1
|
Huynh D, Haferburg G, Bunk B, Kaschabek SR, Sand W, Schlömann M. Alicyclobacillus sp. SO9, a novel halophilic acidophilic iron-oxidizing bacterium isolated from a tailings-contaminated beach, and its effect on copper extraction from chalcopyrite in the presence of high chloride concentration. Res Microbiol 2024; 175:104150. [PMID: 37926348 DOI: 10.1016/j.resmic.2023.104150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Many acidophilic iron-oxidizing bacteria used in the mining industry for the bioleaching of sulfidic minerals are intolerant to high chloride concentrations, resulting in problems where chloride occurs in the deposit at high concentrations or only seawater is available. In search for strains tolerating such conditions a tetrathionate- and iron-oxidizing bacterium was isolated from a tailings-contaminated beach sample at Portman Bay, Cartagena-La Union mining district, Spain, in the presence of 20 g l-1 (0.34 M) sodium chloride. The isolate was able to form spores, did not grow in the absence of NaCl, and oxidized ferrous iron in the presence of up to 1.5 M (∼87 g l-1) NaCl. Genome sequencing based on a combination of Illumina and PacBio reads revealed two contigs, a circular bacterial chromosome of 5.2 Mbp and a plasmid of 90 kbp, respectively. The chromosome comprised seven different 16S rRNA genes. Submission of the chromosome to the Type (Strain) Genome Server (TYGS) without preselection of similar sequences revealed exclusively type strains of the genus Alicyclobacillus. In the TYGS analyses the respective most similar species were dependent on whether the final tree was derived from just 16S rRNA, from the genomes, or from the proteomes. Thus, TYGS analysis clearly showed that isolate SO9 represents a novel species of the genus Alicyclobacillus. In the presence of artificial seawater with almost 0.6 M chloride, the addition of Alicyclobacillus sp. SO9 improved copper dissolution from chalcopyrite (CuFeS2) compared to abiotic leaching without bacteria. The new isolate SO9, therefore, has potential for bioleaching at elevated chloride concentrations.
Collapse
Affiliation(s)
- Dieu Huynh
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
| | - Götz Haferburg
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH Dept. Bioinformatics, IT and Databases, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Stefan R Kaschabek
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
| | - Wolfgang Sand
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
| | - Michael Schlömann
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| |
Collapse
|
2
|
Bobadilla-Fazzini RA, Poblete-Castro I. Establishing a green biodesulfurization process for iron ore concentrates in stirred tank and leaching column bioreactors using Acidithiobacillus thiooxidans. Front Bioeng Biotechnol 2023; 11:1324417. [PMID: 38152287 PMCID: PMC10751661 DOI: 10.3389/fbioe.2023.1324417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023] Open
Abstract
The presence of sulfur impurities in complex iron ores represents a significant challenge for the iron mining and steel-making industries as their removal often necessitates the use of hazardous chemicals and energy-intensive processes. Here, we examined the microbial and mineralogical composition of both primary and secondary iron concentrates, identifying the presence of Sulfobacillus spp. and Leptospirillum spp., while sulfur-oxidizing bacteria were absent. We also observed that these concentrates displayed up to 85% exposed pyrrhotite. These observations led us to explore the capacity of Acidithiobacillus thiooxidans to remove pyrrhotite-sulfur impurities from iron concentrates. Employing stirred tank bioreactors operating at 30°C and inoculated with 5·106 (At. thiooxidans cells mL-1), we achieved 45.6% sulfur removal over 16 days. Then, we evaluated packed leaching columns operated at 30°C, where the At. thiooxidans enriched system reached 43.5% desulfurization over 60 days. Remarkably, sulfur removal increased to 80% within 21 days under potassium limitation. We then compared the At. thiooxidans-mediated desulfurization process, with and without air supply, under potassium limitation, varying the initial biomass concentration in 1-m columns. Aerated systems facilitated approximately 70% sulfur removal across the entire column with minimal iron loss. In contrast, non-aerated leaching columns achieved desulfurization levels of only 6% and 26% in the lower and middle sections of the column, respectively. Collectively, we have developed an efficient, scalable biological sulfur-removal technology for processing complex iron ores, aligning with the burgeoning demand for sustainable practices in the mining industry.
