1
|
Gyaltshen Y, Ishii Y, Charvet S, Goetz E, Maruyama S, Kim E. Molecular diversity of green-colored microbial mats from hot springs of northern Japan. Extremophiles 2024; 28:43. [PMID: 39217229 DOI: 10.1007/s00792-024-01358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
We acquired and analyzed metagenome and 16S/18S rRNA gene amplicon data of green-colored microbial mats from two hot springs within the Onikobe geothermal region (Miyagi Prefecture, Japan). The two collection sites-Tamago and Warabi-were in proximity and had the same temperature (40 °C), but the Tamago site was connected to a nearby stream, whereas the Warabi site was isolated. Both the amplicon and metagenome data suggest the bacterial, especially cyanobacterial, dominance of the mats; other abundant groups include Chloroflexota, Pseudomonadota, Bacteroidota/Chlorobiota, and Deinococcota. At finer resolution, however, the taxonomic composition entirely differed between the mats. A total of 5 and 21 abundant bacterial 16S rRNA gene OTUs were identified for Tamago and Warabi, respectively; of these, 12 are putative chlorophyll- or rhodopsin-based phototrophs. The presence of phylogenetically diverse microbial eukaryotes was noted, with ciliates and amoebozoans being the most abundant eukaryote groups for Tamago and Warabi, respectively. Fifteen metagenome-assembled genomes (MAGs) were obtained, represented by 13 bacteria, one ciliate (mitochondrion), and one giant virus. A total of 15 novel taxa, including a new deeply branching Chlorobiota species, is noted from the amplicon and MAG data, highlighting the importance of environmental sequencing in uncovering hidden microorganisms.
Collapse
Affiliation(s)
- Yangtsho Gyaltshen
- Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
| | - Yuu Ishii
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake Cho, Sakyo ku, Kyoto, 606-8502, Japan
- Department of Biology, Miyagi University of Education, 149, Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| | - Sophie Charvet
- Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
- Department of Biology, Susquehanna University, Selinsgrove, PA, 17870, USA
| | - Eleanor Goetz
- Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, 06511, USA
| | - Shinichiro Maruyama
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Eunsoo Kim
- Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA.
- Division of EcoScience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea.
| |
Collapse
|
2
|
Chauhan G, Arya M, Kumar V, Verma D, Sharma M. An improved protocol for metagenomic DNA isolation from low microbial biomass alkaline hot-spring sediments and soil samples. 3 Biotech 2024; 14:34. [PMID: 38188309 PMCID: PMC10769977 DOI: 10.1007/s13205-023-03824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/25/2023] [Indexed: 01/09/2024] Open
Abstract
High-quality, humic-acid-free pure DNA is a prerequisite for functional and sequence-based approaches of metagenomics. In the present investigation, an improved extraction buffer was developed by making a combination of powdered activated charcoal (2%; w/v), polyvinyl poly pyrrolidone (2%; w/v), and CaCl2 (2%; w/v). This trio significantly improved the purity and yield of the metagenomic DNA from the hot spring's hot and alkaline soil. The quality of extracted metagenomic DNA was successfully validated by PCR amplification and restriction enzymes. Besides, the thermophilic amylase encoding genes were also retrieved from these soil DNA samples. Extreme habitats I harbour low microbial biomass and, therefore, demand in-situ lysis of the microbial cells to access their genomes. The protocol can potentially extract DNA from geothermal spring habitats where the count of microbial cells is low.
Collapse
Affiliation(s)
- Garima Chauhan
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025 India
| | - Meghna Arya
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025 India
| | - Vikas Kumar
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025 India
- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh India
| | - Digvijay Verma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025 India
| | - Monica Sharma
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025 India
| |
Collapse
|
3
|
Malesevic M, Stanisavljevic N, Matijasevic D, Curcic J, Tasic V, Tasic S, Kojic M. Metagenomic Analysis of Bacterial Community and Isolation of Representative Strains from Vranjska Banja Hot Spring, Serbia. MICROBIAL ECOLOGY 2023; 86:2344-2356. [PMID: 37222803 DOI: 10.1007/s00248-023-02242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
The hot spring Vranjska Banja is the hottest spring on the Balkan Peninsula with a water temperature of 63-95 °C and a pH value of 7.1, in situ. According to the physicochemical analysis, Vranjska Banja hot spring belongs to the bicarbonated and sulfated hyperthermal waters. The structures of microbial community of this geothermal spring are still largely unexplored. In order to determine and monitor the diversity of microbiota of the Vranjska Banja hot spring, a comprehensive culture-independent metagenomic analysis was conducted in parallel with a culture-dependent approach for the first time. Microbial profiling using amplicon sequencing analysis revealed the presence of phylogenetically novel taxa, ranging from species to phyla. Cultivation-based methods resulted in the isolation of 17 strains belonging to the genera Anoxybacillus, Bacillus, Geobacillus, and Hydrogenophillus. Whole-genome sequencing of five representative strains was then performed. The genomic characterization and OrthoANI analysis revealed that the Vranjska Banja hot spring harbors phylogenetically novel species of the genus Anoxybacillus, proving its uniqueness. Moreover, these isolates contain stress response genes that enable them to survive in the harsh conditions of the hot springs. The results of the in silico analysis show that most of the sequenced strains have the potential to produce thermostable enzymes (proteases, lipases, amylases, phytase, chitinase, and glucanase) and various antimicrobial molecules that can be of great importance for industrial, agricultural, and biotechnological applications. Finally, this study provides a basis for further research and understanding of the metabolic potential of these microorganisms.
