1
|
Almeida CF, Faria M, Carvalho J, Pinho E. Contribution of nanotechnology to greater efficiency in animal nutrition and production. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 38767313 DOI: 10.1111/jpn.13973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Feed costs present a major burden in animal production for human consumption, representing a key opportunity for cost reduction and profit improvement. Nanotechnology offers potential to increase productivity by creating higher-quality and safer products. The feed sector has benefited from the use of nanosystems to improve the stability and bioavailability of feed ingredients. The development of nanotechnology products for feed must consider the challenges raised by biological barriers as well as regulatory requirements. While some nanotechnology-based products are already commercially available for animal production, the exponential growth and application of these products requires further research ensuring their safety and the establishment of comprehensive legislative frameworks and regulatory guidelines. Thus, this article provides an overview of the current state of the art regarding nanotechnology solutions applied in feed, as well as the risks and opportunities aimed to help researchers and livestock producers.
Collapse
Affiliation(s)
- Carina F Almeida
- INIAV - National Institute for Agrarian and Veterinarian Research, Vairão, Portugal
| | | | | | - Eva Pinho
- INIAV - National Institute for Agrarian and Veterinarian Research, Vairão, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Porto, Portugal
- AliCE - Associate Laboratory in Chemical Engineering, Porto, Portugal
| |
Collapse
|
2
|
Apuzzo E, Agazzi M, Herrera SE, Picco A, Rizzo G, Chavero C, Bianchi D, Smaldini P, Cortez ML, Marmisollé WA, Padula G, Seoane A, Alomar ML, Denofrio MP, Docena G, Azzaroni O. Poly(allylamine)-tripolyphosphate Ionic Assemblies as Nanocarriers: Friend or Foe? ACS APPLIED BIO MATERIALS 2023; 6:4714-4727. [PMID: 37863908 DOI: 10.1021/acsabm.3c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Designing effective drug nanocarriers that are easy to synthesize, robust, and nontoxic is a significant challenge in nanomedicine. Polyamine-multivalent molecule nanocomplexes are promising drug carriers due to their simple and all-aqueous manufacturing process. However, these systems can present issues of colloidal instability over time and cellular toxicity due to the cationic polymer. In this study, we finely modulate the formation parameters of poly(allylamine-tripolyphosphate) complexes to jointly optimize the robustness and safety. Polyallylamine was ionically assembled with tripolyphosphate anions to form liquid-like nanocomplexes with a size of around 200 nm and a zeta potential of -30 mV. We found that nanocomplexes exhibit tremendous long-term stability (9 months of storage) in colloidal dispersion and that they are suitable as protein-loading agents. Moreover, the formation of nanocomplexes induced by tripolyphosphate anions produces a switch-off in the toxicity of the system by altering the overall charge from positive to negative. In addition, we demonstrate that nanocomplexes can be internalized by bone-marrow-derived macrophage cells. Altogether, these nanocomplexes have attractive and promising properties as delivery nanoplatforms for potential therapies based on the immune system activation.
Collapse
Affiliation(s)
- Eugenia Apuzzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), 1900 La Plata, Buenos Aires, Argentina
| | - Maximiliano Agazzi
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), (UNRC, CONICET), Ruta Nacional 36 KM 601, 5800 Río Cuarto, Córdoba, Argentina
| | - Santiago E Herrera
- Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), (UBA, CONICET), C1428EGA Buenos Aires, Argentina
| | - Agustín Picco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), 1900 La Plata, Buenos Aires, Argentina
| | - Gastón Rizzo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), (UNLP, CONICET), asociado a CIC-PBA, 1900 La Plata, Buenos Aires ,Argentina
| | - Camila Chavero
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), (UNLP, CONICET), asociado a CIC-PBA, 1900 La Plata, Buenos Aires ,Argentina
| | - Daiana Bianchi
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), (UNLP, CONICET), asociado a CIC-PBA, 1900 La Plata, Buenos Aires ,Argentina
| | - Paola Smaldini
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), (UNLP, CONICET), asociado a CIC-PBA, 1900 La Plata, Buenos Aires ,Argentina
| | - María Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), 1900 La Plata, Buenos Aires, Argentina
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), 1900 La Plata, Buenos Aires, Argentina
| | - Gisel Padula
- Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout" (IGEVET), (UNLP, CONICET), 1900 La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Naturales y Museo (FCNyM), (UNLP, CONICET), 1900 La Plata, Buenos Aires ,Argentina
| | - Analía Seoane
- Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout" (IGEVET), (UNLP, CONICET), 1900 La Plata, Buenos Aires, Argentina
| | - Maria Lis Alomar
- Instituto Tecnológico de Chascomús (INTECH), (UNSAM, CONICET) 7130, Chascomús, Buenos Aires ,Argentina
| | - Maria Paula Denofrio
- Instituto Tecnológico de Chascomús (INTECH), (UNSAM, CONICET) 7130, Chascomús, Buenos Aires ,Argentina
| | - Guillermo Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), (UNLP, CONICET), asociado a CIC-PBA, 1900 La Plata, Buenos Aires ,Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), 1900 La Plata, Buenos Aires, Argentina
| |
Collapse
|
3
|
Mörschbächer AP, Berghahn E, Shibuya FY, Cardoso ML, Ulguim GK, de Freitas Michelon N, Torgeski N, Vivian TP, Wissmann D, de Camargo FCDLS, de Andrade GM, Sturza DAF, Dos Santos HF, Dilkin P, Timmers LFSM, Granada CE. Feeding laying hens with lactobacilli improves internal egg quality and animal health. World J Microbiol Biotechnol 2023; 40:5. [PMID: 37925366 DOI: 10.1007/s11274-023-03820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Feeding animals with lactobacilli strains is a biotechnological strategy to improve production, food quality, and animal health. Thus, this study aimed to select new lactic acid bacteria (LAB) able to improve laying hens health and egg production. Forty Bovans White layers (two days old) were randomly divided into four experimental groups that receive an oral gavage with saline solution (control group) or with one of the three lactobacilli selected (KEG3, TBB10, and KMG127) by their antagonistic activity against the foodborne pathogen Bacillus cereus GGD_EGG01. 16 S rRNA sequencing identified KEG3 as Lentilactobacillus sp., and TBB10 and KMG127 as Lactiplantibacillus sp. The data showed that feeding birds with LAB increased weight uniformity and improved the internal quality of the eggs (high yolk index and Haugh unit) compared with the control group (p < 0.05). Beta-diversity analysis showed that LAB supplementation modifies the cecal microbiota of laying hens. The prokaryotic families Bacteroidaceae, Ruminococcaceae, Rikenellaceae, and Lactobacillaceae were most important to the total dissimilarity of the cecal microbial community (calculated by SIMPER test). At end of in vivo experiments, it was possible to conclude that the feed of laying hens with Lentilactobacillus sp. TBB10 and Lentilactobacillus sp. KEG3 can be an important biotechnological tool for improving food quality and animal health.
