions from previous reports. All QTLRs were tested by individuals from the same eight lines used in the SDP and genotyped with markers located within and around the QTLRs. All QTLRs were confirmed. The results exemplify the complexity of MD resistance in chickens and the complex distribution of p-values and Linkage Disequilibrium (LD) pattern and their effect on localization of the causative elements. Considering the fragments and interdigitated LD blocks while using LD to aid localization of causative elements, one must look beyond the non-significant markers, for possible distant markers and blocks in high LD with the significant block. The QTLRs found here may explain at least part of the gender differences in MD tolerance, and provide targets for mitigating the effects of MD.
Collapse
Affiliation(s)
- Ehud Lipkin
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
- Correspondence: (E.L.); (J.S.)
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
- Correspondence: (E.L.); (J.S.)
| | - Morris Soller
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - David W. Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Janet E. Fulton
- Hy-Line International, P.O. Box 310, 2583 240th St., Dallas Center, IA 50063, USA
| |
Collapse
|
28
|
Sun A, Zhao X, Zhu X, Kong Z, Liao Y, Teng M, Yao Y, Luo J, Nair V, Zhuang G, Zhang G. Fully Attenuated meq and pp38 Double Gene Deletion Mutant Virus Confers Superior Immunological Protection against Highly Virulent Marek's Disease Virus Infection. Microbiol Spectr 2022; 10:e0287122. [PMID: 36350141 PMCID: PMC9769808 DOI: 10.1128/spectrum.02871-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Marek's disease virus (MDV) induces immunosuppression and neoplastic disease in chickens. The virus is controllable via an attenuated meq deletion mutant virus, which has the disadvantage of retaining the ability to induce lymphoid organ atrophy. To overcome this deficiency and produce more vaccine candidates, a recombinant MDV was generated from the highly virulent Md5BAC strain, in which both meq and a cytolytic replication-related gene, pp38, were deleted. Replication of the double deletion virus, Md5BAC ΔmeqΔpp38, was comparable with that of the parental virus in vitro. The double deletion virus was shown to be fully attenuated and to reduce lymphoid organ atrophy in vivo. Crucially, Md5BAC ΔmeqΔpp38 confers superior protection against highly virulent virus compared with a commercial vaccine strain, CVI988/Rispens. Transcriptomic profiling indicated that Md5BAC ΔmeqΔpp38 induced a different host immune response from CVI988/Rispens. In summary, a novel, effective, and safe vaccine candidate for prevention and control of MD caused by highly virulent MDV is reported. IMPORTANCE MDV is a highly contagious immunosuppressive and neoplastic pathogen. The virus can be controlled through vaccination via an attenuated meq deletion mutant virus that retains the ability to induce lymphoid organ atrophy. In this study, we overcame the deficiency by generating meq and pp38 double deletion mutant virus. Indeed, the successfully generated meq and pp38 double deletion mutant virus had significantly reduced replication capacity in vivo but not in vitro. It was fully attenuated and conferred superior protection efficacy against very virulent MDV challenge. In addition, the possible immunological protective mechanism of the double deletion mutant virus was shown to be different from that of the gold standard MDV vaccine, CVI988/Rispens. Overall, we successfully generated an attenuated meq deletion mutant virus and widened the range of potential vaccine candidates. Importantly, this study provides for the first time the theoretical basis of vaccination induced by fully attenuated gene-deletion mutant virus.
Collapse
Affiliation(s)
- Aijun Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Xuyang Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Xiaojing Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Zhengjie Kong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Yifei Liao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Man Teng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
| | - Yongxiu Yao
- Viral Oncogenesis Group,The Pirbright Institute, Pirbright, Surrey, United Kingdom
- UK-China Centre of Excellence for Research on Avian Diseases, The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Jun Luo
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
| | - Venugopal Nair
- Viral Oncogenesis Group,The Pirbright Institute, Pirbright, Surrey, United Kingdom
- UK-China Centre of Excellence for Research on Avian Diseases, The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Guoqing Zhuang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
29
|
Jiang B, Wang J, Cao M, Jin H, Liu W, Cheng J, Zhou L, Xu J, Li Y. Differential Replication and Cytokine Response between Vaccine and Very Virulent Marek's Disease Viruses in Spleens and Bursas during Latency and Reactivation. Viruses 2022; 15:6. [PMID: 36680047 PMCID: PMC9864003 DOI: 10.3390/v15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Marek's disease virus (MDV) infection results in Marek's disease (MD) in chickens, a lymphoproliferative and oncogenic deadly disease, leading to severe economic losses. The spleen and bursa are the most important lymphoid and major target organs for MDV replication. The immune response elicited by MDV replication in the spleen and bursa is critical for the formation of latent MDV infection and reactivation. However, the mechanism of the host immune response induced by MDV in these key lymphoid organs during the latent and reactivation infection phases is not well understood. In the study, we focused on the replication dynamics of a vaccine MDV strain MDV/CVI988 and a very virulent MDV strain MDV/RB1B in the spleen and bursa in the latent and reactivation infection phases (7-28 days post-inoculation [dpi]), as well as the expression of some previously characterized immune-related molecules. The results showed that the replication ability of MDV/RB1B was significantly stronger than that of MDV/CVI988 within 28 days post-infection, and the replication levels of both MDV strains in the spleen were significantly higher than those in the bursa. During the latent and reactivation phase of MDV infection (7-28 dpi), the transcriptional upregulation of chicken IL-1β, IL6, IL-8L1 IFN-γ and PML in the spleen and bursa induced by MDV/RB1B infection was overall stronger than that of MDV/CVI988. However, compared to MDV/RB1Binfection, MDV/CVI988 infection resulted in a more effective transcriptional activation of CCL4 in the latent infection phase (7-14 dpi), which may be a characteristic distinguishing MDV vaccine strain from the very virulent strain.
