1
|
Adomako-Bonsu AG, Jacobsen J, Maser E. Metabolic activation of 2,4,6-trinitrotoluene; a case for ROS-induced cell damage. Redox Biol 2024; 72:103082. [PMID: 38527399 PMCID: PMC10979124 DOI: 10.1016/j.redox.2024.103082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/27/2024] Open
Abstract
The explosive compound 2,4,6-trinitrotoluene (TNT) is well known as a major component of munitions. In addition to its potential carcinogenicity and mutagenicity in humans, recent reports have highlighted TNT toxicities in diverse organisms due to its occurrence in the environment. These toxic effects have been linked to the intracellular metabolism of TNT, which is generally characterised by redox cycling and the generation of noxious reactive molecules. The reactive intermediates formed, such as nitroso and hydroxylamine compounds, also interact with oxygen molecules and cellular components to cause macromolecular damage and oxidative stress. The current review aims to highlight the crucial role of TNT metabolism in mediating TNT toxicity, via increased generation of reactive oxygen species. Cellular proliferation of reactive species results in depletion of cellular antioxidant enzymes, DNA and protein adduct formation, and oxidative stress. While TNT toxicity is well known, its ability to induce oxidative stress, resulting from its reductive activation, suggests that some of its toxic effects may be caused by its reactive metabolites. Hence, further research on TNT metabolism is imperative to elucidate TNT-induced toxicities.
Collapse
Affiliation(s)
- Amma Gyapomah Adomako-Bonsu
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany
| | - Jana Jacobsen
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany.
| |
Collapse
|
2
|
Yakovleva G, Kurdy W, Gorbunova A, Khilyas I, Lochnit G, Ilinskaya O. Bacillus pumilus proteome changes in response to 2,4,6-trinitrotoluene-induced stress. Biodegradation 2022; 33:593-607. [PMID: 35980495 DOI: 10.1007/s10532-022-09997-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022]
Abstract
2,4,6-Trinitrotoluene (TNT) is the most widely used nitroaromatic compound and is highly resistant to degradation. Most aerobic microorganisms reduce TNT to amino derivatives via formation of nitroso- and hydroxylamine intermediates. Although pathways of TNT degradation are well studied, proteomic analysis of TNT-degrading bacteria was done only for some individual Gram-negative strains. Here, we isolated a Gram-positive strain from TNT-contaminated soil, identified it as Bacillus pumilus using 16S rRNA sequencing, analyzed its growth, the level of TNT transformation, ROS production, and revealed for the first time the bacillary proteome changes at toxic concentration of TNT. The transformation of TNT at all studied concentrations (20-200 mg/L) followed the path of nitro groups reduction with the formation of 4-amino-2,6-dinitrotoluene. Hydrogen peroxide production was detected during TNT transformation. Comparative proteomic analysis of B. pumilus showed that TNT (200 mg/L) inhibited expression of 46 and induced expression of 24 proteins. Among TNT upregulated proteins are those which are responsible for the reductive pathway of xenobiotic transformation, removal of oxidative stress, DNA repair, degradation of RNA and cellular proteins. The production of ribosomal proteins, some important metabolic proteins and proteins involved in cell division are downregulated by this xenobiotic.
Collapse
Affiliation(s)
- Galina Yakovleva
- Microbiology Department, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlevskaya St., 18, Tatarstan, Kazan, Russia, 420008
| | - William Kurdy
- Microbiology Department, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlevskaya St., 18, Tatarstan, Kazan, Russia, 420008
| | - Anna Gorbunova
- Microbiology Department, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlevskaya St., 18, Tatarstan, Kazan, Russia, 420008
| | - Irina Khilyas
- Microbiology Department, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlevskaya St., 18, Tatarstan, Kazan, Russia, 420008
| | - Guenter Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus Liebig University Giessen, Friedrichstrasse 24, Giessen, Germany, 35392
| | - Olga Ilinskaya
- Microbiology Department, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlevskaya St., 18, Tatarstan, Kazan, Russia, 420008.