Collapse
Affiliation(s)
| | - Ignacio Poblete-Castro
- Biosystems Engineering Laboratory, Department of Chemical and Bioprocess Engineering, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
3
|
Li M, Wen J. Study on the intracellular adaptative mechanism of Acidithiobacillus caldus MTH-04 to NaCl stress. Microb Cell Fact 2023; 22:218. [PMID: 37880737 PMCID: PMC10599003 DOI: 10.1186/s12934-023-02232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
To understand the adaptive mechanism of bioleaching microorganism Acidithiobacillus caldus MTH-04, its physiology and metabolic changes at the transcriptional level were systemically studied. The results of growth curves, SO42- content, pH and flow cytometry analyses indicated that the higher the NaCl concentration, the more the strain was inhibited. The transcriptome response of A. caldus to elevated NaCl concentrations included changes in carbon flux, elevated glutathione synthesis, alterations in cell wall and membrane composition, the down-regulation in genes involved in flagellar synthesis and rotation, the reduced energy generation through sulfur oxidation, and the up-regulation in genes involved in DNA and protein repair. Based on the transcriptome results, the effects of proline and glutathione on NaCl adaptation in A. caldus were analyzed separately. We found that either the exogenous addition of proline and glutathione or the intracellular overexpression of the enzymes responsible for the synthesis of these two substances contributed to the enhancement of the adaptive capacity of A. caldus under NaCl stress. The findings offer insight into the design of chloride-based techniques for the bioprocessing of minerals.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Systems Bioengineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, China
- Frontier Science Center of Ministry of Education, Tianjin University, Tianjin, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, China.
- Frontier Science Center of Ministry of Education, Tianjin University, Tianjin, China.
| |
Collapse
|
4
|
Harirchi S, Sar T, Ramezani M, Aliyu H, Etemadifar Z, Nojoumi SA, Yazdian F, Awasthi MK, Taherzadeh MJ. Bacillales: From Taxonomy to Biotechnological and Industrial Perspectives. Microorganisms 2022; 10:2355. [PMID: 36557608 PMCID: PMC9781867 DOI: 10.3390/microorganisms10122355] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
For a long time, the genus Bacillus has been known and considered among the most applicable genera in several fields. Recent taxonomical developments resulted in the identification of more species in Bacillus-related genera, particularly in the order Bacillales (earlier heterotypic synonym: Caryophanales), with potential application for biotechnological and industrial purposes such as biofuels, bioactive agents, biopolymers, and enzymes. Therefore, a thorough understanding of the taxonomy, growth requirements and physiology, genomics, and metabolic pathways in the highly diverse bacterial order, Bacillales, will facilitate a more robust designing and sustainable production of strain lines relevant to a circular economy. This paper is focused principally on less-known genera and their potential in the order Bacillales for promising applications in the industry and addresses the taxonomical complexities of this order. Moreover, it emphasizes the biotechnological usage of some engineered strains of the order Bacillales. The elucidation of novel taxa, their metabolic pathways, and growth conditions would make it possible to drive industrial processes toward an upgraded functionality based on the microbial nature.
Collapse
Affiliation(s)
- Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Mohaddaseh Ramezani
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Habibu Aliyu
- Institute of Process Engineering in Life Science II: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Zahra Etemadifar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran
| | - Seyed Ali Nojoumi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Xianyang 712100, China
| | | |
Collapse
|
5
|
Huynh D, Kaschabek SR, Schlömann M. Effect of inoculum history, growth substrates and yeast extract addition on inhibition of Sulfobacillus thermosulfidooxidans by NaCl. Res Microbiol 2020; 171:252-259. [PMID: 32916217 DOI: 10.1016/j.resmic.2020.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
This study reports on the effect of inoculum history, growth substrates, and yeast extract on sodium chloride tolerance of Sulfobacillus thermosulfidooxidans DSM 9293T. The concentrations of NaCl for complete inhibition of Fe2+ oxidation by cells initially grown with ferrous iron sulfate, or tetrathionate, or pyrite as energy sources were 525 mM, 725 mM, and 800 mM, respectively. Noticeably, regardless of NaCl concentrations, oxygen consumption rates of S. thermosulfidooxidans with 20 mM tetrathionate were higher than with 50 mM FeSO4. NaCl concentrations of higher than 400 mM strongly inhibited the iron respiration of S. thermosulfidooxidans. In contrast, the presence of NaCl was shown to stimulate tetrathionate oxidation. This trend was especially pronounced in NaCl-adapted cells where respiration rates at 200 mM NaCl were threefold of those in the absence of NaCl. In NaCl-adapted cultures greater respiration rates for tetrathionate were observed than in non-NaCl-adapted cultures, especially at concentrations ≥ 200 mM NaCl. At concentrations of ≤ 200 mM NaCl, cell growth and iron oxidation were enhanced with the addition of increasing concentrations of yeast extract. Thus, cell numbers in cultures with 0.05% yeast extract were ∼5 times higher than without yeast extract addition. At NaCl concentration as high as 400 mM, however, iron oxidation rates improved compared to control assays without yeast extract, but there was no clear dependence on yeast extract concentrations. The initial growth of bacteria with and without yeast extract in the presence of different NaCl concentrations was shown to impact leaching of copper from chalcopyrite. Copper dissolution was enhanced in the presence of 200 mM NaCl and absence of yeast extract, while the addition of 0.02% yeast extract was shown to promote copper solubilization in the presence of 500 mM NaCl.
