1
|
Zhang Y, Guo Y, Song L, Liu W, Nian R, Fan X. Streamlined on-column refolding and purification of nanobodies from inclusion bodies expressed as fusion proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1246:124279. [PMID: 39186888 DOI: 10.1016/j.jchromb.2024.124279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024]
Abstract
This study introduces an efficient on-column refolding and purification method for preparing nanobodies (Nbs) expressed as inclusion bodies and fusion proteins. The HisTrapTM FF system was successfully employed for the purification of the fusion protein FN1-ΔI-CM-2D5. The intein ΔI-CM cleavage activity was activated at 42 °C, followed by incubation for 4 h. Leveraging the remarkable thermal stability of Nbs, 2D5 was further purified through heat treatment at 80 °C for 1h. This method yielded up to 107.2 mg of pure 2D5 with a purity of 99.2 % from just 1L of bacterial culture grown in a shaker flask. Furthermore, this approach successfully restored native secondary structure and affinity of 2D5. Additionally, the platform was effectively applied to the refolding and purification of a polystyrene-binding nanobody (B2), which exhibited limited expression in the periplasmic and cytoplasmic spaces of E. coli. This endeavor resulted in the isolation of 53.2 mg of pure B2 Nb with a purity exceeding 99.5 % from the same volume of bacterial culture. Significantly, this approach restored the native secondary structure of the Nbs, highlighting its potential for addressing challenges associated with expressing complex Nbs in E. coli. Overall, this innovative platform provides a scientifically rigorous and reproducible method for the efficient preparation of Nbs, offering a valuable tool for antibody research and development.
Collapse
Affiliation(s)
- Yiwen Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China; Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China; University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Yang Guo
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China; Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China; University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Liang Song
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China; Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| | - Wenshuai Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China; Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China; Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| | - Xiying Fan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China; Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China.
| |
Collapse
|
2
|
Liu X, Wang Y, Sun L, Xiao G, Hou N, Chen J, Wang W, Xu X, Gu Y. Screening and optimization of shark nanobodies against SARS-CoV-2 spike RBD. Antiviral Res 2024; 226:105898. [PMID: 38692413 DOI: 10.1016/j.antiviral.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/28/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
SARS-CoV-2 continues to threaten human health, antibody therapy is one way to control the infection. Because new SARS-CoV-2 mutations are constantly emerging, there is an urgent need to develop broadly neutralizing antibodies to block the viral entry into host cells. VNAR from sharks is the smallest natural antigen binding domain, with the advantages of small size, flexible paratopes, good stability, and low manufacturing cost. Here, we used recombinant SARS-CoV-2 Spike-RBD to immunize sharks and constructed a VNAR phage display library. VNAR R1C2, selected from the library, efficiently binds to the RBD domain and blocks the infection of ACE2-positive cells by pseudovirus. Next, homologous bivalent VNARs were constructed through the tandem fusion of two R1C2 units, which enhanced both the affinity and neutralizing activity of R1C2. R1C2 was predicted to bind to a relatively conserved region within the RBD. By introducing mutations at four key binding sites within the CDR3 and HV2 regions of R1C2, the affinity and neutralizing activity of R1C2 were significantly improved. Furthermore, R1C2 also exhibits an effective capacity of binding to the Omicron variants (BA.2 and XBB.1). Together, these results suggest that R1C2 could serve as a valuable candidate for preventing and treating SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Xiaochun Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Yanqing Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Lishan Sun
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Guokai Xiao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Ning Hou
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Jin Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Ximing Xu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| | - Yuchao Gu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
3
|
Liu R, Zhu M, Chen J, Gai J, Huang J, Zhou Y, Wan Y, Tu C. Identification and Characterization of a Novel Nanobody Against Human CTGF to Reveal Its Antifibrotic Effect in an in vitro Model of Liver Fibrosis. Int J Nanomedicine 2023; 18:5407-5422. [PMID: 37753068 PMCID: PMC10519214 DOI: 10.2147/ijn.s428430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Background No agents are currently available for the treatment or reversal of liver fibrosis. Novel antifibrotic therapies for chronic liver diseases are thus urgently needed. Connective tissue growth factor (CTGF) has been shown to contributes profoundly to liver fibrogenesis, which makes CTGF as a promising target for developing antifibrotic agents. Methods In this study, we identified a novel nanobody (Nb) against human CTGF (anti-CTGF Nb) by phage display using an immunized camel, which showed high affinity and specificity in vitro. LX-2 cells, the immortalized human hepatic stellate cells, were induced by transforming growth factor beta1 (TGFβ1) as an in vitro model of liver fibrosis to verify the antifibrotic activity of the anti-CTGF Nb. Results Our data demonstrated that anti-CTGF Nb effectively alleviated TGFβ1-induced LX-2 cell proliferation, activation, and migration, and promoted the apoptosis of activated LX-2 cells in response to TGFβ1. Moreover, the anti-CTGF Nb remarkably reduced the levels of TGFβ1, Smad2, and Smad3 expression in LX-2 stellate cells stimulated by TGFβ1. Conclusion Taken together, we successfully identified a novel Nb against human CTGF, which exhibited antifibrotic effects in vitro by regulating the biological functions of human stellate cells LX-2.