| |
Collapse
|
3
|
Zhu C, Huang H, Chen Y. Recent advances in biological removal of nitroaromatics from wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119570. [PMID: 35667518 DOI: 10.1016/j.envpol.2022.119570] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Various nitroaromatic compounds (NACs) released into the environment cause potential threats to humans and animals. Biological treatment is valued for cost-effectiveness, environmental friendliness, and availability when treating wastewater containing NACs. Considering the significance and wide use of NACs, this review focuses on recent advances in biological treatment systems for NACs removal from wastewater. Meanwhile, factors affecting biodegradation and methods to enhance removal efficiency of NACs are discussed. The selection of biological treatment system needs to consider NACs loading and cost, and its performance is affected by configuration and operation strategy. Generally, sequential anaerobic-aerobic biological treatment systems perform better in mineralizing NACs and removing co-pollutants. Future research on mechanism exploration of NACs biotransformation and performance optimization will facilitate the large-scale application of biological treatment systems.
Collapse
Affiliation(s)
- Cuicui Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
4
|
Ziganshina EE, Ziganshin AM. Anaerobic Digestion of Chicken Manure in the Presence of Magnetite, Granular Activated Carbon, and Biochar: Operation of Anaerobic Reactors and Microbial Community Structure. Microorganisms 2022; 10:microorganisms10071422. [PMID: 35889142 PMCID: PMC9323702 DOI: 10.3390/microorganisms10071422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023] Open
Abstract
The influence of magnetite nanoparticles, granular activated carbon (GAC), and biochar, as well as their combinations on the anaerobic digestion of chicken manure and the structure of microbial communities was studied. The addition of magnetite, GAC, and biochar increased the rate of methane production and the total methane yield. It has been observed that these additives stimulated anaerobic microorganisms to reduce the concentration of accumulated volatile organic acids. Various bacterial species within the classes Bacteroidia and Clostridia were found at higher levels in the anaerobic reactors but in different proportions depending on the experiment. Members of the genera Methanosarcina, Methanobacterium, Methanothrix, and Methanoculleus were mainly detected within the archaeal communities in the anaerobic reactors. Compared to the 16S rRNA gene-based study, the mcrA gene approach allowed a higher level of Methanosarcina in the system with GAC + magnetite to be detected. Based on our findings, the combined use of granular activated carbon and magnetite at appropriate dosages will improve biomethane production.
Collapse
|
5
|
Yang X, Lai JL, Zhang Y, Luo XG. Toxicity analysis of TNT to alfalfa's mineral nutrition and secondary metabolism. PLANT CELL REPORTS 2022; 41:1273-1284. [PMID: 35305132 DOI: 10.1007/s00299-022-02856-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Alfalfa has the ability to degrade TNT. TNT exposure caused root disruption of mineral nutrient metabolism. The exposure of TNT imbalanced basal cell energy metabolism. The mechanism of 2,4,6-trinitrotoluene (TNT) toxicity effects was analyzed in alfalfa (Medicago sativa L.) seedlings by examining the mineral nutrition and secondary metabolism of the plant roots. Exposure to 25-100 mg·L-1 TNT in a hydroponic solution for 72 h resulted in a TNT absorption rate of 26.8-63.0%. The contents of S, K, and B in root mineral nutrition metabolism increased significantly by 1.70-5.46 times, 1.38-4.01 times, and 1.40-4.03 times, respectively, after TNT exposure. Non-targeted metabolomics analysis of the roots identified 189 significantly upregulated metabolites and 420 significantly downregulated metabolites. The altered metabolites were primarily lipids and lipid-like molecules, and the most significant enrichment pathways were alanine, aspartate, and glutamate metabolism and glycerophospholipid metabolism. TNT itself was transformed in the root system into several intermediate products, including 4-hydroxylamino-2,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene, 2-hydroxylamino-4,6-dinitrotoluene, 2,4',6,6'-tetranitro-2',4-azoxytoluene, 4,4',6,6'-tetranitro-2,2'-azoxytoluene, and 2,4-dinitrotoluene. Overall, TNT exposure disturbed the mineral metabolism balance, and significantly interfered with basic plant metabolism.