Collapse
Affiliation(s)
- Ana Paula Mörschbächer
- Graduate Program in Biotechnology, University of Taquari Valley - Univates, Lajeado, Brazil
| | - Emílio Berghahn
- Graduate Program in Biotechnology, University of Taquari Valley - Univates, Lajeado, Brazil
| | - Fabio Yuji Shibuya
- Graduate Program in Veterinary Medicine, Federal University of Santa Maria - UFSM, Santa Maria, Brazil
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Mateus Luis Cardoso
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Gustavo Kutscher Ulguim
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Nathalia de Freitas Michelon
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Natália Torgeski
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Tamiris Prussiano Vivian
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Daiani Wissmann
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Uniprofessional Residency Program in Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| | - Flávia Constância de Los Santos de Camargo
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Uniprofessional Residency Program in Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| | - Gabriela Monteiro de Andrade
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Uniprofessional Residency Program in Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Helton Fernandes Dos Santos
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Paulo Dilkin
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | |
Collapse
|
4
|
Wang Q, Zhao Y, Guo L, Ma X, Yang Y, Zhuo Y, Jiang X, Hua L, Che L, Xu S, Feng B, Fang Z, Li J, Lin Y, Wu D. Xylo-oligosaccharides improve the adverse effects of plant-based proteins on weaned piglet health by maintaining the intestinal barrier and inhibiting harmful bacterial growth. Front Microbiol 2023; 14:1189434. [PMID: 37303802 PMCID: PMC10249996 DOI: 10.3389/fmicb.2023.1189434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Piglets are more susceptible to weaning stress syndrome when fed high levels of plant-based proteins that contain abundant food antigens and anti-nutritional factors. Xylo-oligosaccharides (XOS) are a potential prebiotic that may improve the tolerance of weaned piglets to plant-based proteins. The aim of this study was to investigate the effects of XOS supplementation in high and low plant-based protein diets on growth performance, gut morphology, short-chain fatty acid (SCFA) production, and gut microbiota of weaned piglets. Methods A total of 128 weanling piglets with an average body weight (BW) of 7.63 ± 0.45 kg were randomly allocated to one of the four dietary treatments in a 2 × 2 factorial arrangement, with two levels of plant-based proteins (d 1-14: 68.3 or 81.33%, d 15-28: 81.27 or 100%) and XOS complex (0 or 0.43%) over a 28-day trial. Results The growth performance of piglets did not differ significantly among groups (P > 0.05). However, the diarrhea index of weaned piglets fed a high plant-based protein diet (HP) was significantly higher than that of those fed a low plant-based protein diet (LP) at days 1-14 and throughout the experimental period (P < 0.05). XOS treatment tended to reduce the diarrhea index at days 1-14 (P = 0.062) and during the whole experiment period (P = 0.083). However, it significantly increased the digestibility of organic matter at days 15-28 (P < 0.05). Moreover, dietary XOS supplementation increased ileal mucosa mRNA expression of occludin and ZO-1 (P < 0.05). Furthermore, the concentration of butyric acid (BA) in the cecal contents and in the concentrations of BA and valeric acid (VA) in colon contents were significantly elevated in the XOS groups (P < 0.05). Additionally, XOS optimized the gut flora by lowering the number of pathogenic bacteria such as p_Campylobacterota, thereby stabilizing the gut ecosystem. Discussion In conclusion, the HP diet aggravated diarrhea in weaned piglets while the XOS diet alleviated it by improving nutrient digestibility, protecting intestinal morphology, and optimizing the gut flora.
Collapse
|
5
|
Hoque MR, Song JH, Kim IH. Exogenous protease supplementation to the diet enhances growth performance, improves nitrogen utilization, and reduces stress in finishing pigs. J Anim Physiol Anim Nutr (Berl) 2023; 107:495-503. [PMID: 35522689 DOI: 10.1111/jpn.13722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/10/2022] [Accepted: 04/10/2022] [Indexed: 11/30/2022]
Abstract
We have conducted this experiment to evaluate a new exogenous protease in finishing pigs' growth performance, nutrient digestibility, gas emission, blood profiles, and meat quality. A total of 200 pigs of 52.15 ± 2.31 kg average body weight (BW) were divided into four dietary treatments named as: CON, basal diet; TRT1, basal diet + 0.05% protease; TRT2, basal diet + 0.1% protease; TRT3, basal diet + 1.5% protease. Each treatment consisted of 10 pens, where five pigs were allotted to each pen according to their body weight and sex. The dietary treatments were allotted to the pens in a randomized block design. During this 10-week-long experiment, BW, average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F) were calculated for Week 0-5, Week 6-10, and the overall period. During Week 6-10, ADG was higher in TRT2 and TRT3 than in the CON and TRT1 groups. At the same time, a linear increase was observed in ADG and G:F of the pigs. In addition, the final BW of pigs' was linearly increased by protease supplementation. On Week 10, there was a linear trend of increase (p = 0.0575) in crude protein digestibility and a trend of linear reduction (p = 0.0651) in NH3 gas emission. In blood profile, cortisol presented a linear decrease in both Week 5 (p = 0.251) and Week 10 (p = 0.0585). In addition, increasing doses of protease showed a trend of linear increase (p = 0.0592) in creatinine, whereas linear reduction was observed in the concentration of epinephrine (p = 0.0636) and norepinephrine (p = 0.0167) during Week 10. In conclusion, protease supplementation helped in improving daily gain in finishing pigs through protein digestibility with associated reduction of ammonia emission and blood stress hormones.