Collapse
Affiliation(s)
- Dieu Huynh
- Environmental Microbiology, Institute of Biosciences, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany.
| | - Stefan R Kaschabek
- Environmental Microbiology, Institute of Biosciences, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany.
| | - Michael Schlömann
- Environmental Microbiology, Institute of Biosciences, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany.
| |
Collapse
|
6
|
Huynh D, Norambuena J, Boldt C, Kaschabek SR, Levicán G, Schlömann M. Effect of Sodium Chloride on Pyrite Bioleaching and Initial Attachment by Sulfobacillus thermosulfidooxidans. Front Microbiol 2020; 11:2102. [PMID: 33013767 PMCID: PMC7516052 DOI: 10.3389/fmicb.2020.02102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/10/2020] [Indexed: 12/02/2022] Open
Abstract
Biomining applies microorganisms to extract valuable metals from usually sulfidic ores. However, acidophilic iron (Fe)-oxidizing bacteria tend to be sensitive to chloride ions which may be present in biomining operations. This study investigates the bioleaching of pyrite (FeS2), as well as the attachment to FeS2 by Sulfobacillus thermosulfidooxidans DSM 9293T in the presence of elevated sodium chloride (NaCl) concentrations. The bacteria were still able to oxidize iron in the presence of up to 0.6M NaCl (35 g/L), and the addition of NaCl in concentrations up to 0.2M (~12 g/L) did not inhibit iron oxidation and growth of S. thermosulfidooxidans in leaching cultures within the first 7 days. However, after approximately 7 days of incubation, ferrous iron (Fe2+) concentrations were gradually increased in leaching assays with NaCl, indicating that iron oxidation activity over time was reduced in those assays. Although the inhibition by 0.1M NaCl (~6 g/L) of bacterial growth and iron oxidation activity was not evident at the beginning of the experiment, over extended leaching duration NaCl was likely to have an inhibitory effect. Thus, after 36 days of the experiment, bioleaching of FeS2 with 0.1M NaCl was reduced significantly in comparison to control assays without NaCl. Pyrite dissolution decreased with the increase of NaCl. Nevertheless, pyrite bioleaching by S. thermosulfidooxidans was still possible at NaCl concentrations as high as 0.4M (~23 g/L NaCl). Besides, cell attachment in the presence of different concentrations of NaCl was investigated. Cells of S. thermosulfidooxidans attached heterogeneously on pyrite surfaces regardless of NaCl concentration. Noticeably, bacteria were able to adhere to pyrite surfaces in the presence of NaCl as high as 0.4M. Although NaCl addition inhibited iron oxidation activity and bioleaching of FeS2, the presence of 0.2M seemed to enhance bacterial attachment of S. thermosulfidooxidans on pyrite surfaces in comparison to attachment without NaCl.