Collapse
Affiliation(s)
- Xu Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jin-Long Lai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
6
|
Ziganshina EE, Bulynina SS, Ziganshin AM. Growth Characteristics of Chlorella sorokiniana in a Photobioreactor during the Utilization of Different Forms of Nitrogen at Various Temperatures. PLANTS (BASEL, SWITZERLAND) 2022; 11:1086. [PMID: 35448814 PMCID: PMC9031775 DOI: 10.3390/plants11081086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
The cultivation of microalgae requires the selection of optimal parameters. In this work, the effect of various forms of nitrogen on the growth and productivity of Chlorella sorokiniana AM-02 when cultivated at different temperatures was evaluated. Regardless of the temperature conditions, the highest specific growth rate of 1.26 day-1 was observed in modified Bold's basal medium (BBM) with NH4+ as a nitrogen source, while the highest specific growth rate in BBM with NO3- as a nitrogen source achieved only 1.07 day-1. Moreover, C. sorokiniana grew well in medium based on anaerobic digester effluent (ADE; after anaerobic digestion of chicken/cow manure) with the highest growth rate being 0.92 day-1. The accumulation of proteins in algal cells was comparable in all experiments and reached a maximum of 42% of dry weight. The biomass productivity reached 0.41-0.50 g L-1 day-1 when cultivated in BBM, whereas biomass productivity of 0.32-0.35 g L-1 day-1 was obtained in ADE-based medium. The results, based on a bacterial 16S rRNA gene sequencing approach, revealed the growth of various bacterial species in ADE-based medium in the presence of algal cells (their abundance varied depending on the temperature regimen). The results indicate that biomass from C. sorokiniana AM-02 may be sustainable for animal feed production considering the high protein yields.
Collapse
|
7
|
Assessment of Chlorella sorokiniana Growth in Anaerobic Digester Effluent. PLANTS 2021; 10:plants10030478. [PMID: 33802500 PMCID: PMC7999815 DOI: 10.3390/plants10030478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 01/23/2023]
Abstract
Microalgae are considered a potential source of valuable compounds for multiple purposes and are potential agents for bioremediation of aquatic environments contaminated with different pollutants. This work evaluates the use of agricultural waste, unsterilized and anaerobically digested, to produce biomass from a strain of Chlorella sorokiniana. Furthermore, the presence of bacteria in these wastes was investigated based on the bacterial 16S rRNA gene sequencing. The results showed a specific growth rate ranging between 0.82 and 1.45 day−1, while the final biomass yield in different digestate-containing treatments (bacterial-contaminated cultures) ranged between 0.33 and 0.50 g L−1 day−1. Besides, substantial amounts of ammonium, phosphate, and sulfate were consumed by C. sorokiniana during the experimental period. The predominant bacteria that grew in the presence of C. sorokiniana in the effluent-containing treatments belonged to the genera Chryseobacterium, Flavobacterium, Sphingomonas, Brevundimonas, Hydrogenophaga, Sphingobacterium, and Pseudomonas. Therefore, this microalga can tolerate and grow in the presence of other microorganisms. Finally, these results show that anaerobically digested agricultural waste materials are a good substitute for growth media for green microalgae; however, phosphate and sulfate levels must also be controlled in the media to maintain adequate growth of microalgae.