Collapse
Affiliation(s)
- Md Raihanul Hoque
- Department of Animal Resource & Science, Dankook University, Cheonan-si, Chungnam, South Korea
| | - Jun H Song
- Department of Animal Resource & Science, Dankook University, Cheonan-si, Chungnam, South Korea
| | - In H Kim
- Department of Animal Resource & Science, Dankook University, Cheonan-si, Chungnam, South Korea
| |
Collapse
|
6
|
He L, Zhao X, Li J, Yang C. Post-weaning diarrhea and use of feedstuffs in pigs. Anim Front 2022; 12:41-52. [PMID: 36530506 PMCID: PMC9749819 DOI: 10.1093/af/vfac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Liuqin He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xiaoya Zhao
- College of Animal Science, South China Agricultural University, Tianhe District, Guangzhou 510642, China
| | - Jianzhong Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | | |
Collapse
|
7
|
Guéneau V, Plateau-Gonthier J, Arnaud L, Piard JC, Castex M, Briandet R. Positive biofilms to guide surface microbial ecology in livestock buildings. Biofilm 2022; 4:100075. [PMID: 35494622 PMCID: PMC9039864 DOI: 10.1016/j.bioflm.2022.100075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/12/2022] Open
Abstract
The increase in human consumption of animal proteins implies changes in the management of meat production. This is followed by increasingly restrictive regulations on antimicrobial products such as chemical biocides and antibiotics, used in particular to control pathogens that can spread zoonotic diseases. Aligned with the One Health concept, alternative biological solutions are under development and are starting to be used in animal production. Beneficial bacteria able to form positive biofilms and guide surface microbial ecology to limit microbial pathogen settlement are promising tools that could complement existing biosecurity practices to maintain the hygiene of livestock buildings. Although the benefits of positive biofilms have already been documented, the associated fundamental mechanisms and the rationale of the microbial composition of these new products are still sparce. This review provides an overview of the envisioned modes of action of positive biofilms used on livestock building surfaces and the resulting criteria for the selection of the appropriate microorganisms for this specific application. Limits and advantages of this biosecurity approach are discussed as well as the impact of such practices along the food chain, from farm to fork.
Collapse
Affiliation(s)
- Virgile Guéneau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Lallemand SAS, 31702, Blagnac, France
| | | | | | - Jean-Christophe Piard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
8
|
Vieira MDS, Moraes MLD, Stefanello TB, Bertolini Junior F, Silva GMDM, Tavares JMN, Nakamatsu CY, Arantes LCRV, Santin E. Intestinal health improvement with protected organic acids and essential oils for pullets raised under field conditions. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.1001189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated the dietary supplementation of protected organic acids and essential Oils P(OA+EO) in pullets raised under commercial conditions. A total of 208,000 pullets Lohmann at 2-weeks-old were assigned to receive 1 of 2 treatments: T1, control diet used in the farm; T2, control diet and P(OA+EO) at 300 g/t (fumaric, sorbic, citric and malic acids + thymol, eugenol and vanillin microencapsulated in hydrogenated vegetable fat - Jefo Nutrition Inc. Canada). P(OA+EO) was supplemented from 2 to 18 weeks and the trial lasted 21 weeks. At weeks 6, 12 and 21, 12 pullets/treatment were used for blood sampling and necropsy for ISI – I See Inside. A completely randomized design consisting of 2 treatments, each with 12 replicates of 1 hen/replicate, was used. To evaluate intestinal integrity, birds were inoculated with fluorescein-isothiocyanate labelled dextran (FITC-d) and blood samples were collected after 1.5 h. The macroscopic ISI score of alterations were classified to be presented as: overall health ISI (sum of the scores assigned for intestine, liver, proventriculus, annex glands, locomotor, and respiratory systems) and macro-intestinal ISI (sum of the scores assigned for duodenum, jejunum, ileum, and cecum). The histologic intestinal ISI alterations were evaluated in the ileum. A low ISI index represents better health status. Pullets on P(OA+EO) had lower (P< 0.001) levels of FITC-d recovered in the blood, which is related to reduced leaky gut. They also presented lower overall health ISI score at weeks 6 (P = 0.002) and 12 (P = 0.003), lower macro intestinal ISI score at weeks 6 (P = 0.0001) and 21 (P = 0.004) and, lower histologic intestinal ISI score of alterations at weeks 6 (P = 0.09), 12 (P = 0.0006), and 21 (P< 0.0001), which is associated to better overall health. In addition, at week 21, pullets on P(OA+EO) did not present Eimeria oocysts while the control treatment did (P< 0.0001). In conclusion, the blend of protected organic acids and essential oils evaluated can be used to improve intestinal and overall health status in commercial pullets.
Collapse
|
9
|
Rahman MRT, Fliss I, Biron E. Insights in the Development and Uses of Alternatives to Antibiotic Growth Promoters in Poultry and Swine Production. Antibiotics (Basel) 2022; 11:766. [PMID: 35740172 PMCID: PMC9219610 DOI: 10.3390/antibiotics11060766] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
The overuse and misuse of antibiotics has contributed to the rise and spread of multidrug-resistant bacteria. To address this global public health threat, many countries have restricted the use of antibiotics as growth promoters and promoted the development of alternatives to antibiotics in human and veterinary medicine and animal farming. In food-animal production, acidifiers, bacteriophages, enzymes, phytochemicals, probiotics, prebiotics, and antimicrobial peptides have shown hallmarks as alternatives to antibiotics. This review reports the current state of these alternatives as growth-promoting factors for poultry and swine production and describes their mode of action. Recent findings on their usefulness and the factors that presently hinder their broader use in animal food production are identified by SWOT (strength, weakness, opportunity, and threat) analysis. The potential for resistance development as well as co- and cross-resistance with currently used antibiotics is also discussed. Using predetermined keywords, we searched specialized databases including Scopus, Web of Science, and Google Scholar. Antibiotic resistance cannot be stopped, but its spreading can certainly be hindered or delayed with the development of more alternatives with innovative modes of action and a wise and careful use of antimicrobials in a One Health approach.