Collapse
Affiliation(s)
- Milka Malesevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia.
| | - Nemanja Stanisavljevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Danka Matijasevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Jovana Curcic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Vukasin Tasic
- Faculty of Informatics and Computing, Singidunum University, Belgrade, Serbia
| | - Srdjan Tasic
- The Academy of Applied Technical and Preschool Studies, Nis, Serbia
| | - Milan Kojic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| |
Collapse
|
4
|
Ishaq K, Shah AH, Fariq A, Rasheed S, Jannat S. Diversity of culturable thermophilic bacteria from Tata Pani hotspring of Kotli Azad Jammu and Kashmir. Biodivers Data J 2023; 11:e99224. [PMID: 38327337 PMCID: PMC10848829 DOI: 10.3897/bdj.11.e99224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Hot water springs are unique areas populated by mesophiles, thermotolerant and hyperthermophiles. They are the source of diversity of thermophiles, mainly belonging to archaea and bacteria domains. The diversity of thermophiles gives an outline of the huge biological potential that can be exploited for industrial applications.To this end, this study was aimed to isolate and characterise the unexplored thermophilic microorganisms from hot water spring in Tatapani, Tehsil & District Kotli AJK, Pakistan. Around 10 bacterial isolates were identified using morphological, biochemical, physiological and molecular attributes. Sequencing of the 16S rDNA gene of the isolates followed by BLAST search revealed that the strain MBT008 has 100% similarity with Anoxybacilluskamchatkensis. MBT012 showed 99.57% similarity with A.mongoliensis, MBT014 was affiliated with A.tengchongensis with 99.43% similarity, MBT009 showed 99.83% homology with A.gonensis and MBT018, 98.70% similarity with A.karvacharensis. The presence of all this microbial diversity in one common source is of immense importance related to envioronmental and industrial aspects in general and extraction of thermostable enzymes from these thermophiles specifically opens new horizons in the field of industrial biotechnology. These thermophiles are revealing new capabilities and are being manipulated by biotechnologists in utilizing them in different unique ways.
Collapse
Affiliation(s)
- Kazima Ishaq
- Department of Biotechnology, Faculty of Basic and Applied Sciences, University of Kotli Azad Jammu and Kashmir, Kotli, PakistanDepartment of Biotechnology, Faculty of Basic and Applied Sciences, University of Kotli Azad Jammu and KashmirKotliPakistan
| | - Asad Hussain Shah
- Senior Research Fellow, Faculty of Biology Medicine and Health The University of Manchester The Michael Smith Building Oxford Road Manchester M13 9PT, Manchester, United KingdomSenior Research Fellow, Faculty of Biology Medicine and Health The University of Manchester The Michael Smith Building Oxford Road Manchester M13 9PTManchesterUnited Kingdom
| | - Anila Fariq
- Department of Biotechnology, Faculty of Basic and Applied Sciences, University of Kotli Azad Jammu and Kashmir, Kotli, PakistanDepartment of Biotechnology, Faculty of Basic and Applied Sciences, University of Kotli Azad Jammu and KashmirKotliPakistan
| | - Sajida Rasheed
- Department of Biotechnology, Faculty of Basic and Applied Sciences, University of Kotli Azad Jammu and Kashmir, Kotli, PakistanDepartment of Biotechnology, Faculty of Basic and Applied Sciences, University of Kotli Azad Jammu and KashmirKotliPakistan
| | - Sammyia Jannat
- Department of Biotechnology, Faculty of Basic and Applied Sciences, University of Kotli Azad Jammu and Kashmir, Kotli, PakistanDepartment of Biotechnology, Faculty of Basic and Applied Sciences, University of Kotli Azad Jammu and KashmirKotliPakistan
| |
Collapse
|
5
|
Vijayan J, Nathan VK, Ammini P, Ammanamveetil AMH. Bacterial diversity in the aquatic system in India based on metagenome analysis-a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28383-28406. [PMID: 36680718 PMCID: PMC9862233 DOI: 10.1007/s11356-023-25195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/04/2023] [Indexed: 04/16/2023]
Abstract
Microbial analysis has become one of the most critical areas in aquatic ecology and a crucial component for assessing the contribution of microbes in food web dynamics and biogeochemical processes. Initial research was focused on estimating the abundance and distribution of the microbes using microscopy and culture-based analysis, which are undoubtedly complex tasks. Over the past few decades, microbiologists have endeavored to apply and extend molecular techniques to address pertinent questions related to the function and metabolism of microbes in aquatic ecology. Metagenomics analysis has revolutionized aquatic ecology studies involving the investigation of the genome of a mixed community of organisms in an ecosystem to identify microorganisms, their functionality, and the discovery of novel proteins. This review discusses the metagenomics analysis of bacterial diversity in and around different aquatic systems in India.
Collapse
Affiliation(s)
- Jasna Vijayan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682 016, Kerala, India.
| | - Vinod Kumar Nathan
- School of Chemical and Biotechnology, Sastra Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamilnadu, India
| | - Parvathi Ammini
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022, Kerala, India
| | - Abdulla Mohamed Hatha Ammanamveetil
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682 016, Kerala, India
| |
Collapse
|
6
|
Chaudhary S, Sindhu SS, Dhanker R, Kumari A. Microbes-mediated sulphur cycling in soil: Impact on soil fertility, crop production and environmental sustainability. Microbiol Res 2023; 271:127340. [PMID: 36889205 DOI: 10.1016/j.micres.2023.127340] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/06/2023] [Accepted: 02/18/2023] [Indexed: 03/08/2023]
Abstract
Reduction in soil fertility and depletion of natural resources due to current intensive agricultural practices along with climate changes are the major constraints for crop productivity and global food security. Diverse microbial populations' inhabiting the soil and rhizosphere participate in biogeochemical cycling of nutrients and thereby, improve soil fertility and plant health, and reduce the adverse impact of synthetic fertilizers on the environment. Sulphur is 4th most common crucial macronutrient required by all organisms including plants, animals, humans and microorganisms. Effective strategies are required to enhance sulphur content in crops for minimizing adverse effects of sulphur deficiency on plants and humans. Various microorganisms are involved in sulphur cycling in soil through oxidation, reduction, mineralization, and immobilization, and volatalization processes of diverse sulphur compounds. Some microorganisms possess the unique ability to oxidize sulphur compounds into plant utilizable sulphate (SO42-) form. Considering the importance of sulphur as a nutrient for crops, many bacteria and fungi involved in sulphur cycling have been characterized from soil and rhizosphere. Some of these microbes have been found to positively affect plant growth and crop yield through multiple mechanisms including the enhanced mobilization of nutrients in soils (i.e., sulphate, phosphorus and nitrogen), production of growth-promoting hormones, inhibition of phytopathogens, protection against oxidative damage and mitigation of abiotic stresses. Application of these beneficial microbes as biofertilizers may reduce the conventional fertilizer application in soils. However, large-scale, well-designed, and long-term field trials are necessary to recommend the use of these microbes for increasing nutrient availability for growth and yield of crop plants. This review discusses the current knowledge regarding sulphur deficiency symptoms in plants, biogeochemical cycling of sulphur and inoculation effects of sulphur oxidizing microbes in improving plant biomass and crop yield in different crops.