Collapse
|
8
|
Ziganshina EE, Belostotskiy DE, Bulynina SS, Ziganshin AM. Effect of magnetite on anaerobic digestion of distillers grains and beet pulp: Operation of reactors and microbial community dynamics. J Biosci Bioeng 2020; 131:290-298. [PMID: 33172764 DOI: 10.1016/j.jbiosc.2020.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 10/23/2022]
Abstract
It has been previously shown that magnetite (Fe3O4) nanoparticles stimulate the anaerobic digestion process in several anaerobic reactors. Here we evaluate the effect of magnetite nanoparticles on the efficiency of anaerobic digestion of distillers grains with solubles and sugar beet pulp in mesophilic batch experiments. The addition of magnetite nanopowder had a positive effect on the anaerobic digestion process. CH4 was produced faster in the presence of 50 mg of Fe3O4 per 1 g of added total solids than from treatments without addition of Fe3O4. These results demonstrate that the addition of magnetite enhances the methanogenic decomposition of organic acids. Microbial community structure and dynamics were investigated based on bacterial and archaeal 16S rRNA genes, as well as mcrA genes encoding the methyl-CoM reductase. Depending on the reactor, Bacteroides, midas_1138, Petrimonas, unclassified Rikenellaceae (class Bacteroidia), Ruminiclostridium, Proteiniclasticum, Herbinix, and Intestinibacter (class Clostridia) were the main representatives of the bacterial communities. The archaeal communities in well-performed anaerobic reactors were mainly represented by representatives of the genera Methanosarcina and Methanobacterium. Based on our findings, Fe3O4 nanoparticles, when used properly, will improve biomethane production.
Collapse
Affiliation(s)
- Elvira E Ziganshina
- Department of Microbiology, Kazan (Volga Region) Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Dmitry E Belostotskiy
- Department of Microbiology, Kazan (Volga Region) Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Svetlana S Bulynina
- Department of Microbiology, Kazan (Volga Region) Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Ayrat M Ziganshin
- Department of Microbiology, Kazan (Volga Region) Federal University, Kazan 420008, Republic of Tatarstan, Russia.
| |
Collapse
|
9
|
Mohammed WS, Ziganshina EE, Shagimardanova EI, Gogoleva NE, Ziganshin AM. Comparison of intestinal bacterial and fungal communities across various xylophagous beetle larvae (Coleoptera: Cerambycidae). Sci Rep 2018; 8:10073. [PMID: 29968731 PMCID: PMC6030058 DOI: 10.1038/s41598-018-27342-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/31/2018] [Indexed: 12/27/2022] Open
Abstract
The microbial gut communities associated with various xylophagous beetles offer great potential for different biotechnologies and elaboration of novel pest management strategies. In this research, the intestinal bacterial and fungal communities of various cerambycid larvae, including Acmaeops septentrionis, Acanthocinus aedilis, Callidium coriaceum, Trichoferus campestris and Chlorophorus herbstii, were investigated. The intestinal microbial communities of these Cerambycidae species were mostly represented by members of the bacterial phyla Proteobacteria and Actinobacteria and the fungal phylum Ascomycota. However, the bacterial and fungal communities varied by beetle species and between individual organisms. Furthermore, bacterial communities' metagenomes reconstruction indicated the genes that encode enzymes involved in the lignocellulose degradation (such as peroxidases, alpha-L-fucosidases, beta-xylosidases, beta-mannosidases, endoglucanases, beta-glucosidases and others) and nitrogen fixation (nitrogenases). Most of the predicted genes potentially related to lignocellulose degradation were enriched in the T. campestris, A. aedilis and A. septentrionis larval gut consortia, whereas predicted genes affiliated with the nitrogenase component proteins were enriched in the T. campestris, A. septentrionis and C. herbstii larval gut consortia. Several bacteria and fungi detected in the current work could be involved in the nutrition of beetle larvae.