Collapse
Affiliation(s)
- Bo Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mengyao Cao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Huan Jin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Wenxiao Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Jing Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Linyi Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Jian Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
30
|
The Role of Dendritic Cells in the Host Response to Marek’s Disease Virus (MDV) as Shown by Transcriptomic Analysis of Susceptible and Resistant Birds. Pathogens 2022; 11:pathogens11111340. [DOI: 10.3390/pathogens11111340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the successful control of highly contagious tumorigenic Marek’s disease (MD) by vaccination, a continuous increase in MD virus (MDV) virulence over recent decades has put emphasis on the development of more MD-resistant chickens. The cell types and genes involved in resistance therefore need to be recognized. The virus is primarily lymphotropic, but research should also focus on innate immunity, as innate immune cells are among the first to encounter MDV. Our previous study on MDV–macrophage interaction revealed significant differences between MHC-congenic lines 61 (MD-resistant) and 72 (MD-susceptible). To investigate the role of dendritic cells (DCs) in MD resistance, bone-marrow-derived DCs from these lines were infected with MDV in vitro. They were then characterized by cell sorting, and the respective transcriptomes analysed by RNA-seq. The differential expression (DE) of genes revealed a strong immune activation in DCs of the susceptible line, although an inherent immune supremacy was shown by the resistant line, including a significant expression of tumour-suppressor miRNA, gga-mir-124a, in line 61 control birds. Enrichment analysis of DE genes revealed high expression of an oncogenic transcription factor, AP-1, in the susceptible line following MDV challenge. This research highlights genes and pathways that may play a role in DCs in determining resistance or susceptibility to MDV infection.
Collapse
|
31
|
Gul H, Habib G, Khan IM, Rahman SU, Khan NM, Wang H, Khan NU, Liu Y. Genetic resilience in chickens against bacterial, viral and protozoal pathogens. Front Vet Sci 2022; 9:1032983. [PMID: 36439341 PMCID: PMC9691405 DOI: 10.3389/fvets.2022.1032983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/28/2022] [Indexed: 06/13/2024] Open
Abstract
The genome contributes to the uniqueness of an individual breed, and enables distinctive characteristics to be passed from one generation to the next. The allelic heterogeneity of a certain breed results in a different response to a pathogen with different genomic expression. Disease resistance in chicken is a polygenic trait that involves different genes that confer resistance against pathogens. Such resistance also involves major histocompatibility (MHC) molecules, immunoglobulins, cytokines, interleukins, T and B cells, and CD4+ and CD8+ T lymphocytes, which are involved in host protection. The MHC is associated with antigen presentation, antibody production, and cytokine stimulation, which highlight its role in disease resistance. The natural resistance-associated macrophage protein 1 (Nramp-1), interferon (IFN), myxovirus-resistance gene, myeloid differentiation primary response 88 (MyD88), receptor-interacting serine/threonine kinase 2 (RIP2), and heterophile cells are involved in disease resistance and susceptibility of chicken. Studies related to disease resistance genetics, epigenetics, and quantitative trait loci would enable the identification of resistance markers and the development of disease resistance breeds. Microbial infections are responsible for significant outbreaks and have blighted the poultry industry. Breeding disease-resistant chicken strains may be helpful in tackling pathogens and increasing the current understanding on host genetics in the fight against communicable diseases. Advanced technologies, such as the CRISPR/Cas9 system, whole genome sequencing, RNA sequencing, and high-density single nucleotide polymorphism (SNP) genotyping, aid the development of resistant breeds, which would significantly decrease the use of antibiotics and vaccination in poultry. In this review, we aimed to reveal the recent genetic basis of infection and genomic modification that increase resistance against different pathogens in chickens.
