1
|
Cao L, Li J, Parakhonskiy B, Skirtach AG. Intestinal-specific oral delivery of lactoferrin with alginate-based composite and hybrid CaCO 3-hydrogel beads. Food Chem 2024; 451:139205. [PMID: 38653102 DOI: 10.1016/j.foodchem.2024.139205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/16/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
Sodium alginate hydrogel beads and sodium alginate/gellan gum composite hydrogel beads crosslinked by calcium chloride were prepared with different alginate concentrations (3-20 mg·mL-1). Additionally, a simple method for growing CaCO3in situ on the hydrogel to create novel inorganic-organic hybrid hydrogel beads was presented. FT-IR analysis revealed the involvement of hydrogen bonding and electrostatic interactions in bead formation. Swelling behavior in acidic conditions showed a maximum of 13 g/g for composite hydrogels and CaCO3-incorporated hybrid hydrogels. Lactoferrin encapsulation efficiency within these hydrogels ranged from 44.9 to 56.6%. In vitro release experiments demonstrated that these hydrogel beads withstand harsh gastric environments with <16% cumulative release of lactoferrin, achieving controlled release in intestinal surroundings. While composite sodium alginate/gellan gum beads exhibited slower gastrointestinal lactoferrin digestion, facile synthesis and pH responsiveness of CaCO3-incorporated hybrid hydrogel also provide new possibilities for future studies to construct a novel inorganic-organic synergetic system for intestinal-specific oral delivery.
Collapse
Affiliation(s)
- Lin Cao
- Nano-Biotechnology Laboratory, Department of Biotechnology, Ghent University, Ghent 9000, Belgium.
| | - Jie Li
- Nano-Biotechnology Laboratory, Department of Biotechnology, Ghent University, Ghent 9000, Belgium; Global Institute of Future Technology (GIFT), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bogdan Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Ghent University, Ghent 9000, Belgium
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
2
|
Ohradanova-Repic A, Praženicová R, Gebetsberger L, Moskalets T, Skrabana R, Cehlar O, Tajti G, Stockinger H, Leksa V. Time to Kill and Time to Heal: The Multifaceted Role of Lactoferrin and Lactoferricin in Host Defense. Pharmaceutics 2023; 15:1056. [PMID: 37111542 PMCID: PMC10146187 DOI: 10.3390/pharmaceutics15041056] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Lactoferrin is an iron-binding glycoprotein present in most human exocrine fluids, particularly breast milk. Lactoferrin is also released from neutrophil granules, and its concentration increases rapidly at the site of inflammation. Immune cells of both the innate and the adaptive immune system express receptors for lactoferrin to modulate their functions in response to it. On the basis of these interactions, lactoferrin plays many roles in host defense, ranging from augmenting or calming inflammatory pathways to direct killing of pathogens. Complex biological activities of lactoferrin are determined by its ability to sequester iron and by its highly basic N-terminus, via which lactoferrin binds to a plethora of negatively charged surfaces of microorganisms and viruses, as well as to mammalian cells, both normal and cancerous. Proteolytic cleavage of lactoferrin in the digestive tract generates smaller peptides, such as N-terminally derived lactoferricin. Lactoferricin shares some of the properties of lactoferrin, but also exhibits unique characteristics and functions. In this review, we discuss the structure, functions, and potential therapeutic uses of lactoferrin, lactoferricin, and other lactoferrin-derived bioactive peptides in treating various infections and inflammatory conditions. Furthermore, we summarize clinical trials examining the effect of lactoferrin supplementation in disease treatment, with a special focus on its potential use in treating COVID-19.
Collapse
Affiliation(s)
- Anna Ohradanova-Repic
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Praženicová
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Laura Gebetsberger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tetiana Moskalets
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Rostislav Skrabana
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Ondrej Cehlar
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Gabor Tajti
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Vladimir Leksa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| |
Collapse
|
3
|
Lactoferrin Decreases Enterotoxigenic Escherichia coli-Induced Fluid Secretion and Bacterial Adhesion in the Porcine Small Intestine. Pharmaceutics 2022; 14:pharmaceutics14091778. [PMID: 36145526 PMCID: PMC9504966 DOI: 10.3390/pharmaceutics14091778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) infections are one of the most prevalent causes of post-weaning diarrhea in piglets, resulting in morbidity, mortality and elevated use of antibiotics. The emergence and further spread of antimicrobial resistance together with the growing demand for high quality animal protein requires the identification of novel alternatives for antimicrobials. A promising alternative is lactoferrin, as we previously showed that it can both inhibit the growth and degrade bacterial virulence factors of porcine ETEC strains in vitro. Aiming to confirm these findings in vivo, we performed a small intestinal segment perfusion experiment in piglets. Here, we showed that lactoferrin could not only decrease ETEC-induced fluid secretion, but also their ability to colonize the small intestinal epithelium. Furthermore, while ETEC infection induced pro-inflammatory cytokine mRNA expression in this experiment, lactoferrin was not able to counteract these responses. In addition, a bacterial motility assay showed that lactoferrin can reduce the motility of ETEC. Our findings further support the use of lactoferrin as an alternative for antimicrobials and also show its potential for the prevention of ETEC infections in pigs.