Collapse
Affiliation(s)
- Rong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Min Zhu
- Shanghai Novamab Biopharmaceuticals Co., Ltd, Shanghai, 201318, People's Republic of China
| | - Jiaojiao Chen
- Department of Gastroenterology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, 200434, People's Republic of China
| | - Junwei Gai
- Shanghai Novamab Biopharmaceuticals Co., Ltd, Shanghai, 201318, People's Republic of China
| | - Jing Huang
- Shanghai Novamab Biopharmaceuticals Co., Ltd, Shanghai, 201318, People's Republic of China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Yakun Wan
- Shanghai Novamab Biopharmaceuticals Co., Ltd, Shanghai, 201318, People's Republic of China
| | - Chuantao Tu
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, People's Republic of China
| |
Collapse
|
4
|
Liu M, Liang Z, Cheng ZJ, Liu L, Liu Q, Mai Y, Chen H, Lei B, Yu S, Chen H, Zheng P, Sun B. SARS-CoV-2 neutralising antibody therapies: Recent advances and future challenges. Rev Med Virol 2023; 33:e2464. [PMID: 37322826 DOI: 10.1002/rmv.2464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
The COVID-19 pandemic represents an unparalleled global public health crisis. Despite concerted research endeavours, the repertoire of effective treatment options remains limited. However, neutralising-antibody-based therapies hold promise across an array of practices, encompassing the prophylaxis and management of acute infectious diseases. Presently, numerous investigations into COVID-19-neutralising antibodies are underway around the world, with some studies reaching clinical application stages. The advent of COVID-19-neutralising antibodies signifies the dawn of an innovative and promising strategy for treatment against SARS-CoV-2 variants. Comprehensively, our objective is to amalgamate contemporary understanding concerning antibodies targeting various regions, including receptor-binding domain (RBD), non-RBD, host cell targets, and cross-neutralising antibodies. Furthermore, we critically examine the prevailing scientific literature supporting neutralising antibody-based interventions, and also delve into the functional evaluation of antibodies, with a particular focus on in vitro (vivo) assays. Lastly, we identify and consider several pertinent challenges inherent to the realm of COVID-19-neutralising antibody-based treatments, offering insights into potential future directions for research and development.