Collapse
Affiliation(s)
- Md Ramim Tanver Rahman
- Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada;
- Laboratory of Medicinal Chemistry, CHU de Québec Research Center, Québec, QC G1V 4G2, Canada
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC G1V 0A6, Canada;
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, Québec, QC G1V 0A6, Canada
| | - Eric Biron
- Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada;
- Laboratory of Medicinal Chemistry, CHU de Québec Research Center, Québec, QC G1V 4G2, Canada
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC G1V 0A6, Canada;
| |
Collapse
|
10
|
Metagenomic insights into the microbial community structure and resistomes of a tropical agricultural soil persistently inundated with pesticide and animal manure use. Folia Microbiol (Praha) 2022; 67:707-719. [PMID: 35415828 DOI: 10.1007/s12223-022-00970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/05/2022] [Indexed: 11/04/2022]
Abstract
Persistent use of pesticides and animal manure in agricultural soils inadvertently introduced heavy metals and antibiotic/antibiotic resistance genes (ARGs) into the soil with deleterious consequences. The microbiome and heavy metal and antibiotic resistome of a pesticide and animal manure inundated agricultural soil (SL6) obtained from a vegetable farm at Otte, Eiyenkorin, Kwara State, Nigeria, was deciphered via shotgun metagenomics and functional annotation of putative ORFs (open reading frames). Structural metagenomics of SL6 microbiome revealed 29 phyla, 49 classes, 94 orders, 183 families, 366 genera, 424 species, and 260 strains with the preponderance of the phyla Proteobacteria (40%) and Actinobacteria (36%), classes Actinobacteria (36%), Alphaproteobacteria (18%), and Gammaproteobacteria (17%), and genera Kocuria (16%), Sphingobacterium (11%), and Brevundimonas (10%), respectively. Heavy metal resistance genes annotation conducted using Biocide and Metal Resistance Gene Database (BacMet) revealed the detection of genes responsible for the uptake, transport, detoxification, efflux, and regulation of copper, cadmium, zinc, nickel, chromium, cobalt, selenium, tungsten, mercury, and several others. ARG annotation using the Antibiotic Resistance Gene-annotation (ARG-ANNOT) revealed ARGs for 11 antibiotic classes with the preponderance of β-lactamases, mobilized colistin resistance determinant (mcr-1), macrolide-lincosamide-streptogramin (MLS), glycopeptide, and aminoglycoside resistance genes, among others. The persistent use of pesticide and animal manure is strongly believed to play a major role in the proliferation of heavy metal and antibiotic resistance genes in the soil. This study revealed that agricultural soils inundated with pesticide and animal manure use are potential hotspots for ARG spread and may accentuate the spread of multidrug resistant clinical pathogens.
Collapse
|
11
|
Pollution by Antibiotics and Antimicrobial Resistance in LiveStock and Poultry Manure in China, and Countermeasures. Antibiotics (Basel) 2021; 10:antibiotics10050539. [PMID: 34066587 PMCID: PMC8148549 DOI: 10.3390/antibiotics10050539] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 01/18/2023] Open
Abstract
The demand for animal protein has increased considerably worldwide, especially in China, where large numbers of livestock and poultry are produced. Antibiotics have been widely applied to promote growth and prevent diseases. However, the overuse of antibiotics in animal feed has caused serious environmental and health risks, especially the wide spread of antimicrobial resistance (AMR), which seriously affects animal and human health, food safety, ecosystems, and the sustainable future development of animal protein production. Unfortunately, AMR has already become a worldwide challenge, so international cooperation is becoming more important for combatting it. China’s efforts and determination to restrict antibiotic usage through law enforcement and effective management are of significance. In this review, we address the pollution problems of antibiotics; in particular, the AMR in water, soil, and plants caused by livestock and poultry manure in China. The negative impact of widespread and intensive use of antibiotics in livestock production is discussed. To reduce and mitigate AMR problems, we emphasize in this review the development of antibiotic substitutes for the era of antibiotic prohibition.
Collapse
|
12
|
Zalewska M, Błażejewska A, Czapko A, Popowska M. Antibiotics and Antibiotic Resistance Genes in Animal Manure - Consequences of Its Application in Agriculture. Front Microbiol 2021; 12:610656. [PMID: 33854486 PMCID: PMC8039466 DOI: 10.3389/fmicb.2021.610656] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance genes (ARGs) are a relatively new type of pollutant. The rise in antibiotic resistance observed recently is closely correlated with the uncontrolled and widespread use of antibiotics in agriculture and the treatment of humans and animals. Resistant bacteria have been identified in soil, animal feces, animal housing (e.g., pens, barns, or pastures), the areas around farms, manure storage facilities, and the guts of farm animals. The selection pressure caused by the irrational use of antibiotics in animal production sectors not only promotes the survival of existing antibiotic-resistant bacteria but also the development of new resistant forms. One of the most critical hot-spots related to the development and dissemination of ARGs is livestock and poultry production. Manure is widely used as a fertilizer thanks to its rich nutrient and organic matter content. However, research indicates that its application may pose a severe threat to human and animal health by facilitating the dissemination of ARGs to arable soil and edible crops. This review examines the pathogens, potentially pathogenic microorganisms and ARGs which may be found in animal manure, and evaluates their effect on human health through their exposure to soil and plant resistomes. It takes a broader view than previous studies of this topic, discussing recent data on antibiotic use in farm animals and the effect of these practices on the composition of animal manure; it also examines how fertilization with animal manure may alter soil and crop microbiomes, and proposes the drivers of such changes and their consequences for human health.
