1
|
Dong Y, Liu X, Xiong S, Cao M, Wu H, Chen L, Zhao M, Zheng Y, Zhang Z, Liu Y, Li Y, Qu Q, Dong C. Guanosine enhances the bactericidal effect of ceftiofur sodium on Streptococcus suis by activating bacterial metabolism. Virulence 2025; 16:2453525. [PMID: 39915976 PMCID: PMC11810099 DOI: 10.1080/21505594.2025.2453525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/09/2024] [Accepted: 12/29/2024] [Indexed: 02/12/2025] Open
Abstract
The emergence and rapid development of antibiotic resistance poses a serious threat to global public health. Streptococcus suis (S. suis) is an important zoonotic pathogen, and the development of its antibiotic resistance has made the infections difficult to treat. The combination of non-antibiotic compounds with antibiotics is considered a promising strategy against multidrug-resistant bacteria. However, the mechanism by which metabolites act as antibiotic adjuvant remains unclear. Here, we found that guanosine metabolism was repressed in multidrug-resistant S. suis. Exogenous guanosine promoted the antibacterial effects of ceftiofur sodium (CEF) in vitro and in vivo. Furthermore, we demonstrated that exogenous guanosine promoted the biosynthesis of purine pathway, TCA cycle and bacterial respiration, which make bacteria more sensitive to the killing effect of antibacterial. In addition, the function of the cell membrane is affected by guanosine and the accumulation of antimicrobials in the bacteria increased. Bacterial-oxidative stress and DNA damage induced by guanosine is also one of the mechanisms by which the antibacterial effect is enhanced. These results suggest that guanosine is a promising adjuvant for antibacterial drugs and provide new theoretical basis for the clinical treatment of S. suis infection.
Collapse
Affiliation(s)
- Yue Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| | - Xiaona Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| | - Shanshan Xiong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| | - Mingyu Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| | - Haojie Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| | - Long Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| | - Mengmeng Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| | - Yadan Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| | - Zhiyun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| | - Yanyan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| | - Qianwei Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| | - Chunliu Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| |
Collapse
|
2
|
Lv R, Zhang W, Sun Z, Si X, Dong H, Liu X. Current prevalence and therapeutic strategies for porcine Streptococcus suis in China. Appl Environ Microbiol 2025:e0216024. [PMID: 39998255 DOI: 10.1128/aem.02160-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Abstract
Porcine Streptococcus suis is a zoonotic bacterial pathogen that poses serious threats to both human and animal health. S. suis is ubiquitously transmitted from the swine industry to the environments and human communities. However, the ambiguous epidemiological patterns and the escalating risk of antimicrobial resistance render S. suis infections a considerable challenge. Here, we review the current prevalence of S. suis infection worldwide, including identified bacterial strains, routes of infection, and transformation of resistance genes. This comprehensive overview of the prevalent patterns in S. suis offers detailed insights into therapeutic approaches for porcine infections and alternative strategies to address emerging resistant strains, highlighting potential multitarget prevention and treatment options to combat S. suis infection.
Collapse
Affiliation(s)
- Ruoyi Lv
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Wenjing Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, Beijing, China
| | - Zhigang Sun
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xiaohui Si
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, Beijing, China
| | - Hong Dong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, Beijing, China
| | - Xiaoye Liu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
- Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
3
|
Albert E, Kis IE, Kiss K, K-Jánosi K, Révész T, Biksi I. Serotype distribution and antimicrobial susceptibility of Streptococcus suis isolates from porcine diagnostic samples in Hungary, 2020-2023. Porcine Health Manag 2025; 11:3. [PMID: 39780272 PMCID: PMC11708007 DOI: 10.1186/s40813-024-00419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Streptococcus suis (S. suis) is a major swine pathogen and a significant zoonotic agent, causing substantial economic losses in the swine sector and having considerable public health importance. The control and management of S. suis-related conditions has become increasingly challenging due to the multitude of involved serotypes with varying antimicrobial resistance patterns. Here, we report the serological distribution and antimicrobial susceptibility of S. suis isolates isolated form clinical samples of Hungarian large-scale swine farms. RESULTS Between 2020 and 2023, altogether 296 S. suis isolates were obtained from diseased pigs of 64 Hungarian pig operations. Serotyping of the isolates was carried out by using molecular methods (cps-typing). The isolated strains belonged to 24 single cps-types. The most frequently detected cps-types during the four years of this passive survey were 9 (19.6%), 2 (19.3%), 1/2 (18.9%) and 7 (14.5%). The brain, spleen, endocardial valve thrombus and lung proved to be the most frequent site of S. suis strain isolation, and animals 29-75 days of age were affected in the highest proportion. Antimicrobial susceptibility testing of the isolates was performed by determining the minimal inhibitory concentration for 15 antimicrobial agents of veterinary and human importance using a commercial microdilution assay. More than 90% of the tested isolates proved to be susceptible to the examined beta-lactams, cephalosporins and florfenicol, as well as to rifampicin, trimethoprim/sulfamethoxazole and vancomycin. Phenotypic resistance profiles (resistotypes) of clindamycin-tetracyclin (3.8%), clindamycin-erythromycin-tetracyclin (8.4%) and clindamycin-erythromycin-tetracyclin-trimethoprim / sulfamethoxazole (3.8%) were most frequently detected. Vancomycin resistance was observed in the case of 1 S. suis strain. CONCLUSIONS The dominance of S. suis cps-types 9, 2, 1/2 and 7 in Hungary over the four years of this study aligns with previous reports from several countries worldwide. The presence of highly susceptible S. suis isolates suggests a prudent antibiotic usage and treatment practice in the surveyed Hungarian swine operations. In contrary, the presence of several resistotypes could indicate the problem of antibiotic resistance in the future.
Collapse
Affiliation(s)
- Ervin Albert
- Department of Pathology, University of Veterinary Medicine Budapest, Üllő, Hungary
- Institute of Metagenomics, University of Debrecen, Debrecen, Hungary
| | - István Emil Kis
- Department of Pathology, University of Veterinary Medicine Budapest, Üllő, Hungary
| | | | - Katalin K-Jánosi
- Department of Pathology, University of Veterinary Medicine Budapest, Üllő, Hungary.
| | | | - Imre Biksi
- Department of Pathology, University of Veterinary Medicine Budapest, Üllő, Hungary
| |
Collapse
|
4
|
Kerdsin A, Hatrongjit R, Wongsurawat T, Jenjaroenpun P, Zheng H, Chopjitt P, Boueroy P, Fittipaldi N, Segura M, Gottschalk M. Comparative genome analysis of Streptococcus suis serotype 5 strains from humans and pigs revealed pathogenic potential of virulent, antimicrobial resistance, and genetic relationship. Microbes Infect 2025; 27:105273. [PMID: 38070594 DOI: 10.1016/j.micinf.2023.105273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/28/2025]
Abstract
Streptococcus suis is a causative agent of swine and human infections. Genomic analysis indicated that eight S. suis serotype 5 strains recovered from human patients and pigs carried many virulence-associated genes and markers defining pathogenic pathotypes. The strains were sequence types diverse and clustered within either minimum core genome group 3 (MCG-3) or MCG-7-3. Almost all the serotype 5 strains were non-susceptible to penicillin, ceftriaxone, erythromycin, and levofloxacin. Resistance to tetracycline and clindamycin was observed in all strains. The antimicrobial resistance genes tet(O), tet(O/W/32/O), tet(W), tet(44), erm(B), ant(6)-Ia, lsaE, and lnuB were found in these strains. Moderate-to-large numbers of substitutions were observed in three penicillin-binding proteins (PBP)-PBP1A, PBP2B, and PBP2X-in the penicillin-non-susceptible serotype 5 isolates that were involved in β-lactam-non-susceptibility. Comparative genomics between the serotype 5 and 2 strains revealed that only 15 genes absent from the serotype 2 strains were shared by all the serotype 5 strains. However, some additional genes were present only in some of the serotype 5 strains. This study highlighted the pathogenic potential of virulent serotype 5 strains in humans and pigs and the need for increased monitoring of penicillin-non-susceptibility in S. suis serotypes other than for serotype 2.