Collapse
Affiliation(s)
- Dieu Huynh
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Javiera Norambuena
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Christin Boldt
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Stefan R. Kaschabek
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Gloria Levicán
- Biology Department, Universidad de Santiago de Chile, Santiago, Chile
| | - Michael Schlömann
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| |
Collapse
|
7
|
Rivera-Araya J, Pollender A, Huynh D, Schlömann M, Chávez R, Levicán G. Osmotic Imbalance, Cytoplasm Acidification and Oxidative Stress Induction Support the High Toxicity of Chloride in Acidophilic Bacteria. Front Microbiol 2019; 10:2455. [PMID: 31736901 PMCID: PMC6828654 DOI: 10.3389/fmicb.2019.02455] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022] Open
Abstract
In acidophilic microorganisms, anions like chloride have higher toxicity than their neutrophilic counterparts. In addition to the osmotic imbalance, chloride can also induce acidification of the cytoplasm. We predicted that intracellular acidification produces an increase in respiratory rate and generation of reactive oxygen species, and so oxidative stress can also be induced. In this study, the multifactorial effect as inducing osmotic imbalance, cytoplasm acidification and oxidative stress in the iron-oxidizing bacterium Leptospirillum ferriphilum DSM 14647 exposed to up to 150 mM NaCl was investigated. Results showed that chloride stress up-regulated genes for synthesis of potassium transporters (kdpC and kdpD), and biosynthesis of the compatible solutes (hydroxy)ectoine (ectC and ectD) and trehalose (otsB). As a consequence, the intracellular levels of both hydroxyectoine and trehalose increased significantly, suggesting a strong response to keep osmotic homeostasis. On the other hand, the intracellular pH significantly decreased from 6.7 to pH 5.5 and oxygen consumption increased significantly when the cells were exposed to NaCl stress. Furthermore, this stress condition led to a significant increase of the intracellular content of reactive oxygen species, and to a rise of the antioxidative cytochrome c peroxidase (CcP) and thioredoxin (Trx) activities. In agreement, ccp and trx genes were up-regulated under this condition, suggesting that this bacterium displayed a transcriptionally regulated response against oxidative stress induced by chloride. Altogether, these data reveal that chloride has a dramatic multifaceted effect on acidophile physiology that involves osmotic, acidic and oxidative stresses. Exploration of the adaptive mechanisms to anion stress in iron-oxidizing acidophilic microorganisms may result in new strategies that facilitate the bioleaching of ores for recovery of precious metals in presence of chloride.
Collapse
Affiliation(s)
- Javier Rivera-Araya
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile.,Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Andre Pollender
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Dieu Huynh
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Michael Schlömann
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Renato Chávez
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile
| | - Gloria Levicán
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile
| |
Collapse
|
8
|
Bulaev AG, Chernyshov AN. Effect of Light Metal Ions and Chloride on Activity of Moderately Thermophilic Acidophilic Iron-Oxidizing Microorganisms. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718050053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Aite M, Chevallier M, Frioux C, Trottier C, Got J, Cortés MP, Mendoza SN, Carrier G, Dameron O, Guillaudeux N, Latorre M, Loira N, Markov GV, Maass A, Siegel A. Traceability, reproducibility and wiki-exploration for "à-la-carte" reconstructions of genome-scale metabolic models. PLoS Comput Biol 2018; 14:e1006146. [PMID: 29791443 PMCID: PMC5988327 DOI: 10.1371/journal.pcbi.1006146] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 06/05/2018] [Accepted: 04/17/2018] [Indexed: 11/27/2022] Open
Abstract
Genome-scale metabolic models have become the tool of choice for the global analysis of microorganism metabolism, and their reconstruction has attained high standards of quality and reliability. Improvements in this area have been accompanied by the development of some major platforms and databases, and an explosion of individual bioinformatics methods. Consequently, many recent models result from "à la carte" pipelines, combining the use of platforms, individual tools and biological expertise to enhance the quality of the reconstruction. Although very useful, introducing heterogeneous tools, that hardly interact with each other, causes loss of traceability and reproducibility in the reconstruction process. This represents a real obstacle, especially when considering less studied species whose metabolic reconstruction can greatly benefit from the comparison to good quality models of related organisms. This work proposes an adaptable workspace, AuReMe, for sustainable reconstructions or improvements of genome-scale metabolic models involving personalized pipelines. At each step, relevant information related to the modifications brought to the model by a method is stored. This ensures that the process is reproducible and documented regardless of the combination of tools used. Additionally, the workspace establishes a way to browse metabolic models and their metadata through the automatic generation of ad-hoc local wikis dedicated to monitoring and facilitating the process of reconstruction. AuReMe supports exploration and semantic query based on RDF databases. We illustrate how this workspace allowed handling, in an integrated way, the metabolic reconstructions of non-model organisms such as an extremophile bacterium or eukaryote algae. Among relevant applications, the latter reconstruction led to putative evolutionary insights of a metabolic pathway.