Collapse
Affiliation(s)
- Magdalena Zalewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Błażejewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Czapko
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Tedeschi LO, Muir JP, Naumann HD, Norris AB, Ramírez-Restrepo CA, Mertens-Talcott SU. Nutritional Aspects of Ecologically Relevant Phytochemicals in Ruminant Production. Front Vet Sci 2021; 8:628445. [PMID: 33748210 PMCID: PMC7973208 DOI: 10.3389/fvets.2021.628445] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
This review provides an update of ecologically relevant phytochemicals for ruminant production, focusing on their contribution to advancing nutrition. Phytochemicals embody a broad spectrum of chemical components that influence resource competence and biological advantage in determining plant species' distribution and density in different ecosystems. These natural compounds also often act as plant defensive chemicals against predatorial microbes, insects, and herbivores. They may modulate or exacerbate microbial transactions in the gastrointestinal tract and physiological responses in ruminant microbiomes. To harness their production-enhancing characteristics, phytochemicals have been actively researched as feed additives to manipulate ruminal fermentation and establish other phytochemoprophylactic (prevent animal diseases) and phytochemotherapeutic (treat animal diseases) roles. However, phytochemical-host interactions, the exact mechanism of action, and their effects require more profound elucidation to provide definitive recommendations for ruminant production. The majority of phytochemicals of nutritional and pharmacological interest are typically classified as flavonoids (9%), terpenoids (55%), and alkaloids (36%). Within flavonoids, polyphenolics (e.g., hydrolyzable and condensed tannins) have many benefits to ruminants, including reducing methane (CH4) emission, gastrointestinal nematode parasitism, and ruminal proteolysis. Within terpenoids, saponins and essential oils also mitigate CH4 emission, but triterpenoid saponins have rich biochemical structures with many clinical benefits in humans. The anti-methanogenic property in ruminants is variable because of the simultaneous targeting of several physiological pathways. This may explain saponin-containing forages' relative safety for long-term use and describe associated molecular interactions on all ruminant metabolism phases. Alkaloids are N-containing compounds with vast pharmacological properties currently used to treat humans, but their phytochemical usage as feed additives in ruminants has yet to be exploited as they may act as ghost compounds alongside other phytochemicals of known importance. We discussed strategic recommendations for phytochemicals to support sustainable ruminant production, such as replacements for antibiotics and anthelmintics. Topics that merit further examination are discussed and include the role of fresh forages vis-à-vis processed feeds in confined ruminant operations. Applications and benefits of phytochemicals to humankind are yet to be fully understood or utilized. Scientific explorations have provided promising results, pending thorough vetting before primetime use, such that academic and commercial interests in the technology are fully adopted.
Collapse
Affiliation(s)
- Luis O. Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - James P. Muir
- Texas A&M AgriLife Research, Stephenville, TX, United States
| | - Harley D. Naumann
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Aaron B. Norris
- Department of Natural Resources Management, Texas Tech University, Lubbock, TX, United States
| | | | | |
Collapse
|
14
|
Choi J, Kim WK. Dietary Application of Tannins as a Potential Mitigation Strategy for Current Challenges in Poultry Production: A Review. Animals (Basel) 2020; 10:ani10122389. [PMID: 33327595 PMCID: PMC7765034 DOI: 10.3390/ani10122389] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary There are diverse challenges in the poultry production industry that decrease the productivity and efficiency of poultry production, impair animal welfare, and pose issues to public health. Furthermore, the use of antibiotic growth promoters (AGP) in feed, which have been used to improve the growth performance and gut health of chickens, has been restricted in many countries. Tannins, polyphenolic compounds that precipitate proteins, are considered as alternatives for AGP in feed and provide solutions to mitigate challenges in poultry production due to their antimicrobial, antioxidant, anti-inflammatory and gut health promoting effects. However, because high dosages of tannins have antinutritional effects when fed to poultry, determining appropriate dosages of supplemental tannins is critical for their potential implementation as a solution for the challenges faced in poultry production. Abstract The poultry industry has an important role in producing sources of protein for the world, and the size of global poultry production continues to increase annually. However, the poultry industry is confronting diverse challenges including bacterial infection (salmonellosis), coccidiosis, oxidative stress, including that caused by heat stress, welfare issues such as food pad dermatitis (FPD) and nitrogen and greenhouse gasses emissions that cumulatively cause food safety issues, reduce the efficacy of poultry production, impair animal welfare, and induce environmental issues. Furthermore, restrictions on the use of AGP have exacerbated several of these negative effects. Tannins, polyphenolic compounds that possess a protein precipitation capacity, have been considered as antinutritional factors in the past because high dosages of tannins can decrease feed intake and negatively affect nutrient digestibility and absorption. However, tannins have been shown to have antimicrobial, antioxidant and anti-inflammatory properties, and as such, have gained interest as promising bioactive compounds to help alleviate the challenges of AGP removal in the poultry industry. In addition, the beneficial effects of tannins can be enhanced by several strategies including heat processing, combining tannins with other bioactive compounds, and encapsulation. As a result, supplementation of tannins alone or in conjunction with the above strategies could be an effective approach to decrease the need of AGP and otherwise improve poultry production efficiency.
Collapse
|
15
|
Mourenza Á, Gil JA, Mateos LM, Letek M. Alternative Anti-Infective Treatments to Traditional Antibiotherapy against Staphylococcal Veterinary Pathogens. Antibiotics (Basel) 2020; 9:antibiotics9100702. [PMID: 33076497 PMCID: PMC7602553 DOI: 10.3390/antibiotics9100702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/29/2022] Open
Abstract
The genus Staphylococcus encompasses many species that may be pathogenic to both humans and farm animals. These bacteria have the potential to acquire multiple resistant traits to the antimicrobials currently used in the veterinary or medical settings. These pathogens may commonly cause zoonoses, and the infections they cause are becoming difficult to treat due to antimicrobial resistance. Therefore, the development of novel alternative treatments to traditional antibiotherapy has gained interest in recent years. Here, we reviewed the most promising therapeutic strategies developed to control staphylococcal infections in the veterinary field to overcome antibiotic resistance.