Collapse
Affiliation(s)
- Suman Chaudhary
- Research Associate, EBL Laboratory, ICAR-Central Institute of Research on Buffaloes, Hisar 125001, Haryana, India.
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India.
| | - Rinku Dhanker
- International Institute of Veterinary, Education & Research, Bahuakbarpur, Rohtak 124001, Haryana, India.
| | - Anju Kumari
- Center of Food Science and Technology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India.
| |
Collapse
|
7
|
Das S, Najar IN, Sherpa MT, Kumari A, Thakur N. Post-monsoon seasonal variation of prokaryotic diversity in solfataric soil from the North Sikkim hot spring. Int Microbiol 2022; 26:281-294. [PMID: 36478539 DOI: 10.1007/s10123-022-00298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
The solfataric soil sediments of the hot springs of Sikkim located at Yume Samdung and Lachen valley were studied for deciphering the bacterial diversity. The main aim here is to present a comparative study and generate a baseline data on the post-monsoon seasonal variation for the months of October and December, analyzed through 16S rRNA V3-V4 amplicon sequencing. The results have shown that there is not much variation at phylum level in the month of October in all the three hot springs such as New Yume Samdung (NYS), Old Yume Samdung (OYS), and Tarum (TAR) hot spring. The abundant phyla mainly present were Firmicutes, followed by Proteobacteria, Actinobacteria, and Bacteroidetes. Similarly, in the month of December, Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes were prevalent; however, the percent relative abundance of these phyla in the month of December is relatively less. Besides this decrease in percent abundance, it was interestingly seen that relatively more phyla were found contributing towards the bacterial diversity in the month of December. Similar to phylum level, at genus level, there was not much variation seen among various prevalent genera of the three studied hot springs in both months. The major genera prevalent in both months among all the three hot springs were followed by Bacillus, Desulfotomaculum, Lactobacillus, and Paenibacillus. A similar trend was also seen at gene level that relative abundance of various genera was higher in the month of October but more genera were found to be contributing towards bacterial diversity in the month of December. Few distinct genera were found to be more abundant in the month of December such as Rhodopirellula and Blastopirellula. The results may conclude that there is not much variation in the abundance and type of bacterial communities during the post-monsoon season in the month of October and December. However, this may be assumed that there is the accumulation or increase in the bacterial communities during the winter (relatively higher temperature among hot springs) and may favor few mesophilic and more thermophilic communities as well.
Collapse
Affiliation(s)
- Sayak Das
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, 737102, Sikkim, India
| | - Ishfaq Nabi Najar
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, 737102, Sikkim, India
| | - Mingma Thundu Sherpa
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, 737102, Sikkim, India
| | | | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, 737102, Sikkim, India.
| |
Collapse
|
8
|
Mitrović M, Kostešić E, Marković T, Selak L, Hausmann B, Pjevac P, Orlić S. Microbial community composition and hydrochemistry of underexplored geothermal waters in Croatia. Syst Appl Microbiol 2022; 45:126359. [PMID: 36150364 DOI: 10.1016/j.syapm.2022.126359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/28/2022] [Accepted: 09/07/2022] [Indexed: 10/31/2022]
Abstract
In Croatia, a variety of geothermal springs with a wide temperature range and varied hydrochemical conditions exist, and they may harbor different niches for the distribution of microbial communities. In this study, 19 different sites, mainly located in central and eastern Croatia, were selected for primary characterization of spring hydrochemistry and microbial community composition. Using 16S rRNA gene amplicon sequencing, it was found that the bacterial communities that dominated most geothermal waters were related to Proteobacteria and Campylobacteria, while most archaeal sequences were related to Crenarchaeota. At the genus level, the prokaryotic community was highly site-specific and was often dominated by a single genus, including sites dominated by Hydrogenophilus, Sulfuricurvum, Sulfurovum, Thiofaba and Nitrospira, while the most abundant archaeal genera were affiliated to the ammonia-oxidizing archaea, Candidatus Nitrosotenuis and Candidatus Nitrososphaera. Whereas the microbial communities were overall highly location-specific, temperature, pH, ammonia, nitrate, total nitrogen, sulfate and hydrogen sulfide, as well as dissolved organic and inorganic carbon, were the abiotic factors that significantly affected microbial community composition. Furthermore, an aquifer-type effect was observed in the community composition, but there was no pronounced seasonal variability for geothermal spring communities (i.e. the community structure was mainly stable during the three seasons sampled). These results surprisingly pointed to stable and geographically unique microbial communities that were adapted to different geothermal water environments throughout Croatia. Knowing which microbial communities are present in these extreme habitats is essential for future research. They will allow us to explore further the microbial metabolisms prevailing at these geothermal sites that have high potential for biotechnological uses, as well as the establishment of the links between microbial community structure and the physicochemical environment of geothermal waters.