Collapse
Affiliation(s)
- Mingtao Liu
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiman Liang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhangkai J Cheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Liu
- Guangzhou Medical University, Guangzhou, China
| | - Qiwen Liu
- Guangzhou Medical University, Guangzhou, China
| | - Yiyin Mai
- Guangzhou Medical University, Guangzhou, China
| | | | - Baoying Lei
- Guangzhou Medical University, Guangzhou, China
| | - Shangwei Yu
- Guangzhou Medical University, Guangzhou, China
| | - Huihui Chen
- Guangzhou Medical University, Guangzhou, China
| | - Peiyan Zheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Karaman E, Eyüpoğlu AE, Mahmoudi Azar L, Uysal S. Large-Scale Production of Anti-RNase A VHH Expressed in pyrG Auxotrophic Aspergillus oryzae. Curr Issues Mol Biol 2023; 45:4778-4795. [PMID: 37367053 DOI: 10.3390/cimb45060304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Nanobodies, also referred to as VHH antibodies, are the smallest fragments of naturally produced camelid antibodies and are ideal affinity reagents due to their remarkable properties. They are considered an alternative to monoclonal antibodies (mAbs) with potential utility in imaging, diagnostic, and other biotechnological applications given the difficulties associated with mAb expression. Aspergillus oryzae (A. oryzae) is a potential system for the large-scale expression and production of functional VHH antibodies that can be used to meet the demand for affinity reagents. In this study, anti-RNase A VHH was expressed under the control of the glucoamylase promoter in pyrG auxotrophic A. oryzae grown in a fermenter. The feature of pyrG auxotrophy, selected for the construction of a stable and efficient platform, was established using homologous recombination. Pull-down assay, size exclusion chromatography, and surface plasmon resonance were used to confirm the binding specificity of anti-RNase A VHH to RNase A. The affinity of anti-RNase A VHH was nearly 18.3-fold higher (1.9 nM) when expressed in pyrG auxotrophic A. oryzae rather than in Escherichia coli. This demonstrates that pyrG auxotrophic A. oryzae is a practical, industrially scalable, and promising biotechnological platform for the large-scale production of functional VHH antibodies with high binding activity.
Collapse
Affiliation(s)
- Elif Karaman
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, 34820 Istanbul, Turkey
- Department of Biotechnology, Institute of Health Sciences, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Alp Ertunga Eyüpoğlu
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34450 Istanbul, Turkey
| | - Lena Mahmoudi Azar
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, 34820 Istanbul, Turkey
| | - Serdar Uysal
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, 34820 Istanbul, Turkey
| |
Collapse
|
6
|
Liu M, Gan H, Liang Z, Liu L, Liu Q, Mai Y, Chen H, Lei B, Yu S, Chen H, Zheng P, Sun B. Review of therapeutic mechanisms and applications based on SARS-CoV-2 neutralizing antibodies. Front Microbiol 2023; 14:1122868. [PMID: 37007494 PMCID: PMC10060843 DOI: 10.3389/fmicb.2023.1122868] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
COVID-19 pandemic is a global public health emergency. Despite extensive research, there are still few effective treatment options available today. Neutralizing-antibody-based treatments offer a broad range of applications, including the prevention and treatment of acute infectious diseases. Hundreds of SARS-CoV-2 neutralizing antibody studies are currently underway around the world, with some already in clinical applications. The development of SARS-CoV-2 neutralizing antibody opens up a new therapeutic option for COVID-19. We intend to review our current knowledge about antibodies targeting various regions (i.e., RBD regions, non-RBD regions, host cell targets, and cross-neutralizing antibodies), as well as the current scientific evidence for neutralizing-antibody-based treatments based on convalescent plasma therapy, intravenous immunoglobulin, monoclonal antibodies, and recombinant drugs. The functional evaluation of antibodies (i.e., in vitro or in vivo assays) is also discussed. Finally, some current issues in the field of neutralizing-antibody-based therapies are highlighted.