Collapse
Affiliation(s)
- Waleed S Mohammed
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008, Russia
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt
| | - Elvira E Ziganshina
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008, Russia
| | - Elena I Shagimardanova
- Laboratory of Extreme Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420021, Russia
| | - Natalia E Gogoleva
- Laboratory of Extreme Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420021, Russia
| | - Ayrat M Ziganshin
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008, Russia.
| |
Collapse
|
10
|
Fungal, Bacterial, and Archaeal Diversity in the Digestive Tract of Several Beetle Larvae (Coleoptera). BIOMED RESEARCH INTERNATIONAL 2018; 2018:6765438. [PMID: 29850548 PMCID: PMC5926521 DOI: 10.1155/2018/6765438] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 03/01/2018] [Indexed: 11/18/2022]
Abstract
Interpretation of how partnerships between fungi, bacteria, archaea, and insects are maintained through the life of the hosts is a big challenge within the framework of symbiosis research. The main goal of this work was to characterize the gut microbiota in larvae of several Coleoptera species using sequencing of the bacterial and archaeal 16S rRNA genes and fungal internal transcribed spacer (ITS) region. Thus, larvae with various food preferences, including Amphimallon solstitiale, Oryctes nasicornis, Cucujus cinnaberinus, Schizotus pectinicornis, Rhagium mordax, and Rhagium inquisitor, were thoroughly investigated in this work. We revealed an association of these beetle species mainly with four bacterial phyla, Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes, as well as with three fungal phyla, Ascomycota, Zygomycota, and Basidiomycota, but microbial communities varied depending on the beetle host, individual organism, and surrounding environment. Moreover, archaea within the phyla Euryarchaeota and Crenarchaeota in the hindgut content of O. nasicornis and A. solstitiale were additionally detected. The identified microbial communities suggest their potential role in the exploitation of various resources, providing nutritional needs for the host organism. These microorganisms can also represent a valuable source of novel metabolic capacities for their application in different biotechnologies.
Collapse
|
11
|
Ziganshina EE, Mohammed WS, Doijad SP, Shagimardanova EI, Gogoleva NE, Ziganshin AM. Draft genome sequence of Brevibacterium epidermidis EZ-K02 isolated from nitrocellulose-contaminated wastewater environments. Data Brief 2018; 17:119-123. [PMID: 29349105 PMCID: PMC5767901 DOI: 10.1016/j.dib.2017.12.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 10/19/2017] [Accepted: 12/28/2017] [Indexed: 11/25/2022] Open
Abstract
Brevibacterium spp. are aerobic, nonbranched, asporogenous, gram-positive, rod-shaped bacteria which may exhibit a rod-coccus cycle when cells get older and can be found in various environments. Several Brevibacterium species have industrial importance and are capable of biotransformation of various contaminants. Here we describe the draft genome sequence of Brevibacterium epidermidis EZ-K02 isolated from nitrocellulose-contaminated wastewater environments. The genome comprises 3,885,924 bp, with a G + C content of 64.2%. This whole genome shotgun project has been deposited at DDBJ/ENA/GenBank under the accession PDHL00000000.
Collapse
Affiliation(s)
- Elvira E Ziganshina
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlyovskaya str. 18, Kazan 420008, Russia
| | - Waleed S Mohammed
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlyovskaya str. 18, Kazan 420008, Russia.,Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Swapnil P Doijad
- Institute of Medical Microbiology, Justus-Liebig University, Giessen 35392, Germany
| | - Elena I Shagimardanova
- Laboratory of Extreme Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420021, Russia
| | - Natalia E Gogoleva
- Laboratory of Extreme Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420021, Russia
| | - Ayrat M Ziganshin
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlyovskaya str. 18, Kazan 420008, Russia
| |
Collapse
|
12
|
Mohammed WS, Ziganshina EE, Shagimardanova EI, Gogoleva NE, Ziganshin AM. Draft genome sequence of Paenibacillus sp. EZ-K15 isolated from wastewater systems. BMC Res Notes 2017; 10:734. [PMID: 29233178 PMCID: PMC5727980 DOI: 10.1186/s13104-017-3069-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/05/2017] [Indexed: 12/02/2022] Open
Abstract
Objectives Paenibacillus species, belonging to the family Paenibacillaceae, are able to survive for long periods under adverse environmental conditions. Several Paenibacillus species produce antimicrobial compounds and are capable of biodegradation of various contaminants; therefore, more investigations at the genomic level are necessary to improve our understanding of their ecology, genetics, as well as potential biotechnological applications. Data description In the present study, we describe the draft genome sequence of Paenibacillus sp. EZ-K15 that was isolated from nitrocellulose-contaminated wastewater samples. The genome comprises 7,258,662 bp, with a G+C content of 48.6%. This whole genome shotgun project has been deposited at DDBJ/ENA/GenBank under the accession PDHM00000000. Data demonstrated here can be used by other researchers working or studying in the field of whole genome analysis and application of Paenibacillus species in biotechnological processes.