Collapse
Affiliation(s)
- Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand.
| | - Rujirat Hatrongjit
- Department of General Sciences, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Thidathip Wongsurawat
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Han Zheng
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Nahuel Fittipaldi
- GREMIP, Faculty of Veterinary Medicine, University of Montreal, Quebec, Canada
| | - Mariela Segura
- GREMIP, Faculty of Veterinary Medicine, University of Montreal, Quebec, Canada
| | - Marcelo Gottschalk
- GREMIP, Faculty of Veterinary Medicine, University of Montreal, Quebec, Canada
| |
Collapse
|
5
|
Králová N, Fittipaldi N, Zouharová M, Nedbalcová K, Matiašková K, Gebauer J, Kulich P, Šimek B, Matiašovic J. Streptococcus suis strains with novel and previously undescribed capsular loci circulate in Europe. Vet Microbiol 2024; 298:110265. [PMID: 39340873 DOI: 10.1016/j.vetmic.2024.110265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
Streptococcus suis (S. suis) causes serious diseases in pigs, and certain serotypes also pose a risk to humans. The expression of capsular polysaccharides (CPS) is considered an important virulence property of the pathogen. Recently, some serotypes have been reclassified as other organisms, while novel S. suis serotypes are being described. Although the CPS can be typed by serological methods using antisera, the presence of unique sequences for each capsular polysaccharide synthesis locus (cps locus) enables convenient PCR-based serotyping. In this study, we characterized 33 non-serotypeable S. suis strains obtained from diseased pigs in the Czech Republic by sequencing and analyzing the cps locus. Phylogenetic analysis of cpn60 confirmed that all isolates belong to the S. suis species. Four isolates had cps loci similar to the previously described reference S. suis serotypes. Eleven isolates were classified as recently described novel cps loci (NCLs). Nine isolates had substitutions, insertions and/or deletions in their cps loci and showed only partial similarity to the already described NCLs. Another eight isolates had previously undescribed cps locus structures and were proposed as novel NCLs. One isolate had lost the genes encoding capsule biosynthesis. Only four sequence types (ST) had two isolates each; the rest had unique STs. Two isolates harbored the classical virulence associated genes (VAGs) mrp and sly. Another isolate had only the mrp gene, while a different isolate harbored only the sly gene. This study provides insight into untypeable isolates in the Czech Republic, highlighting the genetic diversity and potential for novel serotype identification.
Collapse
Affiliation(s)
- Natálie Králová
- Veterinary Research Institute, Brno 621 00, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic.
| | - Nahuel Fittipaldi
- GREMIP and CRIPA, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada.
| | | | | | | | - Jan Gebauer
- Veterinary Research Institute, Brno 621 00, Czech Republic.
| | - Pavel Kulich
- Veterinary Research Institute, Brno 621 00, Czech Republic.
| | - Bronislav Šimek
- State Veterinary Institute Jihlava, Jihlava 586 01, Czech Republic.
| | - Ján Matiašovic
- Veterinary Research Institute, Brno 621 00, Czech Republic.
| |
Collapse
|
6
|
Cao P, Lin M, Chen Z, Zhang G, Lai XH, Wu X, Niu L. Identification and genomic analyses of a Streptococcus suis ST25 strain associated with the first human septicemia in mainland China. Heliyon 2024; 10:e35456. [PMID: 39170392 PMCID: PMC11336695 DOI: 10.1016/j.heliyon.2024.e35456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Streptococcus suis (S. suis) is a Gram-positive bacterium and the main culprit behind zoonotic outbreaks, posing a serious threat to public health. The prevalent strains in China are mainly of sequence types (ST) 1 and 7, with few cases of human infections caused by other sequence type being reported. This study presents the first isolation of a ST25 strain from the blood of a septicemic patient. A 57-year-old febrile patient was admitted to a hospital in Hainan of China, diagnosed as septicemia and hepatic dysfunction. A strain of S. suis was isolated from blood culture and confirmed to be serotype 2 and ST25 through 16S rRNA sequencing and whole-genome sequencing, and its genome was further analyzed for gene functions and presence of drug resistance genes. The full-length genome of strain HN28 spans 2,280,124 bp and encodes a total of 2291 proteins. Genes annotated in COG, GO, KEGG, CAZy, and PHl databases accounted for 75.38 %, 69.14 %, 55.35 %, 4.58 %, and 11.87 % of the total predicted proteins, respectively. Virulence factor analysis revealed the presence of seven putative virulence genes in strain HN28. Analysis using the CARD database identified 51 resistance genes in HN28, alongside abundant exocytosis systems. These findings underscore the occurrence of S. suis infections in humans caused by less common ST, emphasizing the need for enhanced epidemiological investigations and monitoring of S. suis infections in the human population.
Collapse
Affiliation(s)
- Peipei Cao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China
- Department of Pathogen Biology, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Meixing Lin
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan, China
| | - Zhiling Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China
- Department of Pathogen Biology, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Guannan Zhang
- Hainan Medical University Public Research Center, Haikou, Hainan, China
| | - Xin-He Lai
- Shenzhen Boya Gene Technology Company Limited, Shenzhen, China
| | - Xiang Wu
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan, China
| | - Lina Niu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China
- Department of Pathogen Biology, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
7
|
Scherrer S, Biggel M, Schneeberger M, Cernela N, Rademacher F, Schmitt S, Stephan R. Genetic diversity and antimicrobial susceptibility of Streptococcus suis from diseased Swiss pigs collected between 2019 - 2022. Vet Microbiol 2024; 293:110084. [PMID: 38608374 DOI: 10.1016/j.vetmic.2024.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Streptococcus suis is an important pathogen causing severe disease in pigs and humans, giving rise to economic losses in the pig production industry. Out of 65 S. suis isolates collected from diseased pigs in Switzerland between 2019 and 2022, 57 isolates were thoroughly examined by phenotypic and whole genome sequence (WGS) based characterization. The isolates' genomes were sequenced allowing for a comprehensive analysis of their distribution in terms of serovar, sequence type (ST), clonal complex (CC), and classical virulence markers. Antimicrobial resistance (AMR) genes were screened, and phenotypic susceptibility to eight classes of antimicrobial agents was examined. Serovar 6, devoid of any resistance genes, was found to be most prevalent, followed by serovars 1, 3, 1/2, and 9. Thirty STs were identified, with ST1104 being the most prevalent. Serovar 2 and serovar 1/2 were associated with CC1, potentially containing the most virulent variants. Based on single nucleotide polymorphism (SNP) analyses, fifteen isolates belonged to one of seven putative transmission clusters each consisting of two or three isolates. High phenotypic AMR rates were detected for tetracyclines (80%) and macrolides (35%) and associated with the resistance genes tet(O) and erm(B), respectively. In contrast, susceptibility to β-lactam antibiotics and phenicols was high. Determination of phenotypic AMR profiling, including the minimum inhibitory concentrations (MICs) of the tested antimicrobial agents, sets a baseline for future studies. The study provides valuable insights into the genetic diversity and antimicrobial susceptibility of Swiss S. suis isolates, facilitating the identification of emerging clones relevant to public health concerns.