Collapse
Affiliation(s)
- Álvaro Mourenza
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
| | - José A. Gil
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Luis M. Mateos
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
- Correspondence: (L.M.M.); (M.L.)
| | - Michal Letek
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain
- Correspondence: (L.M.M.); (M.L.)
| |
Collapse
|
16
|
Galán-Relaño Á, Gómez-Gascón L, Barrero-Domínguez B, Luque I, Jurado-Martos F, Vela AI, Sanz-Tejero C, Tarradas C. Antimicrobial susceptibility of Trueperella pyogenes isolated from food-producing ruminants. Vet Microbiol 2020; 242:108593. [PMID: 32122597 DOI: 10.1016/j.vetmic.2020.108593] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/31/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
A total of 96 Trueperella pyogenes isolates, an opportunistic pathogen of food-producing ruminants, obtained from cattle (n = 34), sheep (n = 35) and goats (n = 27), and identified by Real Time PCR (qPCR), were analysed to determine the susceptibility to 12 antimicrobials commonly used in livestock, using a broth microdilution. The Minimal Inhibitory Concentration (MIC) distribution was unimodal for half of the antimicrobials tested with the exception of apramycin, gentamicin, streptomycin, oxytetracycline, tylosin, and erythromycin all of which showed bimodal MIC distributions. Low MIC90 values for penicillin, amoxicillin, ceftiofur, enrofloxacin, and gentamicin (<1 μg/ml) were obtained, suggesting that these antimicrobials would be the most effective first line empiric treatment for T. pyogenes infections in livestock. Furthermore, according to the specific T. pyogenes breakpoints for penicillin, sulfamethoxazole/trimethoprim and erythromycin, 93.7 % of isolates were susceptible to penicillin and 77.2 % to erythromycin, whereas 92.7 % were non-susceptible to sulfamethoxazole/trimethoprim. Significant differences were observed in the MIC distribution of almost all antimicrobials, except enrofloxacin, tylosin and erythromycin against cattle, sheep or goat isolates, although all antimicrobials showed similar MIC90 values, except apramycin and oxytetracycline that showed higher values when tested against cattle isolates. These data provide interesting information on the antimicrobials of choice for the treatment of infections caused by T. pyogenes in ruminants.
Collapse
Affiliation(s)
- Ángela Galán-Relaño
- Animal Health Department, Veterinary Faculty, University of Cordoba, Campus of Rabanales, 'International Excellence Agrifood Campus, CeiA3', 14071, Cordoba, Spain
| | - Lidia Gómez-Gascón
- Animal Health Department, Veterinary Faculty, University of Cordoba, Campus of Rabanales, 'International Excellence Agrifood Campus, CeiA3', 14071, Cordoba, Spain
| | | | - Inmaculada Luque
- Animal Health Department, Veterinary Faculty, University of Cordoba, Campus of Rabanales, 'International Excellence Agrifood Campus, CeiA3', 14071, Cordoba, Spain.
| | | | - Ana I Vela
- VISAVET Health Surveillance Centre, Complutense University, Avenida de Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Celia Sanz-Tejero
- Microbiology Department EXOPOL, S.L. Pol. Río Gállego, D/8 50840, San Mateo de Gállego (Zaragoza), Spain
| | - Carmen Tarradas
- Animal Health Department, Veterinary Faculty, University of Cordoba, Campus of Rabanales, 'International Excellence Agrifood Campus, CeiA3', 14071, Cordoba, Spain
| |
Collapse
|
17
|
Choi J, Wang L, Ammeter E, Lahaye L, Liu S, Nyachoti M, Yang C. Evaluation of lipid matrix microencapsulation for intestinal delivery of thymol in weaned pigs. Transl Anim Sci 2019; 4:411-422. [PMID: 32705000 PMCID: PMC6994091 DOI: 10.1093/tas/txz176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/20/2019] [Indexed: 12/02/2022] Open
Abstract
Essential oils (EO) are defined as plant-derived natural bioactive compounds, which can have positive effects on animal growth and health due to their antimicrobial and antioxidative properties. However, EO are volatile, can evaporate quickly, and be rapidly absorbed in the upper gastrointestinal tract. Also, due to their labile nature, the stability of EO during feed processing is often questionable, leading to variations in the final concentration in feed. Encapsulation has become one of the most popular methods of stabilizing EO during feed processing, storage, and delivery into the lower gut. The objectives of the present study were to 1) evaluate the stability of thymol microencapsulated in combination with organic acids in commercially available lipid matrix microparticles during the feed pelleting process and storage; 2) validate and demonstrate the slow release of thymol from the lipid matrix microparticles in a simulated pig gastric fluid (SGF) and a simulated pig intestinal fluid (SIF); and 3) evaluate in vivo release of thymol from the lipid matrix microparticles along the pig gut. The results showed that thymol concentration was not significantly different in the mash and pelleted feeds (P > 0.05). In the in vitro study, 26.04% thymol was released in SGF, and the rest of the thymol was progressively released in SIF until completion, which was achieved by 24 h. The in vivo study showed that 15.5% of thymol was released in the stomach, and 41.85% of thymol was delivered in the mid-jejunum section. Only 2.21% of thymol was recovered in feces. In conclusion, the lipid matrix microparticles were able to maintain the stability of thymol during a feed pelleting process and storage and allow a slow and progressive intestinal release of thymol in weaned pigs.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lucy Wang
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Emily Ammeter
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Song Liu
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Martin Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
18
|
Biocide Potentiation Using Cinnamic Phytochemicals and Derivatives. Molecules 2019; 24:molecules24213918. [PMID: 31671687 PMCID: PMC6865212 DOI: 10.3390/molecules24213918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/22/2019] [Accepted: 10/26/2019] [Indexed: 11/16/2022] Open
Abstract
Surface disinfection is of utmost importance in the prevention of bacterial infections. This study aims to assess the ability of ten phytochemicals and related derivatives as potentiators of two commonly used biocides-cetyltrimethylammonium bromide (CTAB) and lactic acid (LA). LA in combination with cinnamic, hydrocinnamic, α-methylcinnamic, and α-fluorocinnamic acids had a factional inhibitory concentration index (FICI) ≤ 1 for Escherichia coli and Staphylococcus aureus. Several phytochemicals/derivatives in combination with biocides improved the biocidal efficacy against early sessile bacteria. The most effective combination was LA with allyl cinnamate (2.98 ± 0.76 log CFU.cm-2 reduction) against E. coli. The combination with CTAB was successful for most phytochemicals/derivatives with a maximum bactericidal efficacy against sessile E. coli when combined with allyl cinnamate (2.20 ± 0.07 log CFU.cm-2 reduction) and for S. aureus when combined with α-methylcinnamic acid (1.68 ± 0.30 log CFU.cm-2 reduction). This study highlights the potential of phytochemicals and their derivatives to be used in biocide formulations.