Collapse
Affiliation(s)
- Maja Mitrović
- Ruđer Bošković Institute, Division of Materials Chemistry, Laboratory for Precipitation Processes, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Ema Kostešić
- Ruđer Bošković Institute, Division of Materials Chemistry, Laboratory for Precipitation Processes, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Tamara Marković
- Croatian Geological Survey, Milan Sachs 2 Street, 10 000 Zagreb, Croatia
| | - Lorena Selak
- Ruđer Bošković Institute, Division of Materials Chemistry, Laboratory for Precipitation Processes, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; University of Vienna, Department of Microbiology and Ecosystem Science, Divison of Microbial Ecology, Djerassiplatz 1, 1030 Vienna, Austria
| | - Sandi Orlić
- Ruđer Bošković Institute, Division of Materials Chemistry, Laboratory for Precipitation Processes, Bijenička cesta 54, 10 000 Zagreb, Croatia; Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Split, Croatia.
| |
Collapse
|
9
|
Verma J, Sourirajan A, Dev K. Bacterial diversity in 110 thermal hot springs of Indian Himalayan Region (IHR). 3 Biotech 2022; 12:238. [PMID: 36003895 PMCID: PMC9393120 DOI: 10.1007/s13205-022-03270-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
Thermal hot springs are present throughout the world and constitute a unique habitat for microbial diversity. The current investigation is conducted to study the bacterial diversity of thermophilic microorganisms in thermal hot springs of the Indian Himalayan Region (IHR). As of today, 110 geothermal hot springs have been explored for microbial diversity. In this study, we observed that the growth of thermophilic bacteria isolated from thermal hot springs of IHR ranges between 40 and 100 °C, and pH of 3.5-8 have been reported in the literature. The major bacterial species reported from the thermal hot springs of IHR are Bacillus spp., Geobacillus spp., Paenibacillus spp., Pseudomonas spp., Anoxybacillus, Paenibacillus, Brevibacillus, Aneurinibacillus, Thermus aquaticus, Aquimonas, Flavobacterium, etc. Furthermore, bacterial isolates from thermal hot springs of IHR have been reported to produce various enzymes and metabolites such as amylase, β-galactosidase, cellulase, nitrate reductase, acetoin, caffeine degradation enzymes, lipase, urease, and laccase. Metagenomic study and the entire genomic shotgun project have established the impact of physicochemical parameters (temperature and pH) on developing the microbiome. We have discussed the discoveries of microbiological data on the hot springs of IHR until the end of year 2021. As a whole, the microbiome adapts themselves as successful inhabitants to extreme environmental conditions and also serves as a diverse resource for potential applications in health, food, and environment.
Collapse
Affiliation(s)
- Jagdish Verma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173212 Himachal Pradesh India
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173212 Himachal Pradesh India
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173212 Himachal Pradesh India
| |
Collapse
|
10
|
Najar IN, Das S, Kumar S, Sharma P, Mondal K, Sherpa MT, Thakur N. Coexistence of Heavy Metal Tolerance and Antibiotic Resistance in Thermophilic Bacteria Belonging to Genus Geobacillus. Front Microbiol 2022; 13:914037. [PMID: 36110304 PMCID: PMC9469766 DOI: 10.3389/fmicb.2022.914037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Hot springs are thought to be potential repositories for opportunistic infections, such as antibiotic-resistant strains. However, there is a scarcity of information on the mechanisms of antibiotic resistance gene (ARG) uptake, occurrence, and expression in thermophilic bacteria. Furthermore, because the genesis and proliferation of ARGs in environmental microorganisms are unknown, the research on antibiotic resistance profiles and probable mechanisms in thermophilic bacteria will become increasingly important. The goals of this study are to explore bacterial diversity, antibiotic and heavy metal resistance, and the prevalence and presence of ARG and metal resistance gene (MRG) in Geobacillus species. The 16S rRNA sequencing was used to determine the culturable bacterium diversity of 124 isolates. Standard Kirby Bauer Disc Diffusion and tube dilution procedures were used to determine antibiotic sensitivity and minimum inhibitory concentration (MIC). The tube dilution method was also used to check metal tolerance. To detect ARG and heavy MRG (HMRG), whole genome sequencing studies of the type species of the genus Geobacillus and five randomly selected Geobacillus species were performed. Graph Pad Prism and XLSTAT were used to perform statistical analyses such as ANOVA, EC50 analysis, and principal component analysis (PCA). The phylum Firmicutes and the genus Geobacillus dominated the culture-dependent bacterial diversity. Surprisingly, all thermophilic isolates, i.e., Geobacillus species, were sensitive to at least 10 different antibiotics, as evidenced by the lack of ARGs in whole genome sequencing analysis of numerous Geobacillus species. However, some of these isolates were resistant to at least five different heavy metals, and whole genome sequencing revealed the presence of MRGs in these thermophilic bacteria. The thermophilic genus Geobacillus is generally antibiotic sensitive, according to this study. In contrast, heavy metal is tolerated by them. As a result, it is possible that ARGs and MRGs do not coexist in these bacteria living in hot springs.
Collapse
Affiliation(s)
| | - Sayak Das
- Department of Microbiology, Sikkim University, Gangtok, India
| | - Santosh Kumar
- Department of Microbiology, Sikkim University, Gangtok, India
| | - Prayatna Sharma
- Department of Microbiology, Sikkim University, Gangtok, India
| | | | | | - Nagendra Thakur
- Department of Microbiology, Sikkim University, Gangtok, India
- *Correspondence: Nagendra Thakur
| |
Collapse
|
11
|
Sharma N, Kumari R, Thakur M, Rai AK, Singh SP. Molecular dissemination of emerging antibiotic, biocide, and metal co-resistomes in the Himalayan hot springs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114569. [PMID: 35091250 DOI: 10.1016/j.jenvman.2022.114569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Growing resistance among microbial communities against antimicrobial compounds, especially antibiotics, is a significant threat to living beings. With increasing antibiotic resistance in human pathogens, it is necessary to examine the habitats having community interests. In the present study, a metagenomic approach has been employed to understand the causes, dissemination, and effects of antibiotic, metal, and biocide resistomes on the microbial ecology of three hot springs, Borong, Lingdem, and Yumthang, located at different altitudes of the Sikkim Himalaya. The taxonomic assessment of these hot springs depicted the predominance of mesophilic organisms, mainly belonging to the phylum Proteobacteria. The enriched microbial metabolism assosiated with energy, cellular processes, adaptation to diverse environments, and defence were deciphered in the metagenomes. The genes representing resistance to semisynthetic antibiotics, e.g., aminoglycosides, fluoroquinolones, fosfomycin, vancomycin, trimethoprim, tetracycline, streptomycin, beta-lactams, multidrug resistance, and biocides such as triclosan, hydrogen peroxide, acriflavin, were abundantly present. Various genes attributing resistance to copper, arsenic, iron, and mercury in metal resistome were detected. Relative abundance, correlation, and genome mapping of metagenome-assembled genomes indicated the co-evolution of antibiotic and metal resistance in predicted novel species belonging to Vogesella, Thiobacillus, and Tepidimona genera. The metagenomic findings were further validated with isolation of microbial cultures, exhibiting resistance against antibiotics and heavy metals, from the hot spring water samples. The study furthers our understanding about the molecular basis of co-resistomes in the ceological niches and their possible impact on the environment.