Collapse
Affiliation(s)
- Simone Scherrer
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland.
| | - Michael Biggel
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Marianne Schneeberger
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Nicole Cernela
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Fenja Rademacher
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Sarah Schmitt
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Roger Stephan
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland; Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland
| |
Collapse
|
8
|
Hatrongjit R, Fittipaldi N, Gottschalk M, Kerdsin A. Genomic epidemiology in Streptococcus suis: Moving beyond traditional typing techniques. Heliyon 2024; 10:e27818. [PMID: 38509941 PMCID: PMC10951601 DOI: 10.1016/j.heliyon.2024.e27818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/12/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Streptococcus suis is a bacterial gram-positive pathogen that causes invasive infections in swine and is also a zoonotic disease agent. Traditional molecular typing techniques such as ribotyping, multilocus sequence typing, pulse-field gel electrophoresis, or randomly amplified polymorphic DNA have been used to investigate S. suis population structure, evolution, and genetic relationships and support epidemiological and virulence investigations. However, these traditional typing techniques do not fully reveal the genetically heterogeneous nature of S. suis strains. The high-resolution provided by whole-genome sequencing (WGS), which is now more affordable and more commonly available in research and clinical settings, has unlocked the exploration of S. suis genetics at full resolution, permitting the determination of population structure, genetic diversity, identification of virulent clades, genetic markers, and other bacterial features of interest. This approach will likely become the new gold standard for S. suis strain typing as WGS instruments become more widely available and traditional typing techniques are gradually replaced.
Collapse
Affiliation(s)
- Rujirat Hatrongjit
- Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Nahuel Fittipaldi
- GREMIP, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Marcelo Gottschalk
- GREMIP, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| |
Collapse
|
9
|
Dechêne-Tempier M, de Boisséson C, Lucas P, Bougeard S, Libante V, Marois-Créhan C, Payot S. Virulence genes, resistome and mobilome of Streptococcus suis strains isolated in France. Microb Genom 2024; 10:001224. [PMID: 38536216 PMCID: PMC10995628 DOI: 10.1099/mgen.0.001224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/08/2024] [Indexed: 04/07/2024] Open
Abstract
Streptococcus suis is a leading cause of infection in pigs, causing extensive economic losses. In addition, it can also infect wild fauna, and can be responsible for severe infections in humans. Increasing antimicrobial resistance (AMR) has been described in S. suis worldwide and most of the AMR genes are carried by mobile genetic elements (MGEs). This contributes to their dissemination by horizontal gene transfer. A collection of 102 strains isolated from humans, pigs and wild boars in France was subjected to whole genome sequencing in order to: (i) study their genetic diversity, (ii) evaluate their content in virulence-associated genes, (iii) decipher the mechanisms responsible for their AMR and their association with MGEs, and (iv) study their ability to acquire extracellular DNA by natural transformation. Analysis by hierarchical clustering on principal components identified a few virulence-associated factors that distinguish invasive CC1 strains from the other strains. A plethora of AMR genes (n=217) was found in the genomes. Apart from the frequently reported erm(B) and tet(O) genes, more recently described AMR genes were identified [vga(F)/sprA, vat(D)]. Modifications in PBPs/MraY and GyrA/ParC were detected in the penicillin- and fluoroquinolone-resistant isolates respectively. New AMR gene-MGE associations were detected. The majority of the strains have the full set of genes required for competence, i.e for the acquisition of extracellular DNA (that could carry AMR genes) by natural transformation. Hence the risk of dissemination of these AMR genes should not be neglected.
Collapse
Affiliation(s)
- Manon Dechêne-Tempier
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, BP53 22440 Ploufragan, France
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| | - Claire de Boisséson
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, BP53 22440 Ploufragan, France
| | - Pierrick Lucas
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Génétique Virale et Biosécurité, BP53 22440 Ploufragan, France
| | - Stéphanie Bougeard
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Épidémiologie, santé et bien-être, BP53 22440 Ploufragan, France
| | | | - Corinne Marois-Créhan
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, BP53 22440 Ploufragan, France
| | - Sophie Payot
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| |
Collapse
|
10
|
Kobayashi K, Kubota H, Tohya M, Ushikubo M, Yamamoto M, Ariyoshi T, Uchitani Y, Mitobe M, Okuno R, Nakagawa I, Sekizaki T, Suzuki J, Sadamasu K. Characterization of pig tonsils as niches for the generation of Streptococcus suis diversity. Vet Res 2024; 55:17. [PMID: 38321502 PMCID: PMC10848530 DOI: 10.1186/s13567-024-01270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Streptococcus suis is a gram-positive bacterium that causes meningitis, septicemia, endocarditis, and other disorders in pigs and humans. We obtained 42 and 50 S. suis isolates from lesions of porcine endocarditis and palatine tonsils, respectively, of clinically healthy pigs in Japan; we then determined their sequence types (STs) by multilocus sequence typing (MLST), cps genotypes, serotypes, and presence of classical major virulence-associated marker genes (mrp, epf, and sly). The 42 isolates from endocarditis lesions were assigned to a limited number of STs and clonal complexes (CCs). On the other hand, the 50 isolates from tonsils were diverse in these traits and seemingly in the degree of virulence, suggesting that tonsils can accommodate a variety of S. suis isolates. The goeBURST full algorithm using tonsil isolates obtained in this study and those retrieved from the database showed that major CCs as well as many other clusters were composed of isolates originating from different countries, and some of the STs were very similar to each other despite the difference in country of origin. These findings indicate that S. suis with not only different but also similar mutations in the genome have survived in tonsils independently across different geographical locations. Therefore, unlike the lesions of endocarditis, the tonsils of pigs seemingly accommodate various S. suis lineages. The present study suggests that S. suis acquired its diversity by natural mutations during colonization and persistence in the tonsils of pigs.
Collapse
Affiliation(s)
- Kai Kobayashi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan.
| | - Hiroaki Kubota
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Mari Tohya
- Division of Biomedical Food Research, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
- Department of Microbiology and Department of Microbiome Research, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Megumi Ushikubo
- Shibaura Meat Sanitary Inspection Station, Tokyo Metropolitan Government, Konan 2-7-19, Minato-ku, Tokyo, 108-0075, Japan
| | - Miki Yamamoto
- Shibaura Meat Sanitary Inspection Station, Tokyo Metropolitan Government, Konan 2-7-19, Minato-ku, Tokyo, 108-0075, Japan
| | - Tsukasa Ariyoshi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Yumi Uchitani
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Morika Mitobe
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Rumi Okuno
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tsutomu Sekizaki
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Jun Suzuki
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Kenji Sadamasu
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| |
Collapse
|
11
|
Keonam K, Nam NH, Saksangawong C, Sringam P, Saipan P, Kongpechr S, Sukon P. Prevalence of Streptococcus suis serotype 2 isolated from pigs: A systematic review and meta-analysis. Vet World 2024; 17:233-244. [PMID: 38595647 PMCID: PMC11000466 DOI: 10.14202/vetworld.2024.233-244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/28/2023] [Indexed: 04/11/2024] Open
Abstract
Background and Aim Among Streptococcus suis serotypes, S. suis serotype 2 is the most significant serotype that causes serious diseases in pigs and humans worldwide. The present study aimed to estimate the global prevalence of S. suis serotype 2 isolated from pigs, determine its trend, and explore the factors associated with this serotype. Materials and Methods We retrieved relevant published studies from PubMed, Scopus, and the Web of Science. The retrieved citations were screened for possible inclusion. Relevant data were then extracted from the included studies. The random-effects model was used for all meta-analyses. A subgroup meta-analysis was used to assess the heterogeneity of the prevalence for four characteristics (continents, sampling organs, reporting unit, and pig's health status). A cumulative meta-analysis was performed to determine the cumulative prevalence over time. Meta-regression analysis was used to determine the trend of pooled prevalence of S. suis serotype 2 over time. Results Of 600 articles retrieved, 36 studies comprising a total sample size of 6939 isolates or samples from 16 countries of four continents were included for meta-analysis. The pooled prevalence of S. suis serotype 2 isolated from pigs was 13.6% (95% confidence interval [CI], 10.7%-17.1%), with high heterogeneity among the included studies (Cochran's Q, 431.6; p < 0.001; I2 = 91.9%; Table-1). No statistical significance was observed among subgroups of the four characteristics examined. However, the pooled prevalence of S. suis serotype 2 was as high as 16.0% (95% CI, 12.5%-20.3%; n = 16) in diseased pigs compared with 9.9% (95% CI, 5.6%-17.0%; n = 15) in healthy pigs. The pooled prevalence of S. suis serotype 2 isolated from pigs did not significantly decrease over time [regression coefficient = -0.020 (95% CI, 0.046-0.006, p = 0.139)]. The pooled prevalence of S. suis serotype 2 isolated from pigs fluctuated slightly between 13.2% and 17.8% from 2007 to 2023, although the pooled prevalence gradually decreased from 30.6% in 1987 to over 20% in 2003. Conclusion The global prevalence of S. suis serotype 2 isolated from pigs was estimated to be 13.6% (approximately 10% in healthy pigs and around 16% in diseased pigs). S. suis serotype 2 isolated from pigs did not change significantly over time. These results indicate that S. suis serotype 2 remains a problem for the pig industry and poses a threat to human health.