Collapse
Affiliation(s)
- Haji Gul
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Gul Habib
- Department of Microbiology, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Sajid Ur Rahman
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Nazir Muhammad Khan
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Hongcheng Wang
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| |
Collapse
|
32
|
Mountford J, Gheyas A, Vervelde L, Smith J. Genetic variation in chicken interferon signalling pathway genes in research lines showing differential viral resistance. Anim Genet 2022; 53:640-656. [PMID: 35739459 PMCID: PMC9544680 DOI: 10.1111/age.13233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 01/10/2023]
Abstract
Avian viruses of economic interest are a significant burden on the poultry industry, affecting production traits and resulting in mortality. Furthermore, the zoonosis of avian viruses risks pandemics developing in humans. Vaccination is the most common method of controlling viruses; however current vaccines often lack cross-protection against multiple strains of each virus. The mutagenicity of these viruses has also led to virulent strains emerging that can overcome the protection offered by vaccines. Breeding chickens with a more robust innate immune response may help in tackling current and emerging viruses. Understanding the genetic evolution of different lines will thus provide a useful tool in helping the host in the fight against pathogens. This study focuses on the interferon genes and their receptors in different chicken lines that are known to be more resistant or susceptible to particular avian viruses. Comparing genotypic differences in these core immune genes between the chicken lines may explain the phenotypic differences observed and aid the identification of causative variations. The relative resistance/susceptibility of each line to viruses of interest (Marek's disease virus, infectious bursal disease, infectious bronchitis virus and avian influenza virus) has previously been determined. Here we identify single nucleotide polymorphisms in interferons and downstream genes. Functional prediction tools were used to identify variants that may be affecting protein structure, mRNA secondary structure or transcription factor and micro-RNA binding sites. These variants were then considered in the context of the research lines and their distribution between phenotypes. We highlight 60 variants of interest in the interferon pathway genes that may account for susceptibility/resistance to viral pathogens.
Collapse
Affiliation(s)
- Joshua Mountford
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Almas Gheyas
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
33
|
Boodhoo N, Behboudi S. Marek's disease virus-specific T cells proliferate, express antiviral cytokines but have impaired degranulation response. Front Immunol 2022; 13:973762. [PMID: 36189228 PMCID: PMC9521602 DOI: 10.3389/fimmu.2022.973762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
The major histocompatibility complex (MHC) haplotype is one of the major determinants of genetic resistance and susceptibility of chickens to Marek's disease (MD) which is caused by an oncogenic herpesvirus; Marek's disease virus (MDV). To determine differential functional abilities of T cells associated with resistance and susceptibility to MD, we identified immunodominant CD4+TCRvβ1 T cell epitopes within the pp38 antigen of MDV in B19 and B21 MHC haplotype chickens using an ex vivo ELISPOT assay for chicken IFN-gamma. These novel pp38 peptides were used to characterize differential functional abilities of T cells as associated with resistance and susceptibility to MD. The results demonstrated an upregulation of cytokines (IL-2, IL-4, IL-10) and lymphocyte lysis-related genes (perforin and granzyme B) in an antigen specific manner using RT-PCR. In the MD-resistant chickens (B21 MHC haplotype), antigen-specific and non-specific response was highly skewed towards Th2 response as defined by higher levels of IL-4 expression as well as lymphocyte lysis-related genes compared to that in the MD-susceptible chicken line (B19 MHC haplotype). Using CD107a degranulation assay, the results showed that MDV infection impairs cytotoxic function of T cells regardless of their genetic background. Taken together, the data demonstrate an association between type of T cell response to pp38 and resistance to the disease and will shed light on our understanding of immune response to this oncogenic herpesvirus and failure to induce sterile immunity.
Collapse
|
34
|
Viet Thu HT, Trang HN, Phuoc Chien NT, Ngu NT, Hien ND. Occurrence of Marek's Disease in Backyard Chicken Flocks in Vietnam. Avian Dis 2022; 66:230-236. [DOI: 10.1637/aviandiseases-d-22-00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/08/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Ho Thi Viet Thu
- Can Tho University, Campus II, Area II, 3/2 Street, Xuan-Khanh Ward, Ninh-Kieu District, Can Tho City, Vietnam
| | - Huynh Ngoc Trang
- Can Tho University, Campus II, Area II, 3/2 Street, Xuan-Khanh Ward, Ninh-Kieu District, Can Tho City, Vietnam
| | - Nguyen Tran Phuoc Chien
- Can Tho University, Campus II, Area II, 3/2 Street, Xuan-Khanh Ward, Ninh-Kieu District, Can Tho City, Vietnam
| | - Nguyen Trong Ngu
- Can Tho University, Campus II, Area II, 3/2 Street, Xuan-Khanh Ward, Ninh-Kieu District, Can Tho City, Vietnam
| | - Nguyen Duc Hien
- Can Tho University, Campus II, Area II, 3/2 Street, Xuan-Khanh Ward, Ninh-Kieu District, Can Tho City, Vietnam
| |
Collapse
|
35
|
Brown K, Blake RS, Dennany L. Electrochemiluminescence within Veterinary Science: A Review. Bioelectrochemistry 2022; 146:108156. [DOI: 10.1016/j.bioelechem.2022.108156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
|
36
|
B cells do not play a role in vaccine-mediated immunity against Marek's disease. Vaccine X 2022; 10:100128. [PMID: 34977551 PMCID: PMC8686028 DOI: 10.1016/j.jvacx.2021.100128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/01/2021] [Accepted: 12/01/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Marek's disease virus (MDV), a highly oncogenic α-herpesvirus, is the etiological agent of Marek's disease (MD) in chickens. The antiviral activity of vaccine-induced immunity against MD reduces the level of early cytolytic infection, production of cell-free virions in the feather follicle epithelial cells (FFE), and lymphoma formation. Despite the success of several vaccines that have greatly reduced the economic losses from MD, the mechanism of vaccine-induced immunity is poorly understood. METHODS To provide insight into possible role of B cells in vaccine-mediated protection, we bursectomized birds on day of hatch and vaccinated them eight days later. The birds were challenged 10 days post vaccination with or without receiving adoptive lymphocytes from age-matched control birds prior to inoculation. The study also included vaccinated/challenged and non-vaccinated challenged intact birds. Flowcytometric analysis of PBMN cells were conducted twice post bursectomy to confirm B cell depletion and assess the effect of surgery on T cell population. Immunohistochemical analysis and viral genome copy number assessment in the skin samples at termination was performed to measure the replication rate of MDV in the FFE of the skin tissues of the challenged birds. RESULTS The non-vaccinated/challenged birds developed typical clinical signs of MD while the vaccinated/challenged and bursectomized, vaccinated/challenged groups with or without adoptive lymphocyte transfer, were fully protected with no sign of transient paralysis, weight loss, or T cell lymphomas. Immunohistochemical analysis and viral genome copy number evaluation in the skin samples revealed that unlike the vaccinated/challenged birds a significant number of virus particles were produced in the FFE of the non-vaccinated/challenged birds at termination. In the bursectomized, vaccinated/challenged groups, only a few replicating virions were detected in the skin of birds that received adoptive lymphocytes prior to challenge. CONCLUSIONS The study shows that B cells do not play a critical role in MD vaccine-mediated immunity.
