1
|
Tang Z, Shi L, Liang S, Yin J, Dong W, Zou C, Xu Y. Recent Advances of Tannase: Production, Characterization, Purification, and Application in the Tea Industry. Foods 2024; 14:79. [PMID: 39796369 PMCID: PMC11720592 DOI: 10.3390/foods14010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Tannase, as a type of tannin-degrading enzyme, can catalyze the hydrolysis of ester and depside bonds in gallotannins, thereby releasing gallic acid and glucose. Based on this reaction mechanism, Tannase can effectively improve the problems of bitter taste, weak aroma, and tea cheese in tea infusion, and is therefore widely used in the tea industry. However, due to high production costs, difficulties in purification and recovery, and insufficient understanding of Tannase properties, the large-scale application of Tannase is severely limited. Therefore, the sources of Tannase and the effects of fermentation temperature, pH, stirring speed, time, carbon, and nitrogen sources on the preparation of Tannase are described in this study. The advantages and disadvantages of various methods for measuring Tannase activity and their enzymatic characterization are summarized, and the concentration and purification methods of Tannase are emphasized. Finally, the application of Tannase to reduce the formation of tea precipitate, enhance antioxidant capacity, increase the extraction rate of active ingredients, and improve the flavor of the tea infusion is described. This study systematically reviews the production, characterization, purification, and application of Tannase to provide a reference for further research and application of Tannase.
Collapse
Affiliation(s)
- Zhanhui Tang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; (Z.T.); (L.S.)
| | - Liyu Shi
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; (Z.T.); (L.S.)
| | - Shuang Liang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China; (S.L.); (J.Y.)
| | - Junfeng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China; (S.L.); (J.Y.)
| | - Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China;
| | - Chun Zou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China; (S.L.); (J.Y.)
| | - Yongquan Xu
- National Engineering Research Center for Tea Processing, Hangzhou 310008, China
| |
Collapse
|
2
|
Chaitanyakumar A, Somu P, Srinivasan R. Expression and Immobilization of Tannase for Tannery Effluent Treatment from Lactobacillus plantarum and Staphylococcus lugdunensis: A Comparative Study. Appl Biochem Biotechnol 2024; 196:6936-6956. [PMID: 38421571 DOI: 10.1007/s12010-024-04861-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 03/02/2024]
Abstract
Agro-industrial discharges have higher concentrations of tannins and have been a significant cause of pollution to water bodies and soil surrounding the agro-industries. So in this study, toxic tannic acid is into commercially valuable gallic acid from the tannery effluent using immobilized microbial tannase. Tannase genes were isolated from Lactobacillus plantarum JCM 1149 (tanLpl) and Staphylococcus lugdunensis MTCC 3614 (tanA). Further, these isolated tannese genes were cloned and expressed in BL 21 host using pET 28a as an expression vector, and immobilized in sodium alginate beads. Vegetable tannery effluent was treated by tannase-immobilized beads at 25 °C and 37 °C, where liberated gallic acid was analyzed using TLC and NMR to confirm the tannin reduction. Further, both immobilized tannases exhibited excellent reusability up to 15 cycles of regeneration without significant reduction in their activity. Moreover, we also showed that immobilized tannases tanLpl and tanA activity remained unaffected compared to the free enzyme in the presence of metal ions. Further, tanA activity remained unaffected over a wide range of pH, and tanLpl showed high thermal stability. Thus, immobilized tannase tanLpl and tanA provide a possible solution for tannery effluent treatment depending upon industry requirements and reaction composition/effluent composition, one can choose a better-immobilized tannase among the two as per the need-based requirement.
Collapse
Affiliation(s)
- Amballa Chaitanyakumar
- Department of Biotechnology, University Institute of Engineering and Technology, Guru Nanak University, Ibrahimpatnam, 501510, Telangana, India.