Collapse
|
4
|
Darmawan KK, Karagiannis TC, Hughes JG, Small DM, Hung A. Molecular modeling of lactoferrin for food and nutraceutical applications: insights from in silico techniques. Crit Rev Food Sci Nutr 2022; 63:9074-9097. [PMID: 35503258 DOI: 10.1080/10408398.2022.2067824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lactoferrin is a protein, primarily found in milk that has attracted the interest of the food industries due to its health properties. Nevertheless, the instability of lactoferrin has limited its commercial application. Recent studies have focused on encapsulation to enhance the stability of lactoferrin. However, the molecular insights underlying the changes of structural properties of lactoferrin and the interaction with protectants remain poorly understood. Computational approaches have proven useful in understanding the structural properties of molecules and the key binding with other constituents. In this review, comprehensive information on the structure and function of lactoferrin and the binding with various molecules for food purposes are reviewed, with a special emphasis on the use of molecular dynamics simulations. The results demonstrate the application of modeling and simulations to determine key residues of lactoferrin responsible for its stability and interactions with other biomolecular components under various conditions, which are also associated with its functional benefits. These have also been extended into the potential creation of enhanced lactoferrin for commercial purposes. This review provides valuable strategies in designing novel nutraceuticals for food science practitioners and those who have interests in acquiring familiarity with the application of computational modeling for food and health purposes.
Collapse
Affiliation(s)
- Kevion K Darmawan
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Australia
| | - Jeff G Hughes
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Darryl M Small
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, Australia
| |
Collapse
|
5
|
De Puysseleyr L, De Puysseleyr K, Rybarczyk J, Vander Donck P, De Vos WH, Vanrompay D. Transferrins Reduce Replication of Chlamydia suis in McCoy Cells. Pathogens 2021; 10:pathogens10070858. [PMID: 34358007 PMCID: PMC8308531 DOI: 10.3390/pathogens10070858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 11/25/2022] Open
Abstract
Chlamydia suis (C. suis) resides in the intestines of pigs and tetracycline-resistant strains are emerging worldwide. Intestinal infections are often subclinical. However, the gut is regarded as a C. suis reservoir and clinical infections have been associated with enteritis, conjunctivitis, pneumonia and reproductive failure. C. suis was found in boar semen and venereal transmission occurred. We studied the anti-Chlamydia suis activity of ovotransferrin (ovoTF) and bovine lactoferrin (bLF). Pre-incubation of C. suis with bLF or ovoTF had no significant effect on overall chlamydia replication (mean fluorescence area) in McCoy cells. The addition of ovoTF to the culture medium had no effect on bacterial replication, but the addition of 0.5 or 5 mg/mL of bLF significantly reduced the inclusion size by 17% and 15% respectively. Egg components are used for cryopreservation of boar semen. When inoculating an ovoTF-containing and Chlamydia suis-spiked semen sample in McCoy cells, a significant reduction in inclusion number (by 7%) and overall replication (by 11%) was observed. Thus, we showed that transferrins possess anti-chlamydial activity. Moreover, ovoTF addition to semen extenders might reduce C. suis venereal transmission. Further research is needed to unravel the mechanisms behind the observations and to enhance the effect of transferrins on C. suis.
Collapse
Affiliation(s)
- Leentje De Puysseleyr
- Laboratory for Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.D.P.); (K.D.P.); (J.R.); (P.V.D.)
| | - Kristien De Puysseleyr
- Laboratory for Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.D.P.); (K.D.P.); (J.R.); (P.V.D.)
| | - Joanna Rybarczyk
- Laboratory for Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.D.P.); (K.D.P.); (J.R.); (P.V.D.)
| | - Paulien Vander Donck
- Laboratory for Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.D.P.); (K.D.P.); (J.R.); (P.V.D.)
| | - Winnok H. De Vos
- Laboratory of Cell Biology and Histology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.D.P.); (K.D.P.); (J.R.); (P.V.D.)