Collapse
|
37
|
Boodhoo N, Behboudi S. Differential Virus-Specific IFN-Gamma Producing T Cell Responses to Marek's Disease Virus in Chickens With B19 and B21 MHC Haplotypes. Front Immunol 2022; 12:784359. [PMID: 35095857 PMCID: PMC8792850 DOI: 10.3389/fimmu.2021.784359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022] Open
Abstract
Marek’s disease virus (MDV), the etiologic agent for Marek’s disease (MD), causes a deadly lymphoproliferative disease in chickens. Causes of the well-documented association between genetically defined lines of chicken and resistance to MD remain unknown. Here, the frequencies of IFN-gamma producing pp38 and MEQ-specific T cell responses were determined in line N (B21 haplotype; MD-resistant) and line P2a (B19 haplotype, MD-susceptible) chickens after infection with vaccine and/or virulent (RB1B) strains of MDV using both standard ex vivo and cultured chIFN-gamma ELISPOT assays. Notably, MDV infection of naïve and vaccinated MD-resistant chickens induced higher frequencies of IFN-gamma producing MDV-specific T cell responses using the cultured and ex vivo ELISPOT assay, respectively. Remarkably, vaccination did not induce or boost MEQ-specific effector T cells in the susceptible chickens, while it boosted both pp38-and MEQ-specific response in resistant line. Taken together, our results revealed that there is a direct association between the magnitude of T cell responses to pp38 and MEQ of MDV antigens and resistance to the disease.
Collapse
Affiliation(s)
| | - Shahriar Behboudi
- The Pirbright Institute, Woking, United Kingdom.,Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guilford, United Kingdom
| |
Collapse
|
38
|
Kamble N, Gurung A, Kaufer BB, Pathan AA, Behboudi S. Marek's Disease Virus Modulates T Cell Proliferation via Activation of Cyclooxygenase 2-Dependent Prostaglandin E2. Front Immunol 2022; 12:801781. [PMID: 35003129 PMCID: PMC8727754 DOI: 10.3389/fimmu.2021.801781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/06/2021] [Indexed: 02/02/2023] Open
Abstract
Marek’s disease virus (MDV), an avian alphaherpesvirus, infects chickens, transforms CD4+ T cells, and induces immunosuppression early during infection. However, the exact mechanisms involved in MDV-induced immunosuppression are yet to be identified. Here, our results demonstrate that MDV infection in vitro and in vivo induces activation of cyclooxygenase-2 (COX-2) and production of prostaglandin E2 (PGE2). This exerts its inhibitory effects on T cell proliferation at day 21 post infection via PGE2 receptor 2 (EP2) and receptor 4 (EP4). Impairment of the MDV-induced T cell proliferation was associated with downregulation of IL-2 and transferrin uptake in a COX-2/PGE2 dependent manner in vitro. Interestingly, oral administration of a COX-2 inhibitor, meloxicam, during MDV infection inhibited COX-2 activation and rescued T cell proliferation at day 21 post infection. Taken together, our results reveal a novel mechanism that contributes to immunosuppression in the MDV-infected chickens.