Collapse
Affiliation(s)
- Nitish Sharma
- Center of Innovative and Applied Bioprocessing, SAS Nagar, Mohali, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Reena Kumari
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Monika Thakur
- Center of Innovative and Applied Bioprocessing, SAS Nagar, Mohali, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Amit K Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India.
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, SAS Nagar, Mohali, India.
| |
Collapse
|
12
|
Chen JS, Tsai HC, Hsu YL, Nagarajan V, Su HY, Hussain B, Hsu BM. Comprehensive assessment of bacterial communities and their functional profiles in the Huang Gang Creek in the Tatun Volcano Group basin, Taiwan using 16S rRNA amplicon sequencing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113375. [PMID: 35278991 DOI: 10.1016/j.ecoenv.2022.113375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The microbial characteristics of water bodies located in the outflow of hot springs may affect the water quality parameters of the associated river ecosystem. Using 16S rRNA amplicon sequencing, we investigated the bacterial diversity and functional profiles of the Huang Gang (HG) Creek, located in the trace metal-rich, acid-sulfate thermal springs zone of the Tatun Volcano Group (TVG). Biofilms and water samples were collected from the upstream, midstream, and geothermal valleys and downstream of the creek. The results showed that the biofilm and water samples had distinct bacterial diversity and abundance profiles. Acidophilic sulfur-oxidizing bacteria were found to be more abundant in water samples, whereas aquatic photosynthetic bacterial communities were dominant in biofilms. The water samples were contaminated with Legionella and Chlamydiae, which could contaminate the nearby river and cause clinical infections in humans. The upstream samples were highly unique and displayed higher diversity than the other sites. Moderate thermo-acidophiles were dominant in the upstream and midstream regions, whereas the geothermal valley and downstream samples were abundant in thermo-acidophiles. In addition, functional profiling revealed higher expression of sulfur, arsenic, and iron-related functions in water and lead-related functions in the biofilms of the creek. As described in previous studies, the hydrochemical properties of the HG Creek were influenced by the TVG hot springs. Our findings indicated that the hydrochemical properties of the HG Creek were highly correlated with the bacterial diversity and functional potential of running water as compared to biofilms.
Collapse
Affiliation(s)
- Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Hsin-Chi Tsai
- Department of Psychiatry, School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Psychiatry, Tzu-Chi General Hospital, Hualien, Taiwan
| | - Yu-Ling Hsu
- Department of Nuclear Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Viji Nagarajan
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Hung-Yuan Su
- Department of Emergency Medicine, E-Da Hospital and I-Shou University, Kaohsiung, Taiwan; School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan.
| |
Collapse
|
13
|
Nagarajan V, Tsai HC, Chen JS, Hussain B, Fan CW, Asif A, Hsu BM. The Evaluation of Bacterial Abundance and Functional Potentials in the Three Major Watersheds, Located in the Hot Spring Zone of the Tatun Volcano Group Basin, Taiwan. Microorganisms 2022; 10:500. [PMID: 35336075 PMCID: PMC8949176 DOI: 10.3390/microorganisms10030500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/10/2022] Open
Abstract
The Tatun Volcanic Group (TVG), located in northern Taiwan, is characterized by acidic hot springs where the outflow of the hot springs may affect the properties of the associated lotic water bodies. We investigated the bacterial diversity and functional profiles of the Peihuang (PHC), HuangGang (HGC), and Nanhuang Creeks (NHC) located in the TVG basin using 16S rRNA gene sequencing coupled with statistical analyses. Water samples were collected from various streams of the creeks for two months of the year. The NHC showed the highest diversity, richness, and a unique number of phyla, which was followed by the HGC. A reduced number of phyla and a lower diversity was noticed in the PHC. The NHC was found to be abundant in the genera Armatimonas, Prosthecobacter, Pirellula, and Bdellovibrio, whereas the HGC was rich in Thiomonas, Acidiphilium, Prevotella, Acidocella, Acidithiobacillus, and Metallibacterium. The PHC was abundant in Thiomonsa, Legionella, Acidocella, and Sulfuriferula. The samples did not show any strong seasonal variations with the bacterial diversity and abundance; however, the relative abundance of each sampling site varied within the sampling months. The iron transport protein- and the sulfur metabolism-related pathways were predicted to be the key functions in all the creeks, whereas the heavy metal-related functions, such as the cobalt/nickel transport protein and the cobalt-zinc-cadmium efflux system were found to be abundant in the HGC and PHC, respectively. The abundance of Bdellovibrio in the NHC, Diplorickettsia in the HGC, and Legionella in the PHC samples indicated a higher anthropogenic impact over the creek water quality. This study provides the data to understand the distinct bacterial community structure, as well as the functional potentials of the three major watersheds, and helps the knowledge of the impact of the physicochemical properties of the TVG hot springs upon the watersheds.
Collapse
Affiliation(s)
- Viji Nagarajan
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan; (V.N.); (B.H.); (C.-W.F.); (A.A.)
| | - Hsin-Chi Tsai
- Department of Psychiatry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan;
- Department of Psychiatry, Tzu-Chi General Hospital, Hualien 970, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung 824, Taiwan;
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan; (V.N.); (B.H.); (C.-W.F.); (A.A.)
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 621, Taiwan
| | - Cheng-Wei Fan
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan; (V.N.); (B.H.); (C.-W.F.); (A.A.)
| | - Aslia Asif
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan; (V.N.); (B.H.); (C.-W.F.); (A.A.)