Collapse
Affiliation(s)
| | - Marie Chevallier
- IRISA, Univ Rennes, Inria, CNRS, Rennes, France
- ECOBIO, Univ Rennes, CNRS, Rennes, France
| | | | - Camille Trottier
- IRISA, Univ Rennes, Inria, CNRS, Rennes, France
- UMR 6004 ComBi, Université de Nantes, CNRS, Nantes, France
| | - Jeanne Got
- IRISA, Univ Rennes, Inria, CNRS, Rennes, France
| | - María Paz Cortés
- Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Centro para la Regulación del Genoma (Fondap 15090007), Universidad de Chile, Santiago, Chile
| | - Sebastián N. Mendoza
- Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
- Centro para la Regulación del Genoma (Fondap 15090007), Universidad de Chile, Santiago, Chile
| | - Grégory Carrier
- Laboratoire de Physiologie et de Biotechnologie des Algues, IFREMER, Nantes, France
| | | | | | - Mauricio Latorre
- Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
- Centro para la Regulación del Genoma (Fondap 15090007), Universidad de Chile, Santiago, Chile
- Instituto de ciencias de la ingeniería, Universidad de O'Higgins, Rancagua, Chile
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Nicolás Loira
- Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
- Centro para la Regulación del Genoma (Fondap 15090007), Universidad de Chile, Santiago, Chile
| | - Gabriel V. Markov
- UMR 8227, Integrative Biology of Marine Models, Station biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Alejandro Maass
- Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
- Centro para la Regulación del Genoma (Fondap 15090007), Universidad de Chile, Santiago, Chile
| | - Anne Siegel
- IRISA, Univ Rennes, Inria, CNRS, Rennes, France
| |
Collapse
|
10
|
Genome-Scale Modeling of Thermophilic Microorganisms. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016. [PMID: 27913830 DOI: 10.1007/10_2016_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Thermophilic microorganisms are of increasing interest for many industries as their enzymes and metabolisms are highly efficient at elevated temperatures. However, their metabolic processes are often largely different from their mesophilic counterparts. These differences can lead to metabolic engineering strategies that are doomed to fail. Genome-scale metabolic modeling is an effective and highly utilized way to investigate cellular phenotypes and to test metabolic engineering strategies. In this review we chronicle a number of thermophilic organisms that have recently been studied with genome-scale models. The microorganisms spread across archaea and bacteria domains, and their study gives insights that can be applied in a broader context than just the species they describe. We end with a perspective on the future development and applications of genome-scale models of thermophilic organisms.
Collapse
|
11
|
Latorre M, Cortés MP, Travisany D, Di Genova A, Budinich M, Reyes-Jara A, Hödar C, González M, Parada P, Bobadilla-Fazzini RA, Cambiazo V, Maass A. The bioleaching potential of a bacterial consortium. BIORESOURCE TECHNOLOGY 2016; 218:659-666. [PMID: 27416516 DOI: 10.1016/j.biortech.2016.07.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/02/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
This work presents the molecular foundation of a consortium of five efficient bacteria strains isolated from copper mines currently used in state of the art industrial-scale biotechnology. The strains Acidithiobacillus thiooxidans Licanantay, Acidiphilium multivorum Yenapatur, Leptospirillum ferriphilum Pañiwe, Acidithiobacillus ferrooxidans Wenelen and Sulfobacillus thermosulfidooxidans Cutipay were selected for genome sequencing based on metal tolerance, oxidation activity and bioleaching of copper efficiency. An integrated model of metabolic pathways representing the bioleaching capability of this consortium was generated. Results revealed that greater efficiency in copper recovery may be explained by the higher functional potential of L. ferriphilum Pañiwe and At. thiooxidans Licanantay to oxidize iron and reduced inorganic sulfur compounds. The consortium had a greater capacity to resist copper, arsenic and chloride ion compared to previously described biomining strains. Specialization and particular components in these bacteria provided the consortium a greater ability to bioleach copper sulfide ores.
Collapse
Affiliation(s)
- Mauricio Latorre
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - María Paz Cortés
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Dante Travisany
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Alex Di Genova
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Marko Budinich
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Angélica Reyes-Jara
- Laboratorio de Microbiología y Probióticos, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Christian Hödar
- Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Mauricio González
- Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Pilar Parada
- BioSigma S.A., Loteo Los Libertadores, Lote 106, Colina, Chile
| | | | - Verónica Cambiazo
- Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Alejandro Maass
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Department of Mathematical Engineering, Universidad de Chile, Beauchef 851, 5th Floor, Santiago, Chile.
| |
Collapse
|