Collapse
Affiliation(s)
| | - Angila Gurung
- The Pirbright Institute, Woking, United Kingdom.,Department of Life Sciences, College of Health and Life Sciences, Brunel University, London, United Kingdom
| | | | - Ansar Ahmed Pathan
- Department of Life Sciences, College of Health and Life Sciences, Brunel University, London, United Kingdom
| | - Shahriar Behboudi
- The Pirbright Institute, Woking, United Kingdom.,Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
39
|
Kim T, Hearn C. Vaccinal Efficacy of Recombinant Marek's Disease Vaccine 301B/1 Expressing Chicken Interleukin-15. Avian Dis 2022; 66:79-84. [DOI: 10.1637/21-00089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/09/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Taejoong Kim
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605
| | - Cari Hearn
- Avian Diseases and Oncology Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 4279 E. Mt. Hope Road, East Lansing, MI 48823
| |
Collapse
|
40
|
Li H, Ge Z, Luo Q, Fu Q, Chen R. A highly pathogenic Marek's disease virus isolate from chickens immunized with a bivalent vaccine in China. Arch Virol 2022; 167:861-870. [PMID: 35129660 DOI: 10.1007/s00705-021-05355-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/22/2021] [Indexed: 11/02/2022]
Abstract
Marek's disease virus (MDV) is an important oncogenic poultry pathogen that can generally be controlled by vaccination. However, MDV infections still occur occasionally on vaccinated farms, possibly due to genetic variation among MDV strains or management-related issues. In this study, a novel MDV strain, designated LZ1309, was isolated from a poultry flock that had been vaccinated with the HVT and CVI988 vaccine strains. Animal experiments showed that LZ1309 infection led to high morbidity (100%) and mortality (90%). Moreover, existing vaccines provided only partial protection against LZ1309, with protection rates of 68.4%, 85%, and 90% for HVT, CVI988, and HVT plus CVI988, respectively. This study demonstrates the presence of a more virulent strain of MDV in vaccinated chickens in China that poses a new potential threat to poultry farms. In future studies, the development of new treatment strategies should be of high priority.
Collapse
Affiliation(s)
- Huimin Li
- Medical College, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Zengxu Ge
- Medical College, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Qiong Luo
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, 510642, Guangdong, China.,Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, China
| | - Qiang Fu
- Medical College, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, 510642, Guangdong, China. .,Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, China.
| |
Collapse
|
41
|
Vychodil T, Wight DJ, Nascimento M, Jolmes F, Korte T, Herrmann A, Kaufer BB. Visualization of Marek’s Disease Virus Genomes in Living Cells during Lytic Replication and Latency. Viruses 2022; 14:v14020287. [PMID: 35215880 PMCID: PMC8877148 DOI: 10.3390/v14020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
Visualization of the herpesvirus genomes during lytic replication and latency is mainly achieved by fluorescence in situ hybridization (FISH). Unfortunately, this technique cannot be used for the real-time detection of viral genome in living cells. To facilitate the visualization of the Marek’s disease virus (MDV) genome during all stages of the virus lifecycle, we took advantage of the well-established tetracycline operator/repressor (TetO/TetR) system. This system consists of a fluorescently labeled TetR (TetR-GFP) that specifically binds to an array of tetO sequences. This tetO repeat array was first inserted into the MDV genome (vTetO). Subsequently, we fused TetR-GFP via a P2a self-cleaving peptide to the C-terminus of the viral interleukin 8 (vIL8), which is expressed during lytic replication and latency. Upon reconstitution of this vTetO-TetR virus, fluorescently labeled replication compartments were detected in the nucleus during lytic replication. After validating the specificity of the observed signal, we used the system to visualize the genesis and mobility of the viral replication compartments. In addition, we assessed the infection of nuclei in syncytia as well as lytic replication and latency in T cells. Taken together, we established a system allowing us to track the MDV genome in living cells that can be applied to many other DNA viruses.
Collapse
Affiliation(s)
- Tereza Vychodil
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany; (T.V.); (D.J.W.); (M.N.)
| | - Darren J. Wight
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany; (T.V.); (D.J.W.); (M.N.)
| | - Mariana Nascimento
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany; (T.V.); (D.J.W.); (M.N.)
| | - Fabian Jolmes
- Department of Biology, Molecular Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany; (F.J.); (T.K.); (A.H.)
| | - Thomas Korte
- Department of Biology, Molecular Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany; (F.J.); (T.K.); (A.H.)
| | - Andreas Herrmann
- Department of Biology, Molecular Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany; (F.J.); (T.K.); (A.H.)
- Institut für Chemie und Biochemie, Freie Universität Berlin, Altensteinstr. 23a, 14195 Berlin, Germany
| | - Benedikt B. Kaufer
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany; (T.V.); (D.J.W.); (M.N.)