Collapse
Affiliation(s)
- Khao Keonam
- Veterinary Science Program, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nguyen Hoai Nam
- Department of Animal Surgery and Theriogenology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trauqui, Gialam, Hanoi, Vietnam
| | - Chuleeporn Saksangawong
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Patchanee Sringam
- Division of Physiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Piyawat Saipan
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Saijai Kongpechr
- Division of Anatomy, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Peerapol Sukon
- Division of Anatomy, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Program on Toxic Substances, Microorganisms and Feed Additives in Livestock and Aquatic Animals for Food Safety, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
12
|
Petrocchi Rilo M, Gutiérrez Martín CB, Acebes Fernández V, Aguarón Turrientes Á, González Fernández A, Miguélez Pérez R, Martínez Martínez S. Streptococcus suis Research Update: Serotype Prevalence and Antimicrobial Resistance Distribution in Swine Isolates Recovered in Spain from 2020 to 2022. Vet Sci 2024; 11:40. [PMID: 38250946 PMCID: PMC10819597 DOI: 10.3390/vetsci11010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
This study aimed to update the Streptococcus suis serotype distribution in Spain by analysing 302 clinical isolates recovered from diseased pigs between 2020 and 2022. The main objectives were to identify prevalent serotypes, differentiate specific serotypes 1, 14, 2, and 1/2, investigate specific genotypic and phenotypic antimicrobial resistance features, and explore associations between resistance genes and phenotypic resistances. Serotypes 9 (21.2%), 1 (16.2%), 2 (15.6%), 3 (6%), and 7 (5.6%) were the most prevalent, whereas serotypes 14 and 1/2 corresponded with 4.3% and 0.7% of all isolates. Antimicrobial resistance genes, including tet(O), erm(B), lnu(B), lsa(E), tet(M), and mef(A/E), were analysed, which were present in 85.8%, 65.2%, 7%, 7%, 6.3%, and 1% of the samples, respectively. Susceptibility testing for 18 antimicrobials revealed high resistance levels, particularly for clindamycin (88.4%), chlortetracycline (89.4%), and sulfadimethoxine (94.4%). Notably, seven significant associations (p < 0.0001) were detected, correlating specific antimicrobial resistance genes to the observed phenotypic resistance. These findings contribute to understanding the S. suis serotype distribution and its antibiotic resistance profiles in Spain, offering valuable insights for veterinary and public health efforts in managing S. suis-associated infections.
Collapse
Affiliation(s)
- Máximo Petrocchi Rilo
- Animal Health Department, Veterinary Medicine Faculty, University of León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.R.); (C.B.G.M.); (V.A.F.); (A.G.F.); (R.M.P.)
| | - César Bernardo Gutiérrez Martín
- Animal Health Department, Veterinary Medicine Faculty, University of León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.R.); (C.B.G.M.); (V.A.F.); (A.G.F.); (R.M.P.)
| | - Vanessa Acebes Fernández
- Animal Health Department, Veterinary Medicine Faculty, University of León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.R.); (C.B.G.M.); (V.A.F.); (A.G.F.); (R.M.P.)
| | | | - Alba González Fernández
- Animal Health Department, Veterinary Medicine Faculty, University of León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.R.); (C.B.G.M.); (V.A.F.); (A.G.F.); (R.M.P.)
| | - Rubén Miguélez Pérez
- Animal Health Department, Veterinary Medicine Faculty, University of León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.R.); (C.B.G.M.); (V.A.F.); (A.G.F.); (R.M.P.)
| | - Sonia Martínez Martínez
- Animal Health Department, Veterinary Medicine Faculty, University of León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.R.); (C.B.G.M.); (V.A.F.); (A.G.F.); (R.M.P.)
| |
Collapse
|
13
|
Bornemann NN, Mayer L, Lacouture S, Gottschalk M, Baums CG, Strutzberg-Minder K. Invasive Bacterial Infections of the Musculoskeletal and Central Nervous System during Pig Rearing: Detection Frequencies of Different Pathogens and Specific Streptococcus suis Genotypes. Vet Sci 2024; 11:17. [PMID: 38250923 PMCID: PMC10820919 DOI: 10.3390/vetsci11010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Locomotor and central nervous system disorders occur during pig rearing, but there is no systematic recording of the different causative agents in Germany. Joint and meningeal swabs, kidneys, lungs, and eight different lymph nodes per pig were cultured, and isolated pathogens were identified using polymerase chain reactions (PCRs). The cps and pathotype of Streptococcus suis (S. suis) isolates were determined using multiplex-PCR. S. suis was the most important pathogen in the infected joints (70.8%) and meningeal swabs (85.4%) and was most frequently detected in both sites in suckling and weaning piglets. To elucidate the possible portal of entry of S. suis, eight different lymph nodes from 201 pigs were examined in a prospective study. S. suis was detected in all examined lymph nodes (n = 1569), including the mesenteric lymph nodes (15.8%; n = 121/765), with cps 9 (37.2%; n = 147) and cps 2 (24.3%; n = 96) being the most dominating cps types. In piglets with a systemic S. suis infection, different lymph nodes are frequently infected with the invasive S. suis strain, which does not help clarify the portal of entry for S. suis.
Collapse
Affiliation(s)
| | - Leonie Mayer
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany (C.G.B.)
| | - Sonia Lacouture
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.L.); (M.G.)
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.L.); (M.G.)
| | - Christoph Georg Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany (C.G.B.)
| | | |
Collapse
|
14
|
Sedano SA, Cantalejo MGCT, Lapitan CGAR, de Guzman AMES, Consignado JT, Tandang NA, Estacio MAC, Kerdsin A, Silva BBI. Epidemiology and genetic diversity of Streptococcus suis in smallhold swine farms in the Philippines. Sci Rep 2023; 13:21178. [PMID: 38040767 PMCID: PMC10692119 DOI: 10.1038/s41598-023-48406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023] Open
Abstract
This study aimed to determine the presence and characteristics of locally circulating strains of Streptococcus suis, the most important streptococcal pathogen in swine. Oral swab samples were collected from pigs from 664 representative smallhold farms across nine provinces in the Philippines. Isolates were identified and characterized using PCR assays. The study revealed an isolation rate of 15.8% (105/664, 95% CI: 13.0-18.6) among the sampled farms. Two hundred sixty-nine (269) S. suis isolates were recovered from 119 unique samples. Serotype 31 was the most prevalent (50/269, 95% CI: 13.9-23.2) among the other serotypes identified: 5, 6, 8, 9, 10, 11, 15, 16, 17, 21, 27, 28, and 29. The detection of the three 'classical' S. suis virulence-associated genes showed that 90.7% (244/269, 95% CI: 87.2-94.2) were mrp-/epf-/sly-. Multilocus sequence typing (MLST) analysis further revealed 70 novel sequence types (STs). Notably, several local isolates belonging to these novel STs formed clonal complexes (CC) with S. suis strains recovered from Spain and USA, which are major pork-exporting countries to the Philippines. This study functionally marks the national baseline knowledge of S. suis in Philippines.