- Correspondence:
| |
Collapse
|
6
|
Menge C. The Role of Escherichia coli Shiga Toxins in STEC Colonization of Cattle. Toxins (Basel) 2020; 12:toxins12090607. [PMID: 32967277 PMCID: PMC7551371 DOI: 10.3390/toxins12090607] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/20/2022] Open
Abstract
Many cattle are persistently colonized with Shiga toxin-producing Escherichia coli (STEC) and represent a major source of human infections with human-pathogenic STEC strains (syn. enterohemorrhagic E. coli (EHEC)). Intervention strategies most effectively protecting humans best aim at the limitation of bovine STEC shedding. Mechanisms enabling STEC to persist in cattle are only partialy understood. Cattle were long believed to resist the detrimental effects of Shiga toxins (Stxs), potent cytotoxins acting as principal virulence factors in the pathogenesis of human EHEC-associated diseases. However, work by different groups, summarized in this review, has provided substantial evidence that different types of target cells for Stxs exist in cattle. Peripheral and intestinal lymphocytes express the Stx receptor globotriaosylceramide (Gb3syn. CD77) in vitro and in vivo in an activation-dependent fashion with Stx-binding isoforms expressed predominantly at early stages of the activation process. Subpopulations of colonic epithelial cells and macrophage-like cells, residing in the bovine mucosa in proximity to STEC colonies, are also targeted by Stxs. STEC-inoculated calves are depressed in mounting appropriate cellular immune responses which can be overcome by vaccination of the animals against Stxs early in life before encountering STEC. Considering Stx target cells and the resulting effects of Stxs in cattle, which significantly differ from effects implicated in human disease, may open promising opportunities to improve existing yet insufficient measures to limit STEC carriage and shedding by the principal reservoir host.
Collapse
Affiliation(s)
- Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, D-07743 Jena, Germany
| |
Collapse
|
7
|
Elzoghby AO, Abdelmoneem MA, Hassanin IA, Abd Elwakil MM, Elnaggar MA, Mokhtar S, Fang JY, Elkhodairy KA. Lactoferrin, a multi-functional glycoprotein: Active therapeutic, drug nanocarrier & targeting ligand. Biomaterials 2020; 263:120355. [PMID: 32932142 PMCID: PMC7480805 DOI: 10.1016/j.biomaterials.2020.120355] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
Abstract
Recent progress in protein-based nanomedicine, inspired by the success of Abraxane® albumin-paclitaxel nanoparticles, have resulted in novel therapeutics used for treatment of challenging diseases like cancer and viral infections. However, absence of specific drug targeting, poor pharmacokinetics, premature drug release, and off-target toxicity are still formidable challenges in the clinic. Therefore, alternative protein-based nanomedicines were developed to overcome those challenges. In this regard, lactoferrin (Lf), a glycoprotein of transferrin family, offers a promising biodegradable well tolerated material that could be exploited both as an active therapeutic and drug nanocarrier. This review highlights the major pharmacological actions of Lf including anti-cancer, antiviral, and immunomodulatory actions. Delivery technologies of Lf to improve its pries and enhance its efficacy were also reviewed. Moreover, different nano-engineering strategies used for fabrication of drug-loaded Lf nanocarriers were discussed. In addition, the use of Lf for functionalization of drug nanocarriers with emphasis on tumor-targeted drug delivery was illustrated. Besides its wide application in oncology nano-therapeutics, we discussed the recent advances of Lf-based nanocarriers as efficient platforms for delivery of anti-parkinsonian, anti-Alzheimer, anti-viral drugs, immunomodulatory and bone engineering applications.
Collapse
Affiliation(s)
- Ahmed O Elzoghby
- Center for Engineered Therapeutics, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Harvard-MIT Division of Health Sciences & Technology (HST), Cambridge, MA, 02139, USA; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Mona A Abdelmoneem
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Damanhur University, Damanhur, 22516, Egypt
| | - Islam A Hassanin
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Mahmoud M Abd Elwakil
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Manar A Elnaggar
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Nanotechnology Program, School of Sciences & Engineering, The American University in Cairo (AUC), New Cairo, 11835, Egypt
| | - Sarah Mokhtar
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, 333, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, 333, Taiwan
| | - Kadria A Elkhodairy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
8
|
Dierick M, Vanrompay D, Devriendt B, Cox E. Lactoferrin, a versatile natural antimicrobial glycoprotein that modulates the host's innate immunity. Biochem Cell Biol 2020; 99:61-65. [PMID: 32585120 DOI: 10.1139/bcb-2020-0080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lactoferrin is a multifunctional protein found in the secretions of mammals. The antimicrobial activity of lactoferrin was the first to be discovered and was assumed to be solely dependent on its iron-chelating ability. However, lactoferrin has been reported to display proteolytic activity towards bacterial virulence factors and to modulate the host defence by stimulating the immune system and balancing pathogen-induced inflammation. Here, we review the current understandings of the antimicrobial effect, interaction with host cells, and innate immune modulation of lactoferrin, and put forward this moonlighting protein as a possible alternative for antibiotics.
Collapse
Affiliation(s)
- Matthias Dierick
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|