- Department of Biotechnology, School of Bio-Sciences and Technology, Vellore Institute of Technology, 632 014, Tamil Nadu, Vellore, India.
| | - Prathap Somu
- Department of Biotechnology and Chemical Engineering, School of Civil and Chemical Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur, 303007, India.
| | - Ramachandran Srinivasan
- Centre for Ocean Research, Sathyabama Research Park, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
- Department of Biotechnology, School of Bio-Sciences and Technology, Vellore Institute of Technology, 632 014, Tamil Nadu, Vellore, India
| |
Collapse
|
3
|
Tang X, Liu CL, Chen YY, Wei Y, Zhuang XY, Xiao Q, Chen J, Chen FQ, Yang QM, Weng HF, Fang BS, Zhang YH, Xiao AF. Combination of simultaneous extraction–hydrolysis and intermittent feeding of tara pod for efficient production of gallic acid. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Pan H, Zhan J, Yang H, Wang C, Liu H, Zhou H, Zhou H, Lu X, Su X, Tian Y. Improving the Acid Resistance of Tannase TanBLp (AB379685) from Lactobacillus plantarum ATCC14917 T by Site-Specific Mutagenesis. Indian J Microbiol 2022; 62:96-102. [PMID: 35068609 PMCID: PMC8758840 DOI: 10.1007/s12088-021-00983-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/09/2021] [Indexed: 11/24/2022] Open
Abstract
Tannin acyl hydrolase referred commonly as tannase catalyzes the hydrolysis of the galloyl ester bond of tannin to release gallic acid. The tannase TanBLp which cloned from Lactobacillus plantarum ATCC14917T has high activity in the pH range (7.0-9.0) at 40 °C, it would be detrimental to the utilization at acidic environment. The catalytic sites and stability of TanBLp were analyzed using bioinformatics and site-specific mutagenesis. The results reiterated that the amino acid residues Ala164, Lys343, Glu357, Asp421 and His451 had played an important role in maintaining the activity. The optimum pH of mutants V75A, G77A, N94A, A164S and F243A were shifted from 8.0 to 6.0, and mutant V75A has the highest pH stability and activity at acidic conditions than other mutants, which was more suitable for industrial application to manufacture gallic acid. This study was of great significance to promote the industrialization and efficient utilization of tannase TanBLp.
Collapse
Affiliation(s)
- Hu Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China ,Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Jingjing Zhan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Hui Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Hui Zhou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Haiyan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xiaojun Su
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
5
|
Guan L, Wang K, Gao Y, Li J, Yan S, Ji N, Ren C, Wang J, Zhou Y, Li B, Lu S. Biochemical and Structural Characterization of a Novel Bacterial Tannase From Lachnospiraceae bacterium in Ruminant Gastrointestinal Tract. Front Bioeng Biotechnol 2021; 9:806788. [PMID: 34976993 PMCID: PMC8715002 DOI: 10.3389/fbioe.2021.806788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Tannases are a family of esterases that catalyze the hydrolysis of ester and depside bonds present in hydrolyzable tannins to release gallic acid. Here, a novel tannase from Lachnospiraceae bacterium (TanALb) was characterized. The recombinant TanALb exhibited maximal activity at pH 7.0 and 50°C, and it maintained more than 70% relative activity from 30°C to 55°C. The activity of TanALb was enhanced by Mg2+ and Ca2+, and was dramatically reduced by Cu2+ and Mn2+. TanALb is capable of degrading esters of phenolic acids with long-chain alcohols, such as lauryl gallate as well as tannic acid. The Km value and catalytic efficiency (kcat /Km) of TanALb toward five substrates showed that tannic acid (TA) was the favorite substrate. Homology modeling and structural analysis indicated that TanALb contains an insertion loop (residues 341–450). Based on the moleculer docking and molecular dynamics (MD) simulation, this loop was observed as a flap-like lid to interact with bulk substrates such as tannic acid. TanALb is a novel bacterial tannase, and the characteristics of this enzyme make it potentially interesting for industrial use.