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
- Correspondence: ; Tel.: +49-30-838-51936
| |
Collapse
|
42
|
Matsuyama-Kato A, Iseki H, Boodhoo N, Bavananthasivam J, Alqazlan N, Abdul-Careem MF, Plattner BL, Behboudi S, Sharif S. Phenotypic characterization of gamma delta (γδ) T cells in chickens infected with or vaccinated against Marek's disease virus. Virology 2022; 568:115-125. [DOI: 10.1016/j.virol.2022.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/31/2021] [Accepted: 01/21/2022] [Indexed: 11/24/2022]
|
43
|
Conrad SJ, Oluwayinka EB, Heidari M, Mays JK, Dunn JR. Deletion of the Viral Thymidine Kinase in a Meq-Deleted Recombinant Marek's Disease Virus Reduces Lymphoid Atrophy but Is Less Protective. Microorganisms 2021; 10:7. [PMID: 35056456 PMCID: PMC8779792 DOI: 10.3390/microorganisms10010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022] Open
Abstract
Marek's disease (MD) is a ubiquitous disease of domesticated chickens and its etiologic agent is the Gallid alphaherpesvirus 2 (GaHV-2), also known as Marek's disease virus (MDV). MD is currently controlled by vaccination using live attenuated strains of MDV (e.g., CVI988/Rispens), non-pathogenic serotypes of MDV (GaHV-3), or non-pathogenic strains of the related Melagrid alphaherpesvirus 1 (MeHV-1). One attractive strategy for the production of new vaccine strains is a recombinant MDV attenuated by the deletion of the major viral oncogene meq. However, meq-deleted variants of MDV cause atrophy of the bursa and thymus in maternal antibody-negative chickens, and the resulting immunosuppression makes them unsuitable. Herein we detail our attempt to mitigate the lymphoid atrophy caused by meq-deleted MDV by further attenuation of the virus through ablation of the viral thymidine kinase (tk) gene. We demonstrate that ablation of the viral tk from the meq-deleted virus rMd5B40/Δmeq resulted in a virus attenuated for replication in vitro and which spared chickens from atrophy of the lymphoid organs in vivo. When the rMd5B40/Δmeq/Δtk/GFP was used as a vaccine it was protective against challenge with the vv+MDV strain 686, but the protection was less than that provided by the CVI988/Rispens vaccine.
Collapse
Affiliation(s)
- Steven J. Conrad
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA; (S.J.C.); (M.H.); (J.K.M.)
| | - Eniope B. Oluwayinka
- Department of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta 111101, Nigeria;
| | - Mohammad Heidari
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA; (S.J.C.); (M.H.); (J.K.M.)
| | - Jody K. Mays
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA; (S.J.C.); (M.H.); (J.K.M.)
| | - John R. Dunn
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA; (S.J.C.); (M.H.); (J.K.M.)
| |
Collapse
|
44
|
Yimer YM, Asfaw Ali D, Getachew Ayalew B, Bitew Asires M, Gelaye E. Pathogenicity of Field Marek’s Disease Virus Serotype-1 and Vaccine Efficacy Test in Chicken in Eastern Shewa Ethiopia. Vet Med (Auckl) 2021; 12:347-357. [PMID: 35223432 PMCID: PMC8866982 DOI: 10.2147/vmrr.s332737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022]
Abstract
Background Marek’s disease is a chicken lymphoproliferative viral illness. As new viruses emerge, vaccination immunity is being broken and hence pathogenecity assessment and vaccine evaluation related to the pathogen is critical for developing vaccine immunity in the field. Methods An experimental investigation was conducted to determine the pathogenicity of field isolates against Marek’s disease in antibody-free chicks and to assess the protective efficacy of the Marek’s disease vaccination. The viral isolates in question were discovered during an outbreak investigation for a previous study. The pathogenicity and effectiveness trial used a complete random design. Results In the pathogenicity trial, chickens inoculated with Bishoftu and Mojo field isolate had lower body weight 77.7±3.757 and 78.15±1.95 g at 10 dpi, respectively, when compared to un-inoculated controls, 89.85±3.838 g at 10 dpi. Incidence of early mortality syndrome (35% and 25%), lymphoma (53.8% and 40%), and overall mortality (50% and 45%) between Bishoftu and Mojo isolates, respectively, was discovered. Vaccinations with Herpes virus of turkey challenged chickens were provided complete protection against Marek’s disease. Conclusion Based on the findings in pathogenecity assessment experimental trials, Bishoftu and Mojo isolates were designated as virulent Marek’s disease viruses. Regular vaccinations with Herpes virus of turkey vaccine and supported by biosecurity measures in poultry farms are important to prevent the disease.
Collapse
Affiliation(s)
| | - Destaw Asfaw Ali
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
- Correspondence: Destaw Asfaw Ali College of Veterinary Medicine and Animal Science, University of Gondar, P.O. Box 196, Gondar, Ethiopia Email
| | | | | | | |
Collapse
|
45
|
Exploration of Alternative Splicing (AS) Events in MDV-Infected Chicken Spleens. Genes (Basel) 2021; 12:genes12121857. [PMID: 34946806 PMCID: PMC8701255 DOI: 10.3390/genes12121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Marek’s disease (MD) was an immunosuppression disease induced by Marek’s disease virus (MDV). MD caused huge economic loss to the global poultry industry, but it also provided an ideal model for studying diseases induced by the oncogenic virus. Alternative splicing (AS) simultaneously produced different isoform transcripts, which are involved in various diseases and individual development. To investigate AS events in MD, RNA-Seq was performed in tumorous spleens (TS), spleens from the survivors (SS) without any lesion after MDV infection, and non-infected chicken spleens (NS). In this study, 32,703 and 25,217 AS events were identified in TS and SS groups with NS group as the control group, and 1198, 1204, and 348 differently expressed (DE) AS events (p-value < 0.05 and FDR < 0.05) were identified in TS vs. NS, TS vs. SS, SS vs. NS, respectively. Additionally, Function enrichment analysis showed that ubiquitin-mediated proteolysis, p53 signaling pathway, and phosphatidylinositol signaling system were significantly enriched (p-value < 0.05). Small structural variations including SNP and indel were analyzed based on RNA-Seq data, and it showed that the TS group possessed more variants on the splice site region than those in SS and NS groups, which might cause more AS events in the TS group. Combined with previous circRNA data, we found that 287 genes could produce both circular and linear RNAs, which suggested these genes were more active in MD lymphoma transformation. This study has expanded the understanding of the MDV infection process and provided new insights for further analysis of resistance/susceptibility mechanisms.