- Doctoral Program in Science, Technology, Environment and Mathematics (STEM), National Chung Cheng University, Chiayi 621, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan; (V.N.); (B.H.); (C.-W.F.); (A.A.)
| |
Collapse
|
14
|
Kochetkova TV, Podosokorskaya OA, Elcheninov AG, Kublanov IV. Diversity of Thermophilic Prokaryotes Inhabiting Russian Natural Hot Springs. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Mathan Kumar R, Jani K, Parvathi JR, Thomas BM, Raja SSS, Pandey A, Sharma A. Bacterial diversity of geochemically distinct hot springs located in Maharashtra, India. Arch Microbiol 2022; 204:110. [PMID: 34978617 DOI: 10.1007/s00203-021-02728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/25/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022]
Abstract
Bacterial diversity of four thermally different hot springs of Ratnagiri district, Maharashtra, India, was investigated using culture-dependent and culture-independent approaches. A total of 144 bacterial cultures were isolated and identified using MALDI-TOF MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry) and 16S rRNA gene sequencing. Culture-independent analysis by Ion Torrent sequencing targeting the V3 region of the 16S rRNA gene revealed the predominance of Firmicutes across all the hot springs, followed by Chloroflexi, Bacteroidetes, Cyanobacteria, Proteobacteria, Armatimonadetes, Actinobacteria, Nitrospirae, Acidobacteria, and Deinococcus-Thermus, with subtle differences in their abundance. At the lower taxonomic rank of genus, we noted the prevalence of Acinetobacter followed by Clostridium, Planomicrobium, Bacillus, Streptomyces, and Leptolyngbya. Metagenomics imputation using in silico approach revealed divergence in the metabolic capabilities of bacterial communities along the thermal gradient of host springs, with site TS (63 °C) featuring the abundant functional gene families.
Collapse
Affiliation(s)
- R Mathan Kumar
- Government College of Arts and Science, Kurumbalur, Perambalur, (Formerly, Bharathidasan University Constituent College, Perambalur), Kurumbalur, Tamil Nadu, 621212, India
| | - Kunal Jani
- DBT-National Centre for Cell Science, Pune, 411007, India
| | - J R Parvathi
- Somaiya Institute for Research and Consultancy (SIRAC), Somaiya Vidyavihar University, Mumbai, 400077, India
| | - Becky M Thomas
- Somaiya Institute for Research and Consultancy (SIRAC), Somaiya Vidyavihar University, Mumbai, 400077, India.,CHRIST (Deemed to be University), Pune, 412112, India
| | - Suresh S S Raja
- Government College of Arts and Science, Kurumbalur, Perambalur, (Formerly, Bharathidasan University Constituent College, Perambalur), Kurumbalur, Tamil Nadu, 621212, India
| | - Anita Pandey
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehra Dun, 248002, India
| | - Avinash Sharma
- DBT-National Centre for Cell Science, Pune, 411007, India.
| |
Collapse
|
16
|
DeCastro ME, Escuder-Rodríguez JJ, Becerra M, Rodríguez-Belmonte E, González-Siso MI. Comparative Metagenomic Analysis of Two Hot Springs From Ourense (Northwestern Spain) and Others Worldwide. Front Microbiol 2021; 12:769065. [PMID: 34899652 PMCID: PMC8661477 DOI: 10.3389/fmicb.2021.769065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023] Open
Abstract
With their circumneutral pH and their moderate temperature (66 and 68°C, respectively), As Burgas and Muiño da Veiga are two important human-use hot springs, previously studied with traditional culture methods, but never explored with a metagenomic approach. In the present study, we have performed metagenomic sequence-based analyses to compare the taxonomic composition and functional potential of these hot springs. Proteobacteria, Deinococcus-Thermus, Firmicutes, Nitrospirae, and Aquificae are the dominant phyla in both geothermal springs, but there is a significant difference in the abundance of these phyla between As Burgas and Muiño da Veiga. Phylum Proteobacteria dominates As Burgas ecosystem while Aquificae is the most abundant phylum in Muiño da Veiga. Taxonomic and functional analyses reveal that the variability in water geochemistry might be shaping the differences in the microbial communities inhabiting these geothermal springs. The content in organic compounds of As Burgas water promotes the presence of heterotrophic populations of the genera Acidovorax and Thermus, whereas the sulfate-rich water of Muiño da Veiga favors the co-dominance of genera Sulfurihydrogenibium and Thermodesulfovibrio. Differences in ammonia concentration exert a selective pressure toward the growth of nitrogen-fixing bacteria such as Thermodesulfovibrio in Muiño da Veiga. Temperature and pH are two important factors shaping hot springs microbial communities as was determined by comparative analysis with other thermal springs.
Collapse
Affiliation(s)
| | | | | | | | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| |
Collapse
|
17
|
Microbial Abundance and Diversity in Subsurface Lower Oceanic Crust at Atlantis Bank, Southwest Indian Ridge. Appl Environ Microbiol 2021; 87:e0151921. [PMID: 34469194 DOI: 10.1128/aem.01519-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
International Ocean Discovery Program Expedition 360 drilled Hole U1473A at Atlantis Bank, an oceanic core complex on the Southwest Indian Ridge, with the aim of recovering representative samples of the lower oceanic crust. Recovered cores were primarily gabbro and olivine gabbro. These mineralogies may host serpentinization reactions that have the potential to support microbial life within the recovered rocks or at greater depths beneath Atlantis Bank. We quantified prokaryotic cells and analyzed microbial community composition for rock samples obtained from Hole U1473A and conducted nutrient addition experiments to assess if nutrient supply influences the composition of microbial communities. Microbial abundance was low (≤104 cells cm-3) but positively correlated with the presence of veins in rocks within some depth ranges. Due to the heterogeneous nature of the rocks downhole (alternating stretches of relatively unaltered gabbros and more significantly altered and fractured rocks), the strength of the positive correlations between rock characteristics and microbial abundances was weaker when all depths were considered. Microbial community diversity varied at each depth analyzed. Surprisingly, addition of simple organic acids, ammonium, phosphate, or ammonium plus phosphate in nutrient addition experiments did not affect microbial diversity or methane production in nutrient addition incubation cultures over 60 weeks. The work presented here from Site U1473A, which is representative of basement rock samples at ultraslow spreading ridges and the usually inaccessible lower oceanic crust, increases our understanding of microbial life present in this rarely studied environment and provides an analog for basement below ocean world systems such as Enceladus. IMPORTANCE The lower oceanic crust below the seafloor is one of the most poorly explored habitats on Earth. The rocks from the Southwest Indian Ridge (SWIR) are similar to rock environments on other ocean-bearing planets and moons. Studying this environment helps us increase our understanding of life in other subsurface rocky environments in our solar system that we do not yet have the capability to access. During an expedition to the SWIR, we drilled 780 m into lower oceanic crust and collected over 50 rock samples to count the number of resident microbes and determine who they are. We also selected some of these rocks for an experiment where we provided them with different nutrients to explore energy and carbon sources preferred for growth. We found that the number of resident microbes and community structure varied with depth. Additionally, added nutrients did not shape the microbial diversity in a predictable manner.