Collapse
Affiliation(s)
- Lijun Guan
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
- *Correspondence: Lijun Guan, ; Shuwen Lu,
| | - Kunlun Wang
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Yang Gao
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Jialei Li
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Song Yan
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Nina Ji
- Soybean Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Chuanying Ren
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Jiayou Wang
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ye Zhou
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Bo Li
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Shuwen Lu
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
- *Correspondence: Lijun Guan, ; Shuwen Lu,
| |
Collapse
|
6
|
Balakrishnan A, Kanchinadham SBK, Kalyanaraman C. Studies on the Effect of Bacterial Tannase Supplementation to Biodegradation of Tannins in Tannery Wastewater. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Abirami Balakrishnan
- Environmental Engineering Department, Council of Scientific and Industrial Research (CSIR) − Central Leather Research Institute (CLRI), Adyar, Chennai 600 020, India
- Anna University, Chennai − 600 020, India
| | - Sri Bala Kameswari Kanchinadham
- Environmental Engineering Department, Council of Scientific and Industrial Research (CSIR) − Central Leather Research Institute (CLRI), Adyar, Chennai 600 020, India
| | - Chitra Kalyanaraman
- Environmental Engineering Department, Council of Scientific and Industrial Research (CSIR) − Central Leather Research Institute (CLRI), Adyar, Chennai 600 020, India
| |
Collapse
|
7
|
Dutta N, Miraz SM, Khan MU, Karekar SC, Usman M, Khan SM, Amin U, Rebezov M, Shariati MA, Thiruvengadam M. Heterologous expression and biophysical characterization of a mesophilic tannase following manganese nanoparticle immobilization. Colloids Surf B Biointerfaces 2021; 207:112011. [PMID: 34339969 DOI: 10.1016/j.colsurfb.2021.112011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/10/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
In the current study, we analyzed the efficacy of manganese oxide nanoparticle (MnNP)-water dispersion as an immobilization matrix for bacterial tannase. The tannase-secreting Bacillus subtilis strain NJKL.tan.2 obtained from tannery effluent soil was subsequently purified and cloned in pET20b vector. The activity of MnNP-tan (tannase activated by manganese nanoparticles) was 1.51- and 3.5-fold higher at 20 °C and 80 °C, respectively, compared with the free enzyme. MnNP-tan decreased Km by 41.66 % and 3-fold, whereas free tannase showed two-fold and six-fold improvement in Kcat at 37 °C and 80 °C, respectively. MnNP-tan showed an increase in (half-life)t1/2and Ed by 13-fold and 50.05 units, respectively, at 80 °C, in contrast to the native enzyme. MnNP-tan retained its residual activity by 78.2 % at 37 °C and 34.24 % at 80 °C after 180 min of incubation when compared with untreated set. MnNP-tan retained 51 % of its activity after 120 days with the native enzyme losing ∼50 % functionality following 40 days of incubation. The MnNP-mediated tannase immobilization technique is being reported for the first time. The technique has numerous advantages due to the use of MnNP as a potential matrix for biomolecule immobilization, which can be further extended to immobilize other biocatalysts used in agro-industrial and lab-based applications.
Collapse
Affiliation(s)
- Nalok Dutta
- Bioproducts Science & Engineering Laboratory, Department of Biological Systems Engineering, Washington State University Tri-Cities Campus, 2710 Crimson Way East 229, Richland, WA 99354, United States.