Collapse
Affiliation(s)
- Susan A Sedano
- Veterinary Vaccines Laboratory, National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines.
| | - Mary Grace Concepcion T Cantalejo
- Veterinary Vaccines Laboratory, National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines
| | - Christine Grace Angela R Lapitan
- Veterinary Vaccines Laboratory, National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines
- Ecosystem Services and Environmental Policy Laboratory, School of Environmental Science and Management, University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines
| | - Angelo Miguel Elijah S de Guzman
- Veterinary Vaccines Laboratory, National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines
- Department of Agrarian Reform, Elliptical Road, Diliman, 1107, Quezon City, Philippines
| | - Jennielyn T Consignado
- Veterinary Vaccines Laboratory, National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines
| | - Nancy A Tandang
- Institute of Statistics, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines
| | - Maria Amelita C Estacio
- Department of Basic Veterinary Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Benji Brayan Ilagan Silva
- Veterinary Vaccines Laboratory, National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines.
| |
Collapse
|
15
|
Gcebe N, Pierneef RE, Michel AL, Hlokwe MT. Mycobacteriosis in slaughter pigs from South Africa from 1991 to 2002: Mycobacterium spp. diversity and Mycobacterium avium complex genotypes. Front Microbiol 2023; 14:1284906. [PMID: 38033580 PMCID: PMC10687471 DOI: 10.3389/fmicb.2023.1284906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Mycobacterium avium complex (MAC) bacteria are the most prominent etiological agents of lymphadenitis in pigs. M. avium subspecies hominissuis (MAH) is a member of MAC and has been reported in many parts of the world to be the most prevalent non-tuberculous mycobacteria (NTM) to cause mycobacteriosis in humans, mainly in children. Thus, the economic and zoonotic impact of MAC species are increasingly being recognized. In South Africa, little is known about the distribution of NTM and the molecular epidemiology of M. avium in pigs. Materials and methods In this study, lymph nodes including mandibular, mesenteric, submandibular, and retropharyngeal, with tuberculosis-like lesions were collected during routine meat inspection of slaughter pigs with no disease symptoms (n = 132), between 1991 and 2002. These pigs were slaughtered at 44 abattoirs distributed across seven of the nine South African provinces. Mycobacterial culture, polymerase chain reaction (PCR), and sequencing of the Mycobacterium specific 577 bp 16S rRNA gene fragment were performed for species and subspecies identification. Results The majority of the isolates (each per sample); 114 (86.4%) were identified as MAH, 8 (6%) as MAA/M. avium subsp. silvaticum, 4 (3%) were Mycobacterium tuberculosis, 2 (1.5%) as Mycobacterium intracellulare, and 1 (0.75%) as Mycobacterium bovis. The other isolates were identified as Mycobacterium lentiflavum (0.75%), Mycobacterium novocastrense (0.75%), and a Micrococcus spp. (0.75%). Using an eight-marker MLVA typing tool, we deciphered at least nine MIRU VNTR INMV types of MAH and MAA. Discussion Identification of known zoonotic mycobacteria, including MAH, MAA, M. intracellulare, M. bovis, and M. tuberculosis, from slaughter pigs has a potential public health impact and also strengthens recognition of the potential economic impact of MAC. This study has also for the first time in South Africa, revealed MAC MIRU VNTR INMV genotypes which will aid in the future epidemiological investigation of MAC in South Africa.
Collapse
Affiliation(s)
- Nomakorinte Gcebe
- Bacteriology Laboratory, Agricultural Research Council–Onderstepoort Veterinary Research, Pretoria, South Africa
| | - Rian Ewald Pierneef
- Agricultural Research Council–Biotechnology Platform, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
- Microbiome@UP, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Anita Luise Michel
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Motlatso Tiny Hlokwe
- Bacteriology Laboratory, Agricultural Research Council–Onderstepoort Veterinary Research, Pretoria, South Africa
| |
Collapse
|
16
|
Pirnay JP, Verbeken G. Magistral Phage Preparations: Is This the Model for Everyone? Clin Infect Dis 2023; 77:S360-S369. [PMID: 37932120 DOI: 10.1093/cid/ciad481] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Phage therapy is increasingly put forward as a promising additional tool to help curb the global antimicrobial resistance crisis. However, industrially manufactured phage medicinal products are currently not available on the European Union and United States markets. In addition, it is expected that the business purpose-driven phage products that are supposed to be marketed in the future would mainly target commercially viable bacterial species and clinical indications, using fixed phage cocktails. hospitals or phage therapy centers aiming to help all patients with difficult-to-treat infections urgently need adequate phage preparations. We believe that national solutions based on the magistral preparation of personalized (preadapted) phage products by hospital and academic facilities could bring an immediate solution and could complement future industrially manufactured products. Moreover, these unlicensed phage preparations are presumed to be more efficient and to elicit less bacterial phage resistance issues than fixed phage cocktails, claims that need to be scientifically substantiated as soon as possible. Just like Belgium, other (European) countries could develop a magistral phage preparation framework that would exist next to the conventional medicinal product development and licensing pathways. However, it is important that the current producers of personalized phage products are provided with pragmatic quality and safety assurance requirements, which are preferably standardized (at least at the European level), and are tiered based on benefit-risk assessments at the individual patient level. Pro bono phage therapy providers should be supported and not stopped by the imposition of industry standards such as Good Manufacturing Practice requirements. Keywords: antimicrobial resistance; antibiotic resistance; bacterial infection; bacteriophage therapy; magistral preparation.
Collapse
Affiliation(s)
- Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Non-traditional Antibacterial Therapy (ESGNTA), Basel, Switzerland
| | - Gilbert Verbeken
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| |
Collapse
|
17
|
Nicholson TL, Kalalah AA, Eppinger M. Population structure and genetic diversity of Streptococcus suis isolates obtained from the United States. Front Microbiol 2023; 14:1250265. [PMID: 37808309 PMCID: PMC10551183 DOI: 10.3389/fmicb.2023.1250265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Diseases caused by the zoonotic pathogen Streptococcus suis are an extensive economic problem as well as an animal welfare concern for the global swine industry. Previous studies have evaluated the genomic diversity and population structure of S. suis isolates, however, the majority of these studies utilized isolates obtained from countries other than the U.S. This study applied whole genome sequencing and cgMLST-based typing to evaluate the population structure and genetic relatedness among S. suis isolates obtained within the U.S. The established high-resolution phylogenomic framework revealed extensive genomic variation and diversity among the sampled S. suis isolates, with isolates from the U.S. and from countries outside the U.S. found interspersed in the phylogeny. S. suis isolates obtained within the U.S. did not cluster by state or geographic location, however, isolates with similar serotypes, both obtained from within and outside the U.S., generally clustered together. Average nucleotide identity (ANI) values determined for the S. suis genomes were extensively broad, approaching the recommended species demarcation value, and correlated with the phylogenetic group distribution of the cgMLST-based tree. Numerous antimicrobial resistance (AMR) elements were identified among both U.S. and non-U.S. isolates with ble, tetO, and ermB genes identified as the most prevalent. The epf, mrp, and sly genes, historically used as markers for virulence potential, were also observed in the genomes of isolates that grouped together forming a subclade of clonal complex 1 (CC1) isolates. Collectively, the data in this report provides critical information needed to address potential biosurveillance needs and insights into the genetic diversity and population structure of S. suis isolates obtained within the U.S.