Collapse
|
46
|
Zhou Z, Xu J, Li Z, Lv Y, Wu S, Zhang H, Song Y, Ai Y. Viral deubiquitinases and innate antiviral immune response in livestock and poultry. J Vet Med Sci 2021; 84:102-113. [PMID: 34803084 PMCID: PMC8810313 DOI: 10.1292/jvms.21-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Among many of the pathogens, virus is the main cause of diseases in livestock and poultry. A host infected with the virus triggers a series of innate and adaptive immunity. The realization of innate immune responses involves the participation of a series of protein molecules in host cells, including receptors, signal molecules and antiviral molecules. Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including innate immune responses. Ubiquitin-mediated control over these processes can be reversed by cellular or viral deubiquitinases (DUBs). DUBs have now been identified in diverse viral lineages, and their characterization is providing valuable insights into virus biology and the role of the ubiquitin system in host antiviral mechanisms. In this review, we briefly introduce the mechanisms of ubiquitination and deubiquitination, present antiviral innate immune response and its regulation by ubiquitin, and summarize the prevalence of DUBs encoded by viruses (Arteriviridae, Asfarviridae, Nairoviridae, Coronaviridae, Herpesviridae, and Picornaviridae) infecting domestic animals and poultry. It is found that these DUBs suppress the innate immune responses mainly by affecting the production of type I interferon (IFN), which causes immune evasion of the viruses and promotes their replication. These findings have important reference significance for understanding the virulence and immune evasion mechanisms of the relevant viruses, and thus for the development of more effective prevention and treatment measures.
Collapse
Affiliation(s)
- Zhengxuan Zhou
- College of Animal Science, Jilin University.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University
| | - Jiacui Xu
- College of Animal Science, Jilin University.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University
| | - Zhanjun Li
- College of Animal Science, Jilin University.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University
| | - Yan Lv
- College of Animal Science, Jilin University
| | - Shanli Wu
- College of Basic Medical Sciences, Jilin University
| | - Huanmin Zhang
- Avian Disease and Oncology Laboratory, Agriculture Research Service, United States Department of Agriculture
| | - Yu Song
- Key laboratory of Utilization and Conservation for Tropical Marine Bioresources (Hainan Tropical Ocean University), Ministry of Education of the People's Republic of China.,Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources
| | - Yongxing Ai
- College of Animal Science, Jilin University.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University
| |
Collapse
|
47
|
He H, Qiao D, Zhang L, Yao Y, Shao H, Qin A, Qian K. Antiviral Effect of Lithium Chloride on Replication of Marek's Disease Virus in Chicken Embryonic Fibroblasts. Int J Mol Sci 2021; 22:12375. [PMID: 34830257 PMCID: PMC8623539 DOI: 10.3390/ijms222212375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
To investigate the antiviral effect of lithium chloride (LiCl) on the replication of Marek's disease virus (MDV) in chicken embryonic fibroblast (CEF) cells, real-time PCR, Western blotting, plaque counting, and indirect immunofluorescence experiments were performed at different time points of LiCl treated CEF cells with virus infection. The results demonstrated that LiCl could affect multiple steps of virus replication and inhibit viral gene expression and protein synthesis in a dose- and time-dependent manner. Moreover, LiCl could directly affect viral infectivity as well. In addition, LiCl significantly affected the gene expression of IFN-β related genes in virus-infected cells. These results indicate that LiCl significantly inhibits MDV replication and proliferation in CEF cells and it has the potential to be used as an antiviral agent against MDV.
Collapse
Affiliation(s)
- Huifeng He
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (H.H.); (L.Z.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China;
| | - Dandan Qiao
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China;
| | - Lu Zhang
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (H.H.); (L.Z.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China;
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Surrey GU24 0NF, UK;
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (H.H.); (L.Z.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China;
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (H.H.); (L.Z.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China;
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (H.H.); (L.Z.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China;
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
48
|
Lounas A, Besbaci M, Akkou M, Tali O. Occurrence of Marek's disease in vaccinated Algerian broiler breeder flocks: A histopathological survey. Vet World 2021; 14:3021-3027. [PMID: 35017852 PMCID: PMC8743772 DOI: 10.14202/vetworld.2021.3021-3027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Marek's disease (MD) is a lymphoproliferative disease that occurs in chickens. In the absence of control measures, MD causes devastating losses to commercial poultry flocks. Vaccination has enabled dramatic success in the prevention and control of MD. However, the MD vaccination program has failed frequently, and occasional clinical outbreaks have been reported in the vaccinated flocks as well. The present study aimed to describe the clinical and histopathological characteristics of the field cases of MD in broiler breeder flocks. MATERIALS AND METHODS A survey on the update of MD occurrence in Algerian broiler breeder flocks was conducted from June 2020 to September 2020. Ten vaccinated broiler breeder flocks located in Central Algeria and having progressive tumors in different visceral organs were evaluated for MD virus infection by conducting a histopathological examination of the birds. RESULTS The age of the birds affected with MD ranged from 13 to 22 weeks. The mortality rate varied sensitively from 4% to 10%. The clinical symptoms reported in the affected flocks included locomotor, nervous, digestive, and respiratory symptoms. Necropsy of the dead or euthanized birds revealed visceral lymphomatosis in several organs and macroscopic changes in the peripheral nerves (including loss of longitudinal striation, color change [grayish], and volume increase). The histopathological findings included the infiltration and proliferation of lymphocytes and blast cells (lymphoblasts) in various organs of the birds, which are the typical characteristics of MD and, therefore, confirmed the field infection of MD in these birds. CONCLUSION The present study provided evidence for the high prevalence of MD in the broiler breeder flocks vaccinated with a bivalent vaccine (turkey herpesvirus+Rispens) at the hatchery. The findings of the present study may indicate high-level failure of vaccination in these birds.