Collapse
|
19
|
Yang R, Hui Q, Jiang Q, Liu S, Zhang H, Wu J, Lin F, O K, Yang C. Effect of Manitoba-Grown Red-Osier Dogwood Extracts on Recovering Caco-2 Cells from H 2O 2-Induced Oxidative Damage. Antioxidants (Basel) 2019; 8:antiox8080250. [PMID: 31357693 PMCID: PMC6721146 DOI: 10.3390/antiox8080250] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Red-osier dogwood, a native species of flowering plant in North America, has been reported to have anti-oxidative properties because of abundant phenolic compounds; this could be promising as a functional food or a feed additive. In the present study, an oxidative damage model using 1.0 mM hydrogen peroxide (H2O2) in Caco-2 cells was established to evaluate the antioxidative effects of red-osier dogwood extracts (RDE). The results showed that 1.0 mM H2O2 pre-exposure for 3 h significantly decreased cell viability, and increased interleukin 8 (IL-8) secretion and the intracellular reactive oxygen species (ROS) level. Caco-2 cells were treated with 100 µg/mL RDE for 24 h after pre-exposure to H2O2. It was found that the decreased cell viability caused by H2O2 was significantly restored by a subsequent 100 µg/mL RDE treatment. Furthermore, the IL-8 secretion and ROS level were significantly blocked by RDE, accompanied by the enhanced gene expression of hemeoxygenase-1 (HO-1), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px), and the enhanced protein expression of the nuclear factor (erythroid-derived 2)-like 2 (Nrf-2). Moreover, RDE improved barrier functions in Caco-2 cells. Using RDE reduced the diffusion of fluorescein isothiocyanate (FITC)-dextran and increased the transepithelial resistance (TEER) value. The relative mRNA level of tight junction claudin-1, claudin-3, and occludin was elevated by RDE. These extracts also repaired the integrity of zonula occludens-1 (ZO-1) damaged by H2O2 and increased the protein expressions of ZO-1 and claudin-3 in the H2O2-pretreated cells. These results illustrated that RDE reduced the ROS level and enhanced the barrier function in oxidative-damaged epithelial cells.
Collapse
Affiliation(s)
- Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Qianru Hui
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Qian Jiang
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Shangxi Liu
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Hua Zhang
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Jiandong Wu
- Department of Physics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Francis Lin
- Department of Physics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Karmin O
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
20
|
Zhao X, Schindell B, Li W, Ni L, Liu S, Wijerathne CUB, Gong J, Nyachoti CM, O K, Yang C. Distribution and localization of porcine calcium sensing receptor in different tissues of weaned piglets1. J Anim Sci 2019; 97:2402-2413. [PMID: 30887022 PMCID: PMC6541828 DOI: 10.1093/jas/skz096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023] Open
Abstract
Taste receptors including calcium sensing receptor (CaSR) are expressed in various animal tissues, and CaSR plays important roles in nutrient sensing and the physiology, growth, and development of animals. However, molecular distribution of porcine CaSR (pCaSR) in different tissues, especially along the longitudinal axis of the digestive tract in weaned piglets, is still unknown. In the present study, we investigated the distribution and localization of pCaSR in the different tissues including intestinal segments of weaned piglets. Six male pigs were anesthetized and euthanized. Different tissues such as intestinal segments were collected. The pCaSR mRNA abundance, protein abundance, and localization were measured by real-time PCR, Western blotting, and immunohistochemistry, respectively. The mRNA and protein of pCaSR were detected in the kidney, lung, liver, stomach, duodenum, jejunum, ileum, and colon. The pCaSR mRNA was much higher (five to 180 times) in the kidney when compared with other tissues (P < 0.05). The ileum had higher pCaSR mRNA and protein abundances than the stomach, duodenum, jejunum, and colon (P < 0.05). Immunohistochemical staining results indicated that the pCaSR protein was mostly located in the epithelia of the stomach, duodenum, jejunum, ileum, and colon. These results demonstrate that pCaSR is widely expressed in different tissues including intestinal segments in weaned piglets and the ileum has a higher expression level of pCaSR. Further research is needed to confirm the expression of CaSR in the different types of epithelial cells isolated from weaned piglets and characterize the functions of pCaSR, its potential ligands and cell signaling pathways related to CaSR activation in enteroendocrine cells and potentially in enterocytes.
Collapse
Affiliation(s)
- Xiaoya Zhao
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Brayden Schindell
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Weiqi Li
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Liju Ni
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
- Shanghai Lab-Animal Research Center, Shanghai, China
| | - Shangxi Liu
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Charith U B Wijerathne
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
- CCARM, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture Agri-Food Canada, Guelph, ON, Canada
| | - C Martin Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Karmin O
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
- CCARM, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
21
|
Antimicrobial resistance and presence of virulence factor genes in Trueperella pyogenes isolated from pig lungs with pneumonia. Trop Anim Health Prod 2019; 51:2099-2103. [PMID: 31104226 DOI: 10.1007/s11250-019-01916-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/01/2019] [Indexed: 10/26/2022]
Abstract
Trueperella pyogenes (T. pyogenes) is a worldwide known pathogen of domestic ruminants and pigs causing a wide variety of infections. The objective of this study was to report the presence of major virulence genes in T. pyogenes isolated from pigs with respiratory clinical signs and determine their resistance to antibiotics at the same time. A total of 27 T. pyogenes strains were obtained from Jilin Province, and the nanH, nanP, cbpA, fimC, and fimE virulence genes were detected in 7 (25.9%), 14 (51.9%), 18 (66.7%), 8 (29.6%), and 16 (59.3%) isolates, respectively. All isolates were observed to harbor plo and fimA genes. However, 27 T. pyogenes strains tested negative for fimG gene. Antibiotic susceptibility tests revealed that the isolated strains had extensive drug resistance, all isolates were sensitive to fluoroquinolones and penicillins antibiotics, and high levels of resistance were found to gentamicin (77.8%), amikacin (74.1%), erythromycin (85.2%), and azithromycin (85.2%). These results highlights the need for prudent use of specific antimicrobial agents in veterinary clinical treatment.