Collapse
|
18
|
Microbial Diversity of Terrestrial Geothermal Springs in Armenia and Nagorno-Karabakh: A Review. Microorganisms 2021; 9:microorganisms9071473. [PMID: 34361908 PMCID: PMC8307006 DOI: 10.3390/microorganisms9071473] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022] Open
Abstract
The microbial diversity of high-altitude geothermal springs has been recently assessed to explore their biotechnological potential. However, little is known regarding the microbiota of similar ecosystems located on the Armenian Highland. This review summarizes the known information on the microbiota of nine high-altitude mineralized geothermal springs (temperature range 25.8–70 °C and pH range 6.0–7.5) in Armenia and Nagorno-Karabakh. All these geothermal springs are at altitudes ranging from 960–2090 m above sea level and are located on the Alpide (Alpine–Himalayan) orogenic belt, a seismically active region. A mixed-cation mixed-anion composition, with total mineralization of 0.5 mg/L, has been identified for these thermal springs. The taxonomic diversity of hot spring microbiomes has been examined using culture-independent approaches, including denaturing gradient gel electrophoresis (DGGE), 16S rRNA gene library construction, 454 pyrosequencing, and Illumina HiSeq. The bacterial phyla Proteobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes are the predominant life forms in the studied springs. Archaea mainly include the phyla Euryarchaeota, Crenarchaeota, and Thaumarchaeota, and comprise less than 1% of the prokaryotic community. Comparison of microbial diversity in springs from Karvachar with that described for other terrestrial hot springs revealed that Proteobacteria, Bacteroidetes, Actinobacteria, and Deinococcus–Thermus are the common bacterial groups in terrestrial hot springs. Contemporaneously, specific bacterial and archaeal taxa were observed in different springs. Evaluation of the carbon, sulfur, and nitrogen metabolism in these hot spring communities has revealed diversity in terms of metabolic activity. Temperature seems to be an important factor in shaping the microbial communities of these springs. Overall, the diversity and richness of the microbiota are negatively affected by increasing temperature. Other abiotic factors, including pH, mineralization, and geological history, also impact the structure and function of the microbial community. More than 130 bacterial and archaeal strains (Bacillus, Geobacillus, Parageobacillus, Anoxybacillus, Paenibacillus, Brevibacillus Aeribacillus, Ureibacillus, Thermoactinomyces, Sporosarcina, Thermus, Rhodobacter, Thiospirillum, Thiocapsa, Rhodopseudomonas, Methylocaldum, Desulfomicrobium, Desulfovibrio, Treponema, Arcobacter, Nitropspira, and Methanoculleus) have been reported, some of which may be representative of novel species (sharing 91–97% sequence identity with their closest matches in GenBank) and producers of thermozymes and biomolecules with potential biotechnological applications. Whole-genome shotgun sequencing of T. scotoductus K1, as well as of the potentially new Treponema sp. J25 and Anoxybacillus sp. K1, were performed. Most of the phyla identified by 16S rRNA were also identified using metagenomic approaches. Detailed characterization of thermophilic isolates indicate the potential of the studied springs as a source of biotechnologically valuable microbes and biomolecules.
Collapse
|
19
|
Abstract
In recent years, natural thermal mineral waters have been gaining the special attention of the scientific community, namely in the prevention and treatment of some diseases, due to the microbial properties that exist in these habitats. The aim of this work was to characterize the physicochemical composition and the microbial taxonomic communities present in three thermal waters of the Galician region in Spain and two samples of the northern region in Portugal. These collected water samples were analyzed for physicochemical characterization and the respective hydrogenome of the waters using next generation sequencing together with 16S rRNA gene sequencing. The sequencing showed a high diversity of microorganisms in all analyzed waters; however, there is a clear bacterial predominance of Proteobacteria phylum, followed by Firmicutes, Deinococcus-Thermus, Aquificae and Nitrospira. The main physicochemical parameters responsible for the clustering within the Spanish waters were sulfur compounds (SO32− and S2−), CO32− and neutral pH, and in the Portuguese waters were Mg, Ca and Sr, nitrogen compounds (NO3− and NH4+), Na, Rb, conductivity and dry residue. This work will allow for a better understanding of the microbial community’s composition and how these microorganisms interfere in the physicochemical constitution of these waters often associated with medicinal properties. Furthermore, the hydrogenome may be used as an auxiliary tool in the practice of medical hydrology, increasing the likelihood of safe use of these unique water types.