Collapse
Affiliation(s)
- Mingtao Liu
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Hui Gan
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Zhiman Liang
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Li Liu
- Guangzhou Medical University, Guangzhou, China
| | - Qiwen Liu
- Guangzhou Medical University, Guangzhou, China
| | - Yiyin Mai
- Guangzhou Medical University, Guangzhou, China
| | | | - Baoying Lei
- Guangzhou Medical University, Guangzhou, China
| | - Shangwei Yu
- Guangzhou Medical University, Guangzhou, China
| | - Huihui Chen
- Guangzhou Medical University, Guangzhou, China
| | - Peiyan Zheng
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Baoqing Sun
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| |
Collapse
|
7
|
Matsuzaki Y, Kajiwara K, Aoki W, Ueda M. Production of Single-Domain Antibodies in Pichia pastoris. Methods Mol Biol 2022; 2446:181-203. [PMID: 35157274 DOI: 10.1007/978-1-0716-2075-5_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-domain antibodies (sdAbs) are binders that consist of a single immunoglobulin domain. SdAbs have gained importance as therapeutics, diagnostic reagents, and research tools. Functional sdAbs are commonly produced in Escherichia coli, which is a simple and widely used host for production of recombinant proteins. However, there are drawbacks of the E. coli expression system, including the potential for misfolded recombinant proteins and pyrogenic contamination with toxic lipopolysaccharides. Pichia pastoris is an alternative host for the production of heterologous proteins because of its high recombinant protein yields and the ability to produce soluble, properly folded proteins without lipopolysaccharide contamination. Here, we describe a method to produce sdAbs in P. pastoris. We present methods for the cloning of sdAb-encoding genes into a P. pastoris expression vector, production and purification of sdAbs, and measurement of sdAb-binding kinetics. Functional sdAbs are easily and routinely obtained using these methods.
Collapse
Affiliation(s)
- Yusei Matsuzaki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kaho Kajiwara
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
- Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan.
| |
Collapse
|
8
|
Nie J, Ma X, Hu F, Miao H, Feng X, Zhang P, Han MH, You F, Yang Y, Zhang W, Zheng W. Designing and constructing a phage display synthesized single domain antibodies library based on camel VHHs frame for screening and identifying humanized TNF-α-specific nanobody. Biomed Pharmacother 2021; 137:111328. [PMID: 33571835 DOI: 10.1016/j.biopha.2021.111328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 01/17/2023] Open
Abstract
Tumor necrosis factor (TNF-α) is an important clinically tested cytokine that could induce autoimmune diseases and inflammation. Therefore, the anti-TNF-α therapy strategy was developed and used therapeutically in various diseases, especially in the cytokine storm associated chimeric antigen receptor (CAR) T-cell therapy and antiviral therapy. Compare with other anti-TNF-α inhibitors, anti-TNF-α Nb (nanobody) has many unique advantages. Herein, we reported a novel humanized scaffold for library construction, which could be soluble and expressed in Escherichia coli (E.coli), and the efficiency capacity could reach as high as 2.01 × 109. Meanwhile, an anti-TNF-α Nb was selected for further study after 4 rounds of screening, NT-3, as the optimal Nb could effectively inhibit TNF-mediated cytotoxicity. The IC50 of NT-3 was determined as 0.804 μM, and its apoptosis inhibition rate was 62.47 % in L929 cells. Furthermore, the molecular docking results showed that complementarity-determining regions (CDRs) of NT-3 could connect to TNF for blocking function through strong hydrogen bonds and salt bridges. In general, our study not only provided a good Nb screening platform in vitro without animal immunization, but also generated a series of novel humanized anti-TNF-α Nb candidates with potential applications.
Collapse
Affiliation(s)
- Jifan Nie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Fabiao Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hui Miao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xin Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Peiwen Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Myong Hun Han
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Genetic, Faculty of Life Science, KIM IL SUNG University, Pyongyang 999093, Democratic People's Republic of Korea
| | - Fang You
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Yi Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore; SinGENE Biotech Pte Ltd, Singapore Science Park, Singapore 118258, Singapore.
| | - Wenlian Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Center of Translational Biomedical Research, University of North Carolina at Greensboro, Greensboro, NC 27310, USA
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
9
|
He Y, Ren Y, Guo B, Yang Y, Ji Y, Zhang D, Wang J, Wang Y, Wang H. Development of a specific nanobody and its application in rapid and selective determination of Salmonella enteritidis in milk. Food Chem 2020; 310:125942. [DOI: 10.1016/j.foodchem.2019.125942] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022]
|
10
|
Liu Y, Huang H. Expression of single-domain antibody in different systems. Appl Microbiol Biotechnol 2017; 102:539-551. [DOI: 10.1007/s00253-017-8644-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/09/2017] [Accepted: 11/12/2017] [Indexed: 10/18/2022]
|