Collapse
Affiliation(s)
- Abdelaziz Lounas
- Veterinary Sciences Institute, University of Blida 1, Blida, Algeria
| | - Mohamed Besbaci
- Veterinary Sciences Institute, University of Blida 1, Blida, Algeria
| | - Madjid Akkou
- Veterinary Sciences Institute, University of Blida 1, Blida, Algeria
| | - Oumennoune Tali
- Veterinary Sciences Institute, University of Blida 1, Blida, Algeria
| |
Collapse
|
49
|
Marek's disease virus encoded miR-M6 and miR-M10 are dispensable for virus replication and pathogenesis in chickens. Vet Microbiol 2021; 262:109248. [PMID: 34628274 DOI: 10.1016/j.vetmic.2021.109248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/02/2021] [Indexed: 12/30/2022]
Abstract
MicroRNAs (miRNAs) are a class of approximately 22 nucleotides long non-coding RNAs, and virus-encoded miRNAs play an important role in pathogenesis. Marek's disease virus (MDV) is an oncogenic avian alphaherpesvirus that causes immunosuppression and tumors in its natural host, chicken. In the MDV genome, 14 miRNA precursors and 26 mature miRNAs were identified, thus MDV has been used as a model to study the function of viral miRNAs in vivo. Recently, a cluster of miRNAs encoded by MDV, Cluster 3 miRNAs (miR-M8-M10), has been shown to restrict early cytolytic replication and pathogenesis of MDV. In this study, we further analyzed the role of miR-M6 and miR-M10, members of cluster miR-M8-M10, in MDV replication and pathogenicity. We found that, compared to parental MDV, deletion of miR-M6-5p significantly enhanced the replication of MDV in cell culture, but not in chickens. The replication of miR-M6-5p deletion MDV was restored once the deleted sequences were re-inserted. Our results also showed that deletion of miR-M10-5p did not affect the replication of MDV in vitro and in vivo. In addition, our animal study results showed that deletion of miR-M6-5p or miR-M10-5p did not alter the pathogenesis of MDV. In conclusion, our study shows that both miR-M6 and miR-M10 are dispensable for MDV replication and pathogenesis in chickens, while also suggests a repressive role of miR-M6 in MDV replication in cell culture.
Collapse
|
50
|
Senevirathne A, Hewawaduge C, Lee JH. Genetic interference exerted by Salmonella-delivered CRISPR/Cas9 significantly reduces the pathological burden caused by Marek's disease virus in chickens. Vet Res 2021; 52:125. [PMID: 34593043 PMCID: PMC8482593 DOI: 10.1186/s13567-021-00995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022] Open
Abstract
Efficient in vivo delivery of a CRISPR/Cas9 plasmid is of paramount importance for effective therapy. Here, we investigated the usability of Salmonella as a plasmid carrier for in vivo therapy against virus-induced cancer using Marek’s disease virus (MDV) as a model for study in chickens. A green fluorescent protein-expressing CRISPR/Cas9 plasmid encoding the virulence gene pp38 was constructed against Marek’s disease virus. Therapeutic plasmids were transformed into Salmonella carrying lon and sifA gene deletions. The animals in 5 groups were intraperitoneally inoculated with phosphate-buffered saline, vector control, or Salmonella before or after MDV infection, or left uninfected as a naïve control. Therapeutic effectiveness was evaluated by observing disease outcomes and the viral copy number in peripheral blood mononuclear cells. The efficacy of plasmid delivery by Salmonella was 13 ± 1.7% in the spleen and 8.0 ± 1.8% in the liver on the 6th day post-infection. The Salmonella-treated groups showed significant resistance to MDV infection. The maximum effect was observed in the group treated with Salmonella before MDV infection. None of the chickens fully recovered; however, the results suggested that timely delivery of Salmonella could be effective for in vivo CRISPR/Cas9-mediated genetic interference against highly pathogenic MDV. The use of Salmonella in CRISPR systems provides a simpler and more efficient platform for in vivo therapy with CRISPR than the use of conventional in vivo gene delivery methods and warrants further development.
Collapse
Affiliation(s)
- Amal Senevirathne
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea.
| |
Collapse
|