Collapse
Affiliation(s)
- Waleed S Mohammed
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlyovskaya str. 18, Kazan, 420008, Russia.,Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt
| | - Elvira E Ziganshina
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlyovskaya str. 18, Kazan, 420008, Russia
| | - Elena I Shagimardanova
- Laboratory of Extreme Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420021, Russia
| | - Natalia E Gogoleva
- Laboratory of Extreme Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420021, Russia
| | - Ayrat M Ziganshin
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlyovskaya str. 18, Kazan, 420008, Russia.
| |
Collapse
|
13
|
Naumenko EA, Ahlemeyer B, Baumgart-Vogt E. Species-specific differences in peroxisome proliferation, catalase, and SOD2 upregulation as well as toxicity in human, mouse, and rat hepatoma cells induced by the explosive and environmental pollutant 2,4,6-trinitrotoluene. ENVIRONMENTAL TOXICOLOGY 2017; 32:989-1006. [PMID: 27322098 DOI: 10.1002/tox.22299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 05/11/2016] [Accepted: 05/21/2016] [Indexed: 06/06/2023]
Abstract
2,4,6-Trinitrotoluene (TNT) has been widely used as an explosive substance and its toxicity is still of interest as it persisted in polluted areas. TNT is metabolized in hepatocytes which are prone to its toxicity. Since analysis of the human liver or hepatocytes is restricted due to ethical reasons, we investigated the effects of TNT on cell viability, reactive oxygen species (ROS) production, peroxisome proliferation, and antioxidative enzymes in human (HepG2), mouse (Hepa 1-6), and rat (H4IIEC3) hepatoma cell lines. Under control conditions, hepatoma cells of all three species were highly comparable exhibiting identical proliferation rates and distribution of their cell cycle phases. However, we found strong differences in TNT toxicity with the lowest IC50 values (highest cell death rate) for rat cells, whereas human and mouse cells were three to sevenfold less sensitive. Moreover, a strong decrease in cellular dehydrogenase activity (MTT assay) and increased ROS levels were noted. TNT caused peroxisome proliferation with rat hepatoma cells being most responsive followed by those from mouse and human. Under control conditions, rat cells contained fivefold higher peroxisomal catalase and mitochondrial SOD2 activities and a twofold higher capacity to reduce MTT than human and mouse cells. TNT treatment caused an increase in catalase and SOD2 mRNA and protein levels in human and mouse, but not in rat cells. Similarly, human and mouse cells upregulated SOD2 activity, whereas rat cells failed therein. We conclude that TNT induced oxidative stress, peroxisome proliferation and mitochondrial damage which are highest in rat cells rendering them most susceptible toward TNT. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 989-1006, 2017.
Collapse
Affiliation(s)
- Ekaterina Anatolevna Naumenko
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlevskaya 18, Kazan, 420008, Russia
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University Giessen, Aulweg 123, Giessen, 35385, Germany
| | - Barbara Ahlemeyer
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University Giessen, Aulweg 123, Giessen, 35385, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University Giessen, Aulweg 123, Giessen, 35385, Germany
| |
Collapse
|
14
|
Electron Paramagnetic Resonance in the Experimental Oncology: Implementation Examples of the Conventional Approaches. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0238-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|