Collapse
Affiliation(s)
- Tracy L. Nicholson
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Anwar A. Kalalah
- South Texas Center for Emerging Infectious Diseases (STCEID), The University of Texas at San Antonio, San Antonio, TX, United States
- Department of Molecular Microbiology and Immunology (MMI), The University of Texas at San Antonio, San Antonio, TX, United States
| | - Mark Eppinger
- South Texas Center for Emerging Infectious Diseases (STCEID), The University of Texas at San Antonio, San Antonio, TX, United States
- Department of Molecular Microbiology and Immunology (MMI), The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
18
|
Hatrongjit R, Boueroy P, Jenjaroenpun P, Wongsurawat T, Meekhanon N, Chopjitt P, Zheng H, Fittipaldi N, Chareonsudjai S, Segura M, Gottschalk M, Kerdsin A. Genomic characterization and virulence of Streptococcus suis serotype 4 clonal complex 94 recovered from human and swine samples. PLoS One 2023; 18:e0288840. [PMID: 37498866 PMCID: PMC10374156 DOI: 10.1371/journal.pone.0288840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Streptococcus suis is a zoonotic pathogen that causes invasive infections in humans and pigs. Herein, we performed genomic analysis of seven S. suis serotype 4 strains belonging to clonal complex (CC) 94 that were recovered from a human patient or from diseased and clinically healthy pigs. Genomic exploration and comparisons, as well as in vitro cytotoxicity tests, indicated that S. suis CC94 serotype 4 strains are potentially virulent. Genomic analysis revealed that all seven strains clustered within minimum core genome group 3 (MCG-3) and had a high number of virulence-associated genes similar to those of virulent serotype 2 strains. Cytotoxicity assays showed that both the human lung adenocarcinoma cell line and HeLa cells rapidly lost viability following incubation for 4 h with the strains at a concentration of 106 bacterial cells. The human serotype 4 strain (ID36054) decreased cell viability profoundly and similarly to the control serotype 2 strain P1/7. In addition, strain ST1689 (ID34572), isolated from a clinically healthy pig, presented similar behaviour in an adenocarcinoma cell line and HeLa cells. The antimicrobial resistance genes tet(O) and ermB that confer resistance to tetracyclines, macrolides, and lincosamides were commonly found in the strains. However, aminoglycoside and streptothricin resistance genes were found only in certain strains in this study. Our results indicate that S. suis CC94 serotype 4 strains are potentially pathogenic and virulent and should be monitored.
Collapse
Affiliation(s)
- Rujirat Hatrongjit
- Faculty of Science and Engineering, Department of General Sciences, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Piroon Jenjaroenpun
- Faculty of Medicine Siriraj Hospital, Department of Research and Development, Division of Bioinformatics and Data Management for Research, Mahidol University, Bangkok, Thailand
| | - Thidathip Wongsurawat
- Faculty of Medicine Siriraj Hospital, Department of Research and Development, Division of Bioinformatics and Data Management for Research, Mahidol University, Bangkok, Thailand
| | - Nattakan Meekhanon
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Han Zheng
- National Institute for Communicable Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Nahuel Fittipaldi
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases in Production Animals (GREMIP), University of Montreal, Quebec, Canada
| | - Sorujsiri Chareonsudjai
- Faculty of Medicine, Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Mariela Segura
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases in Production Animals (GREMIP), University of Montreal, Quebec, Canada
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases in Production Animals (GREMIP), University of Montreal, Quebec, Canada
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| |
Collapse
|
19
|
Kerdsin A, Bamphensin N, Sittichottumrong K, Ungcharoen R, Boueroy P, Chopjitt P, Hatrongjit R, Gottschalk M, Sunthamala N. Evaluation of pathotype marker genes in Streptococcus suis isolated from human and clinically healthy swine in Thailand. BMC Microbiol 2023; 23:133. [PMID: 37193946 DOI: 10.1186/s12866-023-02888-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Streptococcus suis is a zoonotic pathogen that causes substantial economic losses in the pig industry and contributes to human infections worldwide, especially in Southeast Asia. Recently, a multiplex polymerase chain reaction (PCR) process was developed to distinguish disease-associated and non-disease-associated pathotypes of S. suis European strains. Herein, we evaluated the ability of this multiplex PCR approach to distinguish pathotypes of S. suis in Thailand. RESULTS This study was conducted on 278 human S. suis isolates and 173 clinically healthy pig S. suis isolates. PCR identified 99.3% of disease-associated strains in the human isolates and 11.6% of non-disease-associated strains in the clinically healthy pig isolates. Of the clinically healthy pig S. suis isolates, 71.1% were classified as disease-associated. We also detected undetermined pathotype forms in humans (0.7%) and pigs (17.3%). The PCR assay classified the disease-associated isolates into four types. Statistical analysis revealed that human S. suis clonal complex (CC) 1 isolates were significantly associated with the disease-associated type I, whereas CC104 and CC25 were significantly associated with the disease-associated type IV. CONCLUSION Multiplex PCR cannot differentiate non-disease-associated from disease-associated isolates in Thai clinically healthy pig S. suis strains, although the method works well for human S. suis strains. This assay should be applied to pig S. suis strains with caution. It is highly important that multiplex PCR be validated using more diverse S. suis strains from different geographic areas and origins of isolation.
Collapse
Affiliation(s)
- Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Nichari Bamphensin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Kulsatri Sittichottumrong
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Ratchadaporn Ungcharoen
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Rujirat Hatrongjit
- Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon, Province Campus, Sakon Nakhon, 47000, Thailand
| | - Marcelo Gottschalk
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Québec, Canada
| | - Nuchsupha Sunthamala
- Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Thailand.
| |
Collapse
|
20
|
Zouharová M, Šimek B, Gebauer J, Králová N, Kucharovičová I, Plodková H, Pecka T, Brychta M, Švejdová M, Nedbalcová K, Matiašková K, Matiašovic J. Characterisation of Streptococcus suis Isolates in the Czech Republic Collected from Diseased Pigs in the Years 2018-2022. Pathogens 2022; 12:pathogens12010005. [PMID: 36678353 PMCID: PMC9862946 DOI: 10.3390/pathogens12010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
As in other countries, in the Czech Republic, Streptococcus suis infection in pigs is considered an economically significant disease for the pig industry, though little is known about its population structure. We collected S. suis isolates from 144 farms in the years 2018-2022. All samples were taken from animals suffering from symptoms indicating possible S. suis infection. Serotyping revealed the presence of 23 different serotypes, and 18.94% were non-typable strains. The most common was S7 (14.96%), while other serotypes had frequencies of less than 10%. Sequence typing identified 56 different sequence types, including 31 newly assigned sequence types together with 41 new alleles in genes in the MLST schema. A large portion of isolates (25.70%) were of unknown sequence type. The most common sequence types were ST29 (14.77%) and ST28 (10.04%); the other sequence types had frequencies of less than 10%. In total, 100 different combinations of serotypes and sequence types were identified. Among them, S7ST29 was found in 72 isolates, representing 13.63% of all isolates, and was significantly associated with the central nervous system. Many other isolates of particular serotype and sequence type combinations were found in a few cases, and a number of isolates were non-typable.