| | - Shahriar Md Miraz
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Muhammad Usman Khan
- Department of Energy Systems Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Supriya Charuhas Karekar
- Bioproducts Science & Engineering Laboratory, Department of Biological Systems Engineering, Washington State University Tri-Cities Campus, 2710 Crimson Way East 229, Richland, WA 99354, United States
| | - Muhammad Usman
- Bioproducts Science & Engineering Laboratory, Department of Biological Systems Engineering, Washington State University Tri-Cities Campus, 2710 Crimson Way East 229, Richland, WA 99354, United States
| | - Shahbaz Manzoor Khan
- Department of Pathobiology, University of Illinois, 2522 Veterinary Medicine Basic Sciences Bldg. 2001 South Lincoln Avenue, Urbana, IL 61802, United States
| | - Usman Amin
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Maksim Rebezov
- V M Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 26 Talalikhina St., Moscow, 109316, Russian Federation; Prokhorov General Physics Institute of the Russian Academy of Science, 38 Vavilova Str., Moscow, 119991, Russian Federation
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 73 Zemlyanoy Val, 109004, Moscow, Russian Federation
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
8
|
Andrade PML, Baptista L, Bezerra CO, Peralta RM, Góes-Neto A, Uetanabaro APT, Costa AMD. Immobilization and characterization of tannase from Penicillium rolfsii CCMB 714 and its efficiency in apple juice clarification. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00705-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Gezaf SA, Abo Nouh FA, Abdel-Azeem AM. Fungal Communities from Different Habitats for Tannins in Industry. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Aharwar A, Parihar DK. Talaromyces verruculosus tannase production, characterization and application in fruit juices detannification. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Kanpiengjai A, Unban K, Nguyen TH, Haltrich D, Khanongnuch C. Expression and biochemical characterization of a new alkaline tannase from Lactobacillus pentosus. Protein Expr Purif 2019; 157:36-41. [PMID: 30639327 DOI: 10.1016/j.pep.2019.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 11/15/2022]
Abstract
Lactobacillus pentosus BA-7 and L. pentosus QA1-5 are tannin-tolerant lactic acid bacteria that were isolated from Miang, a traditional fermented tea-leaf found in northern Thailand and a tannin-rich substrate. Tannase encoding genes were isolated, cloned and overexpressed in Escherichia coli BL21(DE3). The recombinant tannase was produced with production yields of 40 and 39 KU/L for LpTanBA-7 and LpTanQA1-5, respectively. Both revealed the same molecular weight of 50 kDa as estimated by SDS-PAGE and were optimally active under alkaline pH conditions LpTanQA1-5 revealed optimal temperatures in a range of 37-40 °C as is typically found in lactic acid bacteria, while LpTanBA-7 was active at higher temperatures with an optimum temperature range of 45-55 °C. LpTanBA-7 was found to be more stable within the same range of temperatures than LpTanQA1-5. Furthermore, it was active and stable toward various organic solvents and produced 50 mg/mL of gallic acid from 100 mg/mL tannic acid. Based on the results, LpTanBA-7 is considered a new alkali-moderately thermophilic tannase obtained from lactic acid bacterium that may be capable of a feasible production capacity of gallic acid and its esters. Furthermore, tannase that is active at high temperatures could also be used in tea products in order to develop a sweet aftertaste, as well as to improve levels of antioxidant activity.
Collapse
Affiliation(s)
- Apinun Kanpiengjai
- Division of Biochemistry and Biochemical Technology, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Research Center for Multidisciplinary Approaches to Miang, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kridsada Unban
- Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand; Research Center for Multidisciplinary Approaches to Miang, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thu-Ha Nguyen
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU University of Natural Resources and Life Science, Vienna, 1190, Austria
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU University of Natural Resources and Life Science, Vienna, 1190, Austria
| | - Chartchai Khanongnuch
- Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand; Research Center for Multidisciplinary Approaches to Miang, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
12
|
Bacterial tannases: classification and biochemical properties. Appl Microbiol Biotechnol 2018; 103:603-623. [PMID: 30460533 DOI: 10.1007/s00253-018-9519-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/27/2022]
Abstract
Tannin acyl hydrolases, also known as tannases, are a group of enzymes critical for the transformation of tannins. The study of these enzymes, which initially evolved in different organisms to detoxify and/or use these plant metabolites, has nowadays become relevant in microbial enzymology research due to their relevant role in food tannin transformation. Microorganisms, particularly bacteria, are major sources of tannase. Cloning and heterologous expression of bacterial tannase genes and structural studies have been performed in the last few years. However, a systematic compilation of the information related to all recombinant tannases, their classification, and characteristics is missing. In this review, we explore the diversity of heterologously produced bacterial tannases, describing their substrate specificity and biochemical characterization. Moreover, a new classification based on sequence similarity analysis is proposed. Finally, putative tannases have been identified in silico for each group of tannases taking advantage of the use of the "tannase" distinctive features previously proposed.