Collapse
|
22
|
Rabani V, Cheatsazan H, Davani S. Proteomics and Lipidomics of Black Soldier Fly (Diptera: Stratiomyidae) and Blow Fly (Diptera: Calliphoridae) Larvae. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5523071. [PMID: 31237955 PMCID: PMC6592434 DOI: 10.1093/jisesa/iez050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Indexed: 05/06/2023]
Abstract
Farming insects has recently emerged as a new source of protein and lipid production. To date, research has mostly focused on food applications of insects. Focusing on nonfood potential of oil and proteins of insects, high-throughput studies of insect lipids and proteins are needed. We performed proteomics and lipidomics investigation on black soldier fly (Hermitia illucens) and blow fly (Lucilia sericata) larvae to investigate new potential and applications. We used mass spectrometry for proteomics and lipidomics analysis of control and treated larvae. Treatment was performed by incubation with a biological decomposer. We provide the list of all fatty acids with their concentration in control and treated larvae. This result showed high levels of lauric acid in black soldier fly, which could even increase after biological decomposition. Proteomics analysis showed the presence of proteins like collagen of cosmetic interest, and proteins with antimicrobial properties such as phenoloxidases and enzymatic activities, such as amylase and trypsin. Insects harbor high potential for nonfood usage as additives, antimicrobial effects, and even pharmaceuticals and cosmetics. These data open avenues for future research in pharmacological and cosmetic approaches to find new molecules of interests.
Collapse
Affiliation(s)
- Vahideh Rabani
- UBFC, EA 3920 UFR Santé, Université Bourgogne Franche-Comte, Besançon, France
| | - Hamed Cheatsazan
- UBFC, EA 3920 UFR Santé, Université Bourgogne Franche-Comte, Besançon, France
| | - Siamak Davani
- UBFC, EA 3920 UFR Santé, Université Bourgogne Franche-Comte, Besançon, France
- Laboratoire de Pharmacologie Clinique et Toxicologie, CHU de Besançon, Boulevard Fleming, Besançon, France
- Corresponding author, e-mail:
| |
Collapse
|
23
|
Omonijo FA, Kim S, Guo T, Wang Q, Gong J, Lahaye L, Bodin JC, Nyachoti M, Liu S, Yang C. Development of Novel Microparticles for Effective Delivery of Thymol and Lauric Acid to Pig Intestinal Tract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9608-9615. [PMID: 30141924 DOI: 10.1021/acs.jafc.8b02808] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Antibiotics have been widely supplemented in feeds at subtherapeutic concentrations to prevent postweaning diarrhea and increase the overall productivity of pigs. However, the emergence of antimicrobial-resistant bacteria worldwide has made it urgent to minimize the use of in-feed antibiotics. The development of promising alternatives to in-feed antibiotics is crucial for maintaining the sustainability of swine production. Both medium-chain fatty acids (MCFA) and essential oils exhibit great potential to postweaning diarrhea; however, their direct inclusion has compromised efficacy because of several factors including low stability, poor palatability, and low availability in the lower gut. Therefore, the objective of this study was to develop a formulation of microparticles to deliver a model of essential oil (thymol) and MCFA (lauric acid). The composite microparticles were produced by the incorporation of starch and alginate through a melt-granulation process. The release of thymol and lauric acid from the microparticles was in vitro determined using simulated salivary fluid (SSF), simulated gastric fluid (SGF), and simulated intestinal fluid (SIF), consecutively. The microparticles prepared with 2% alginate solution displayed a slow release of thymol and lauric acid in the SSF (21.2 ± 2.3%; 36 ± 1.1%), SGF (73.7 ± 6.9%; 54.8 ± 1.7%), and SIF (99.1 ± 1.2%; 99.1 ± 0.6%), respectively, whereas, the microparticles without alginate showed a rapid release of thymol and lauric acid from the SSF (79.9 ± 11.8%; 84.9 ± 9.4%), SGF (92.5 ± 3.5%; 75.8 ± 5.9%), and SIF (93.3 ± 9.4%; 93.3 ± 4.6%), respectively. The thymol and lauric acid in the developed microparticles with or without alginate both exhibited excellent stabilities (>90%) during being stored at 4 °C for 12 weeks and after being stored at room temperature for 2 weeks. These results evidenced that the approach developed in the present study could be potentially employed to deliver thymol and lauric acid to the lower gut of pigs, although further in vivo investigations are necessary to validate the efficacy of the microparticles.
Collapse
Affiliation(s)
- Faith A Omonijo
- Department of Animal Science , University of Manitoba , Winnipeg , Manitoba , Canada R3T 2N2
| | - Seungil Kim
- Biomedical Engineering , University of Manitoba , Winnipeg , Manitoba , Canada R3T 2N2
| | - Tracy Guo
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario , Canada N1G 5C9
| | - Qi Wang
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario , Canada N1G 5C9
| | - Joshua Gong
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario , Canada N1G 5C9
| | - Ludovic Lahaye
- Jefo Nutrition Inc. , Saint-Hyacinthe , Quebec , Canada J2S 7B6
| | | | - Martin Nyachoti
- Department of Animal Science , University of Manitoba , Winnipeg , Manitoba , Canada R3T 2N2
| | - Song Liu
- Biomedical Engineering , University of Manitoba , Winnipeg , Manitoba , Canada R3T 2N2
- Department of Biosystems Engineering , University of Manitoba , Winnipeg , Manitoba , Canada R3T 2N2
| | - Chengbo Yang
- Department of Animal Science , University of Manitoba , Winnipeg , Manitoba , Canada R3T 2N2
| |
Collapse
|