Collapse
Affiliation(s)
| | - Bronislav Šimek
- State Veterinary Institute Jihlava, 586 01 Jihlava, Czech Republic
| | - Jan Gebauer
- Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Natálie Králová
- Veterinary Research Institute, 621 00 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | | | - Hana Plodková
- State Veterinary Institute Jihlava, 586 01 Jihlava, Czech Republic
| | - Tomáš Pecka
- State Veterinary Institute Jihlava, 586 01 Jihlava, Czech Republic
| | - Marek Brychta
- State Veterinary Institute Jihlava, 586 01 Jihlava, Czech Republic
| | - Marie Švejdová
- State Veterinary Institute Jihlava, 586 01 Jihlava, Czech Republic
| | | | | | - Ján Matiašovic
- Veterinary Research Institute, 621 00 Brno, Czech Republic
- Correspondence: ; Tel.: +420-533331317
| |
Collapse
|
21
|
Nicholson TL, Bayles DO. Comparative virulence and antimicrobial resistance distribution of Streptococcus suis isolates obtained from the United States. Front Microbiol 2022; 13:1043529. [PMID: 36439859 PMCID: PMC9687383 DOI: 10.3389/fmicb.2022.1043529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/25/2022] [Indexed: 09/29/2023] Open
Abstract
Streptococcus suis is a zoonotic bacterial swine pathogen causing substantial economic and health burdens to the pork industry worldwide. Most S. suis genome sequences available in public databases are from isolates obtained outside the United States. We sequenced the genomes of 106 S. suis isolates from the U.S. and analyzed them to identify their potential to function as zoonotic agents and/or reservoirs for antimicrobial resistance (AMR) dissemination. The objective of this study was to evaluate the genetic diversity of S. suis isolates obtained within the U.S., for the purpose of screening for genomic elements encoding AMR and any factors that could increase or contribute to the capacity of S. suis to transmit, colonize, and/or cause disease in humans. Forty-six sequence types (STs) were identified with ST28 observed as the most prevalent, followed by ST87. Of the 23 different serotypes identified, serotype 2 was the most prevalent, followed by serotype 8 and 3. Of the virulence genes analyzed, the highest nucleotide diversity was observed in sadP, mrp, and ofs. Tetracycline resistance was the most prevalent phenotypic antimicrobial resistance observed followed by macrolide-lincosamide-streptogramin B (MLSB) resistance. Numerous AMR elements were identified, many located within MGE sequences, with the highest frequency observed for ble, tetO and ermB. No genes encoding factors known to contribute to the transmission, colonization, and/or causation of disease in humans were identified in any of the S. suis genomes in this study. This includes the 89 K pathogenicity island carried by the virulent S. suis isolates responsible for human infections. Collectively, the data reported here provide a comprehensive evaluation of the genetic diversity among U.S. S. suis isolates. This study also serves as a baseline for determining any potential risks associated with occupational exposure to these bacteria, while also providing data needed to address public health concerns.
Collapse
Affiliation(s)
- Tracy L. Nicholson
- National Animal Disease Center, Agricultural Research Service (USDA), Ames, IA, United States
| | | |
Collapse
|
22
|
Thompson JE. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in veterinary medicine: Recent advances (2019-present). Vet World 2022; 15:2623-2657. [PMID: 36590115 PMCID: PMC9798047 DOI: 10.14202/vetworld.2022.2623-2657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022] Open
Abstract
Matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry (MS) has become a valuable laboratory tool for rapid diagnostics, research, and exploration in veterinary medicine. While instrument acquisition costs are high for the technology, cost per sample is very low, the method requires minimal sample preparation, and analysis is easily conducted by end-users requiring minimal training. Matrix-assisted laser desorption ionization-time-of-flight MS has found widespread application for the rapid identification of microorganisms, diagnosis of dermatophytes and parasites, protein/lipid profiling, molecular diagnostics, and the technique demonstrates significant promise for 2D chemical mapping of tissue sections collected postmortem. In this review, an overview of the MALDI-TOF technique will be reported and manuscripts outlining current uses of the technology for veterinary science since 2019 will be summarized. The article concludes by discussing gaps in knowledge and areas of future growth.
Collapse
Affiliation(s)
- Jonathan E. Thompson
- School of Veterinary Medicine, Texas Tech University, Amarillo, Texas 79106, United States,Corresponding author: Jonathan E. Thompson, e-mail:
| |
Collapse
|
23
|
Meng Y, Wang Q, Ma Z, Li W, Niu K, Zhu T, Lin H, Lu C, Fan H. Streptococcal autolysin promotes dysfunction of swine tracheal epithelium by interacting with vimentin. PLoS Pathog 2022; 18:e1010765. [PMID: 35921364 PMCID: PMC9377611 DOI: 10.1371/journal.ppat.1010765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/15/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2) is a major zoonotic pathogen resulting in manifestations as pneumonia and septic shock. The upper respiratory tract is typically thought to be the main colonization and entry site of SS2 in pigs, but the mechanism through which it penetrates the respiratory barrier is still unclear. In this study, a mutant with low invasive potential to swine tracheal epithelial cells (STECs) was screened from the TnYLB-1 transposon insertion mutant library of SS2, and the interrupted gene was identified as autolysin (atl). Compared to wild-type (WT) SS2, Δatl mutant exhibited lower ability to penetrate the tracheal epithelial barrier in a mouse model. Purified Atl also enhanced SS2 translocation across STEC monolayers in Transwell inserts. Furthermore, Atl redistributed the tight junctions (TJs) in STECs through myosin light chain kinase (MLCK) signaling, which led to increased barrier permeability. Using mass spectrometry, co-immunoprecipitation (co-IP), pull-down, bacterial two-hybrid and saturation binding experiments, we showed that Atl binds directly to vimentin. CRISPR/Cas9-targeted deletion of vimentin in STECs (VIM KO STECs) abrogated the capacity of SS2 to translocate across the monolayers, SS2-induced phosphorylation of myosin II regulatory light chain (MLC) and MLCK transcription, indicating that vimentin is indispensable for MLCK activation. Consistently, vimentin null mice were protected from SS2 infection and exhibited reduced tracheal and lung injury. Thus, MLCK-mediated epithelial barrier opening caused by the Atl-vimentin interaction is found to be likely the key mechanism by which SS2 penetrates the tracheal epithelium. Streptococcus suis serotype 2 (SS2), an emerging zoonotic agent, can breach the respiratory barrier and cause invasive disease in pigs. Here, we identified the novel role of autolysin Atl in penetration of the respiratory barrier by SS2 and its systemic dissemination and identified its binding partner, vimentin, a type III intermediate filament protein. Atl contributed to the MLCK-triggered redistribution of tight junctions to open the tracheal epithelial barrier. Knockout of vimentin abolished the ability of SS2 to penetrate the monolayer barrier and the activation of MLCK. Furthermore, vimentin null mice were protected from infection by intranasally administered SS2. This study is the first to demonstrate that the interaction between the GBS Bsp-like domain of Atl and vimentin promotes MLCK-mediated dysfunction of the epithelial barrier, which may provide theoretical information for prophylactic and/or therapeutic treatments against diseases caused by similar respiratory pathogens.
Collapse
Affiliation(s)
- Yu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qing Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Weiyi Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kai Niu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ting Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Chengping Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- * E-mail:
| |
Collapse
|
24
|
Abstract
Streptococcus suis is an important zoonotic pathogen. Due to the indiscriminate use of macrolides, S. suis has developed a high level of drug resistance, which has led to a serious threat to human and animal health. However, it takes a long time to develop new antibacterial drugs. Therefore, we consider the perspective of bacterial physiological metabolism to ensure that the development of bacterial resistance to existing drugs is alleviated and bacterial susceptibility to drugs is restored. In the present study, an untargeted metabolomics analysis showed that the serine catabolic pathway was inhibited in drug-resistant S. suis. The addition of l-serine restored the fungicidal effect of macrolides on S. suisin vivo and in vitro by enhancing the serine metabolic pathway. Further studies showed that l-serine, stimulated by its serine catabolic pathway, inhibited intracellular H2S production, reduced Fe-S cluster production, and restored the normal occurrence of the Fenton reaction in cells. It also attenuated the production of glutathione, an important marker of the intracellular oxidation-reduction reaction. All these phenomena eventually contribute to an increase in the level of reactive oxygen species, which leads to intracellular DNA damage and bacterial death. Our study provides a potential new approach for the treatment of diseases caused by drug-resistant S. suis. IMPORTANCE The emergence of antimicrobial resistance is a global challenge. However, new drug development efforts consume considerable resources and time, and alleviating the pressure on existing drugs is the focus of our work. We investigated the mechanism of action of l-serine supplementation in restoring the use of macrolides in S. suis, based on the role of the serine catabolic pathway on reactive oxygen species levels and oxidative stress in S. suis. This pathway provides a theoretical basis for the rational use of macrolides in clinical practice and also identifies a possible target for restoring drug sensitivity in S. suis.