Collapse
|
13
|
de Lima JS, Cabrera MP, Casazza AA, da Silva MF, Perego P, de Carvalho LB, Converti A. Immobilization of Aspergillus ficuum tannase in calcium alginate beads and its application in the treatment of boldo (Peumus boldus) tea. Int J Biol Macromol 2018; 118:1989-1994. [DOI: 10.1016/j.ijbiomac.2018.07.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/30/2022]
|
14
|
|
15
|
de Lima JS, Cabrera MP, de Souza Motta CM, Converti A, Carvalho LB. Hydrolysis of tannins by tannase immobilized onto magnetic diatomaceous earth nanoparticles coated with polyaniline. Food Res Int 2018; 107:470-476. [DOI: 10.1016/j.foodres.2018.02.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/14/2018] [Accepted: 02/26/2018] [Indexed: 10/17/2022]
|
16
|
Tomás-Cortázar J, Plaza-Vinuesa L, de Las Rivas B, Lavín JL, Barriales D, Abecia L, Mancheño JM, Aransay AM, Muñoz R, Anguita J, Rodríguez H. Identification of a highly active tannase enzyme from the oral pathogen Fusobacterium nucleatum subsp. polymorphum. Microb Cell Fact 2018; 17:33. [PMID: 29482557 PMCID: PMC5828091 DOI: 10.1186/s12934-018-0880-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/22/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tannases are tannin-degrading enzymes that have been described in fungi and bacteria as an adaptative mechanism to overcome the stress conditions associated with the presence of these phenolic compounds. RESULTS We have identified and expressed in E. coli a tannase from the oral microbiota member Fusobacterium nucleatum subs. polymorphum (TanBFnp). TanBFnp is the first tannase identified in an oral pathogen. Sequence analyses revealed that it is closely related to other bacterial tannases. The enzyme exhibits biochemical properties that make it an interesting target for industrial use. TanBFnp has one of the highest specific activities of all bacterial tannases described to date and shows optimal biochemical properties such as a high thermal stability: the enzyme keeps 100% of its activity after prolonged incubations at different temperatures up to 45 °C. TanBFnp also shows a wide temperature range of activity, maintaining above 80% of its maximum activity between 22 and 55 °C. The use of a panel of 27 esters of phenolic acids demonstrated activity of TanBFnp only against esters of gallic and protocatechuic acid, including tannic acid, gallocatechin gallate and epigallocatechin gallate. Overall, TanBFnp possesses biochemical properties that make the enzyme potentially useful in biotechnological applications. CONCLUSIONS We have identified and characterized a metabolic enzyme from the oral pathogen Fusobacterium nucleatum subsp. polymorphum. The biochemical properties of TanBFnp suggest that it has a major role in the breakdown of complex food tannins during oral processing. Our results also provide some clues regarding its possible participation on bacterial survival in the oral cavity. Furthermore, the characteristics of this enzyme make it of potential interest for industrial use.
Collapse
Affiliation(s)
| | - Laura Plaza-Vinuesa
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN)-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Blanca de Las Rivas
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN)-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José Luis Lavín
- Genome Analysis Platform, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Diego Barriales
- Macrophage and Tick Vaccine Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Leticia Abecia
- Macrophage and Tick Vaccine Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | - José Miguel Mancheño
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano" (IQFR-CSIC), Madrid, Spain
| | - Ana M Aransay
- Genome Analysis Platform, CIC bioGUNE, Derio, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosario Muñoz
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN)-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan Anguita
- Macrophage and Tick Vaccine Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain.
