1
|
Vaccination as a Strategy to Prevent Bluetongue Virus Vertical Transmission. Pathogens 2021; 10:pathogens10111528. [PMID: 34832683 PMCID: PMC8622840 DOI: 10.3390/pathogens10111528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Bluetongue virus (BTV) produces an economically important disease in ruminants of compulsory notification to the OIE. BTV is typically transmitted by the bite of Culicoides spp., however, some BTV strains can be transmitted vertically, and this is associated with fetus malformations and abortions. The viral factors associated with the virus potency to cross the placental barrier are not well defined. The potency of vertical transmission is retained and sometimes even increased in live attenuated BTV vaccine strains. Because BTV possesses a segmented genome, the possibility of reassortment of vaccination strains with wild-type virus could even favor the transmission of this phenotype. In the present review, we will describe the non-vector-based BTV infection routes and discuss the experimental vaccination strategies that offer advantages over this drawback of some live attenuated BTV vaccines.
Collapse
|
2
|
Pascall DJ, Nomikou K, Bréard E, Zientara S, Filipe ADS, Hoffmann B, Jacquot M, Singer JB, De Clercq K, Bøtner A, Sailleau C, Viarouge C, Batten C, Puggioni G, Ligios C, Savini G, van Rijn PA, Mertens PPC, Biek R, Palmarini M. "Frozen evolution" of an RNA virus suggests accidental release as a potential cause of arbovirus re-emergence. PLoS Biol 2020; 18:e3000673. [PMID: 32343693 PMCID: PMC7188197 DOI: 10.1371/journal.pbio.3000673] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying virus emergence are rarely well understood, making the appearance of outbreaks largely unpredictable. Bluetongue virus serotype 8 (BTV-8), an arthropod-borne virus of ruminants, emerged in livestock in northern Europe in 2006, spreading to most European countries by 2009 and causing losses of billions of euros. Although the outbreak was successfully controlled through vaccination by early 2010, puzzlingly, a closely related BTV-8 strain re-emerged in France in 2015, triggering a second outbreak that is still ongoing. The origin of this virus and the mechanisms underlying its re-emergence are unknown. Here, we performed phylogenetic analyses of 164 whole BTV-8 genomes sampled throughout the two outbreaks. We demonstrate consistent clock-like virus evolution during both epizootics but found negligible evolutionary change between them. We estimate that the ancestor of the second outbreak dates from the height of the first outbreak in 2008. This implies that the virus had not been replicating for multiple years prior to its re-emergence in 2015. Given the absence of any known natural mechanism that could explain BTV-8 persistence over this long period without replication, we hypothesise that the second outbreak could have been initiated by accidental exposure of livestock to frozen material contaminated with virus from approximately 2008. Our work highlights new targets for pathogen surveillance programmes in livestock and illustrates the power of genomic epidemiology to identify pathways of infectious disease emergence.
Collapse
Affiliation(s)
- David J. Pascall
- Institute of Biodiversity, Animal Health and Comparative Medicine, Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom
| | - Kyriaki Nomikou
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- The School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom
| | - Emmanuel Bréard
- UMR Virologie, INRA, École Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Stephan Zientara
- UMR Virologie, INRA, École Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Maude Jacquot
- Spatial Epidemiology Lab (SpELL), University of Brussels, Brussels, Belgium
- INRAE-VetAgro Sup, UMR Epidemiology of Animal and Zoonotic Diseases, Saint Genès-Champanelle, France
| | - Joshua B. Singer
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Kris De Clercq
- Infectious Diseases in Animals, Exotic and Particular Diseases, Sciensano, Brussels, Belgium
| | - Anette Bøtner
- Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Corinne Sailleau
- UMR Virologie, INRA, École Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Cyril Viarouge
- UMR Virologie, INRA, École Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Carrie Batten
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Giantonella Puggioni
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Duca degli Abruzzi, Sassari, Italy
| | - Ciriaco Ligios
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Duca degli Abruzzi, Sassari, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise (IZSAM), Teramo, Italy
| | - Piet A. van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
- Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Peter P. C. Mertens
- The School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
3
|
Vinomack C, Rivière J, Bréard E, Viarouge C, Postic L, Zientara S, Vitour D, Belbis G, Spony V, Pagneux C, Sailleau C, Zanella G. Clinical cases of Bluetongue serotype 8 in calves in France in the 2018-2019 winter. Transbound Emerg Dis 2020; 67:1401-1405. [PMID: 31883429 DOI: 10.1111/tbed.13466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 11/27/2022]
Abstract
Bluetongue virus serotype 8 (BTV-8) caused an epizootic in Europe in 2006/09. Transplacental transmission of BTV-8 was demonstrated leading to abortions, congenital malformations or nervous clinical signs in newborn calves. BTV-8 re-emerged in France in 2015. Although the re-emergent strain is nearly genetically identical to the one that had circulated in 2006/2009, it has caused very few clinical cases. However, from mid-December 2018 to April 2019, cases of calves with congenital malformations or displaying nervous clinical signs occurred in some departments (French administrative unit) in mainland France. Blood samples from these animals were sent to local laboratories, and the positive ones were confirmed at the French Bluetongue reference laboratory (BT-NRL). Out of 580 samples found positive at the local laboratories, 544 were confirmed as RT-PCR BTV-8 positive. The 36 samples found positive in the local laboratories and negative in the BT-NRL were all at the limit of RT-PCR detection. Hundred eighty-eight of the confirmed samples were also tested for the presence of Schmallenberg virus (SBV) and bovine virus diarrhoea virus (BVDV) infection: 4 were found positive for BVDV and none for SBV. The main clinical signs recorded for 244 calves, for which a reporting form was completed by veterinarians, included nervous clinical signs (81%), amaurosis (72%) and decrease/ no suckling reflex (40%). Hydranencephaly and microphthalmia were reported in 19 calves out of 27 in which a necropsy was practiced after death or euthanasia. These results indicate that the re-emergent strain of BTV-8 can cross the transplacental barrier and cause congenital malformations or nervous clinical signs in calves.
Collapse
Affiliation(s)
- Chloé Vinomack
- Epidemiology Unit, Laboratory for Animal Health, ANSES, University Paris Est, Maisons-Alfort, France.,USC EPIMAI, Anses, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Julie Rivière
- USC EPIMAI, Anses, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Emmanuel Bréard
- UMR VIROLOGIE, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Cyril Viarouge
- UMR VIROLOGIE, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Lydie Postic
- UMR VIROLOGIE, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Stéphan Zientara
- UMR VIROLOGIE, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Damien Vitour
- UMR VIROLOGIE, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Guillaume Belbis
- UMR VIROLOGIE, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Vincent Spony
- Direction Départementale de la Cohésion Sociale et de la Protection des Populations, Services vétérinaires, Yzeure, France
| | - Caroline Pagneux
- Eurofins Laboratoire Cœur de France, Boulevard de Nomazy, Moulins, France
| | - Corinne Sailleau
- UMR VIROLOGIE, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Gina Zanella
- Epidemiology Unit, Laboratory for Animal Health, ANSES, University Paris Est, Maisons-Alfort, France
| |
Collapse
|