Collapse
|
25
|
Guo G, Wang Z, Li Q, Yu Y, Li Y, Tan Z, Zhang W. Genomic characterization of Streptococcus parasuis, a close relative of Streptococcus suis and also a potential opportunistic zoonotic pathogen. BMC Genomics 2022; 23:469. [PMID: 35752768 PMCID: PMC9233858 DOI: 10.1186/s12864-022-08710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
Streptococcus parasuis (S. parasuis) is a close relative of Streptococcus suis (S. suis), composed of former members of S. suis serotypes 20, 22 and 26. S. parasuis could infect pigs and cows, and recently, human infection cases have been reported, making S. parasuis a potential opportunistic zoonotic pathogen. In this study, we analysed the genomic characteristics of S. parasuis, using pan-genome analysis, and compare some phenotypic determinants such as capsular polysaccharide, integrative conjugative elements, CRISPR-Cas system and pili, and predicted the potential virulence genes by associated analysis of the clinical condition of isolated source animals and genotypes. Furthermore, to discuss the relationship with S. suis, we compared these characteristics of S. parasuis with those of S. suis. We found that the characteristics of S. parasuis are similar to those of S. suis, both of them have "open" pan-genome, their antimicrobial resistance gene profiles are similar and a srtF pilus cluster of S. suis was identified in S. parasuis genome. But S. parasuis still have its unique characteristics, two novel pilus clusters are and three different type CRISPR-Cas system were found. Therefore, this study provides novel insights into the interspecific and intraspecific genetic characteristics of S. parasuis, which can be useful for further study of this opportunistic pathogen, such as serotyping, diagnostics, vaccine development, and study of the pathogenesis mechanism.
Collapse
Affiliation(s)
- Genglin Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.,The Sanya Institute of Nanjing Agricultural University, Sanya, China
| | - Zhuohao Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.,The Sanya Institute of Nanjing Agricultural University, Sanya, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yanfei Yu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yubao Li
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Zhongming Tan
- NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China. .,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China. .,OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China. .,The Sanya Institute of Nanjing Agricultural University, Sanya, China.
| |
Collapse
|
26
|
Lacouture S, Olivera YR, Mariela S, Gottschalk M. Distribution and characterization of Streptococcus suis serotypes isolated from January 2015 to June 2020 from diseased pigs in Québec, Canada. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2022; 86:78-82. [PMID: 34975227 PMCID: PMC8697323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/17/2021] [Indexed: 06/14/2023]
Abstract
Streptococcus suis is one of the most important swine bacterial pathogens causing economic losses. This report presents the serotype distribution of S. suis recovered from diseased pigs in Québec from January 2015 to June 2020. Serotypes 1/2 and 2 predominated, followed by serotypes 7, 3, 5, 4, 9, 1, and 14. Compared to previously reported data, very few changes could be observed concerning the serotype distribution, indicating a relative stability. Half of the untypable isolates did not belong to the species S. suis sensu stricto, as determined by recN polymerase chain reaction. Less than 10% of "real S. suis" isolates were untypable. The genetic diversity of S. suis serotypes 1, 2, and 14, as analyzed by multilocus sequence typing, was mainly represented by sequence type (ST)1, ST28, ST25, and ST94. All ST1 isolates (considered highly virulent) belonged to either serotype 1 or 14.
Collapse
Affiliation(s)
- Sonia Lacouture
- Research Group on Infectious Diseases in Production Animals and Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, Quebec J2S 2M2
| | - Yaindrys Rodriguez Olivera
- Research Group on Infectious Diseases in Production Animals and Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, Quebec J2S 2M2
| | - Segura Mariela
- Research Group on Infectious Diseases in Production Animals and Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, Quebec J2S 2M2
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals and Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, Quebec J2S 2M2
| |
Collapse
|
27
|
Mayer L, Bornemann N, Lehnert S, de Greeff A, Strutzberg-Minder K, Rieckmann K, Baums CG. Survival patterns of Streptococcus suis serotypes 1 and 14 in porcine blood indicate cross-reactive bactericidal antibodies in naturally infected pigs. Vet Microbiol 2021; 260:109183. [PMID: 34304027 DOI: 10.1016/j.vetmic.2021.109183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Streptococcus suis serotype (cps) 1 and cps14 have been detected in association with severe diseases such as meningitis and polyarthritis in pigs. Though these two cps are very similar, only cps14 is an important zoonotic agent in Asia and only cps1 is described to be associated with diseases in suckling piglets rather than weaning piglets. The main objective of this study was to assess restriction of survival of cps14 and cps1 in porcine blood by IgG and IgM putatively cross-reacting with these two cps. Furthermore, we differentiate recent European cps1/14 strains by agglutination, cpsK sequencing, MLST and virulence-associated gene profiling. Our data confirmed cps1 of clonal complex 1 as an important pathotype causing polyarthritis in suckling piglets in Europe. The experimental design included also bactericidal assays with blood samples drawn at different ages of piglets naturally infected with different S. suis cps types including cps1 but not cps14. We report survival of a cps1 and a cps14 strain (both of sequence type 1) in blood of suckling piglets with high levels of maternal IgG binding to the bacterial surface. In contrast, killing of cps1 and cps14 was recorded in older piglets due to an increase of IgM as demonstrated by specific cleavage of IgM. Heterologous absorption of antibodies with cps1 or cps14 is sufficient to significantly increase the survival of the other cps. In conclusion, IgM elicited by natural S. suis infection is crucial for killing of S. suis cps1 and cps14 in older weaning piglets and has most likely the potential to cross-react between cps1 and cps14.
Collapse
Affiliation(s)
- L Mayer
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - N Bornemann
- IVD Innovative Veterinary Diagnostics (IVD GmbH), Albert-Einstein-Str. 5, 30926, Seelze, Germany
| | - S Lehnert
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - A de Greeff
- Wageningen Bioveterinary Research, part of Wageningen University and Research, Lelystad, the Netherlands
| | - K Strutzberg-Minder
- IVD Innovative Veterinary Diagnostics (IVD GmbH), Albert-Einstein-Str. 5, 30926, Seelze, Germany
| | - K Rieckmann
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - C G Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany.
| |
Collapse
|
28
|
Leo S, Cherkaoui A, Renzi G, Schrenzel J. Mini Review: Clinical Routine Microbiology in the Era of Automation and Digital Health. Front Cell Infect Microbiol 2020; 10:582028. [PMID: 33330127 PMCID: PMC7734209 DOI: 10.3389/fcimb.2020.582028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Clinical microbiology laboratories are the first line to combat and handle infectious diseases and antibiotic resistance, including newly emerging ones. Although most clinical laboratories still rely on conventional methods, a cascade of technological changes, driven by digital imaging and high-throughput sequencing, will revolutionize the management of clinical diagnostics for direct detection of bacteria and swift antimicrobial susceptibility testing. Importantly, such technological advancements occur in the golden age of machine learning where computers are no longer acting passively in data mining, but once trained, can also help physicians in making decisions for diagnostics and optimal treatment administration. The further potential of physically integrating new technologies in an automation chain, combined to machine-learning-based software for data analyses, is seducing and would indeed lead to a faster management in infectious diseases. However, if, from one side, technological advancement would achieve a better performance than conventional methods, on the other side, this evolution challenges clinicians in terms of data interpretation and impacts the entire hospital personnel organization and management. In this mini review, we discuss such technological achievements offering practical examples of their operability but also their limitations and potential issues that their implementation could rise in clinical microbiology laboratories.
Collapse
Affiliation(s)
- Stefano Leo
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Abdessalam Cherkaoui
- Bacteriology Laboratory, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland
| | - Gesuele Renzi
- Bacteriology Laboratory, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland
| | - Jacques Schrenzel
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Bacteriology Laboratory, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|