| | - Héctor Rodríguez
- Macrophage and Tick Vaccine Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain.
| |
Collapse
|
17
|
Roy S, Parvin R, Ghosh S, Bhattacharya S, Maity S, Banerjee D. Occurrence of a novel tannase ( tan BLP ) in endophytic Streptomyces sp. AL1L from the leaf of Ailanthus excelsa Roxb. 3 Biotech 2018; 8:33. [PMID: 29291146 DOI: 10.1007/s13205-017-1055-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 12/18/2017] [Indexed: 11/29/2022] Open
Abstract
The tannase production ability by endophytic actinobacteria and the genetic identity of responsible tannase gene were determined. The studied strains were isolated from surface-sterilized leaf discs of Ailanthus excelsa Roxb. Four strains were found to hydrolyze tannic acid on solid media containing 0.4% tannic acid. The strain AL1L was found as tanBLP indicating production of tannase with diverse of substrate affinity. The tannase production from the potential strain AL1L was performed in liquid tannic acid broth (0.4%, w/v). The strain was later identified as Streptomyces sp. AL1L on the basis of 16S rDNA homology. Highest enzyme activity was observed at 48 h of incubation at the exponential growth phase. The enzyme was purified by ammonium sulfate precipitation followed by dialysis (15 kD cut off). This enzyme, with molecular weight 180 kD shows highest catalytic activity at 35 °C, pH 6 with substrate concentration 0.1 g%. The purified enzyme possesses 1.4 × 10-3 Km and 11.15 U/ml as Vmax. The above study indicates high industrial prospective of endophytic actinobacteria as source of tannase of potential biotechnological applications.
Collapse
Affiliation(s)
- Sudipta Roy
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany, Vidyasagar University, Midnapore, West Bengal India
- PG Department of Biotechnology, Oriental Institute of Science and Technology, Midnapore, West Bengal India
| | - Rubia Parvin
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany, Vidyasagar University, Midnapore, West Bengal India
| | - Subhadeep Ghosh
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany, Vidyasagar University, Midnapore, West Bengal India
| | - Somesankar Bhattacharya
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany, Vidyasagar University, Midnapore, West Bengal India
| | - Santanu Maity
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany, Vidyasagar University, Midnapore, West Bengal India
| | - Debdulal Banerjee
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany, Vidyasagar University, Midnapore, West Bengal India
| |
Collapse
|
18
|
Liu F, Wang B, Ye Y, Pan L. High level expression and characterization of tannase tan7 using Aspergillus niger SH-2 with low-background endogenous secretory proteins as the host. Protein Expr Purif 2017; 144:71-75. [PMID: 29162409 DOI: 10.1016/j.pep.2017.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023]
Abstract
Tannin acyl hydrolase (tannase, EC3.1.1.20) catalyzes the hydrolysis of hydrolyzable tannins. It is used in the manufacture of instant tea and in the production of gallic acid. In this study, we reported that the overexpression, purification and characterization of an Aspergillus niger tannase. The tannase gene was cloned from A. niger SH-2 and expressed in the A. niger strain Bdel4 which is low-background of secreted proteins. The recombinant tannase was purified by desalting, followed by gel filtration for characterization. The tannase activity achieved 111.5 U/mL at 168 h, and the purity of the enzyme in the broth supernatant was estimated to be over 70%. The optimum temperature and pH of the recombinant tannase was ∼40 °C and 7.0, respectively. The tannase activity was inhibited by Mg2+, Ca2+, Cu2+, Ba2+, Ni2+ and EDTA, and was enhanced by Mn2+ and Co2+. Since A. niger is a GRAS microorganism, the recombinant tannase could be purification-free due to its high purity. The results of this study suggested that this recombinant strain could be subjected to large-scale production of A. niger tannase.
Collapse
Affiliation(s)
- Fengling Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Bin Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou 510006, China
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou 510006, China
| | - Li Pan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou 510006, China.
| |
Collapse
|