Collapse
|
20
|
The Microbial Composition in Circumneutral Thermal Springs from Chignahuapan, Puebla, Mexico Reveals the Presence of Particular Sulfur-Oxidizing Bacterial and Viral Communities. Microorganisms 2020; 8:microorganisms8111677. [PMID: 33137872 PMCID: PMC7692377 DOI: 10.3390/microorganisms8111677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/28/2022] Open
Abstract
Terrestrial thermal springs are widely distributed globally, and these springs harbor a broad diversity of organisms of biotechnological interest. In Mexico, few studies exploring this kind of environment have been described. In this work, we explore the microbial community in Chignahuapan hot springs, which provides clues to understand these ecosystems' diversity. We assessed the diversity of the microorganism communities in a hot spring environment with a metagenomic shotgun approach. Besides identifying similarities and differences with other ecosystems, we achieved a systematic comparison against 11 metagenomic samples from diverse localities. The Chignahuapan hot springs show a particular prevalence of sulfur-oxidizing bacteria from the genera Rhodococcus, Thermomonas, Thiomonas, Acinetobacter, Sulfurovum, and Bacillus, highlighting those that are different from other recovered bacterial populations in circumneutral hot springs environments around the world. The co-occurrence analysis of the bacteria and viruses in these environments revealed that within the Rhodococcus, Thiomonas, Thermonas, and Bacillus genera, the Chignahuapan samples have specific species of bacteria with a particular abundance, such as Rhodococcus erytropholis. The viruses in the circumneutral hot springs present bacteriophages within the order Caudovirales (Siphoviridae, Myoviridae, and Podoviridae), but the family of Herelleviridae was the most abundant in Chignahuapan samples. Furthermore, viral auxiliary metabolic genes were identified, many of which contribute mainly to the metabolism of cofactors and vitamins as well as carbohydrate metabolism. Nevertheless, the viruses and bacteria present in the circumneutral environments contribute to the sulfur cycle. This work represents an exhaustive characterization of a community structure in samples collected from hot springs in Mexico and opens opportunities to identify organisms of biotechnological interest.
Collapse
|
21
|
Zhang Q, Campos M, Larama G, Acuña JJ, Valenzuela B, Solis F, Zamorano P, Araya R, Sadowsky MJ, Jorquera MA. Composition and predicted functions of the bacterial community in spouting pool sediments from the El Tatio Geyser field in Chile. Arch Microbiol 2020; 203:389-397. [PMID: 32816051 DOI: 10.1007/s00203-020-02020-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
The El Tatio Geyser Field (ETGF), located in Northern Chile, is the main geyser field in the southern hemisphere. Despite this, details of its microbial ecology are still unknown. Here, we briefly report on the composition and predicted functions of the bacterial community in spouting pool sediments from the ETGF as revealed by high-throughput sequencing of 16S rRNA genes. Results of this analysis showed that while there were differences in richness and diversity between samples, bacterial communities were primarily dominated by the phyla Proteobacteria, followed Firmicutes, Bacteroidetes, Acidobacteria, and Chloroflexi. Analyses of predicted functional activity indicated that the functions were mostly attributed to chemoheterotrophy and aerobic chemoheterotrophy, followed by sulfur (respiration of sulfur compounds and sulfate) and nitrogen (nitrate reduction, respiration of nitrogen and nitrate) cycling. Taken together, our results suggest a high diversity in taxonomy and predictive functions of bacterial communities in sediments from spouting pools. This study provides fundamentally important information on the structure and function predictive functions of microbiota communities in spouting pools. Moreover, since the ETGF is intensively visited and impacted by tens of thousands of tourists every year, our results can be used to help guide the design of sustainable conservation strategies.
Collapse
Affiliation(s)
- Qian Zhang
- The BioTechnology Institute, University of Minnesota, 140 Gortner Lab, 1479 Gortner Ave, St Paul, MN, 55108-6106, USA
| | - Marco Campos
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile.,Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
| | - Giovanni Larama
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile.,Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
| | - Jacquelinne J Acuña
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile.,Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
| | - Bernardita Valenzuela
- Laboratorio de Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Av. Angamos 601, Antofagasta, Chile
| | - Francisco Solis
- Laboratorio de Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Av. Angamos 601, Antofagasta, Chile
| | - Pedro Zamorano
- Laboratorio de Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Av. Angamos 601, Antofagasta, Chile.,Departamento Biomédico, Universidad de Antofagasta, Antofagasta, Chile
| | - Rubén Araya
- Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Av. Angamos 601, Antofagasta, Chile
| | - Michael J Sadowsky
- The BioTechnology Institute, University of Minnesota, 140 Gortner Lab, 1479 Gortner Ave, St Paul, MN, 55108-6106, USA.,Department of Soil, Water, and Climate, and Department of Plant and Microbial Biology, University of Minnesota, 439 Borlaug Hall 1991 Upper Buford Circle, St. Paul, MN, 55108, USA
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile. .,Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile.
| |
Collapse
|
22
|
Sharma N, Kumar J, Abedin MM, Sahoo D, Pandey A, Rai AK, Singh SP. Metagenomics revealing molecular profiling of community structure and metabolic pathways in natural hot springs of the Sikkim Himalaya. BMC Microbiol 2020; 20:246. [PMID: 32778049 PMCID: PMC7418396 DOI: 10.1186/s12866-020-01923-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Himalaya is an ecologically pristine environment. The geo-tectonic activities have shaped various environmental niches with diverse microbial populations throughout the Himalayan biosphere region. Albeit, limited information is available in terms of molecular insights into the microbiome, including the uncultured microbes, of the Himalayan habitat. Hence, a vast majority of genomic resources are still under-explored from this region. Metagenome analysis has simplified the extensive in-depth exploration of diverse habitats. In the present study, the culture-independent whole metagenome sequencing methodology was employed for microbial diversity exploration and identification of genes involved in various metabolic pathways in two geothermal springs located at different altitudes in the Sikkim Himalaya. RESULTS The two hot springs, Polok and Reshi, have distinct abiotic conditions. The average temperature of Polok and Reshi was recorded to be 62 °C and 43 °C, respectively. Both the aquatic habitats have alkaline geochemistry with pH in the range of 7-8. Community profile analysis revealed genomic evidence of plentiful bacteria, with a minute fraction of the archaeal population in hot water reservoirs of Polok and Reshi hot spring. Mesophilic microbes belonging to Proteobacteria and Firmicutes phyla were predominant at both the sites. Polok exhibited an extravagant representation of Chloroflexi, Deinococcus-Thermus, Aquificae, and Thermotogae. Metabolic potential analysis depicted orthologous genes associated with sulfur, nitrogen, and methane metabolism, contributed by the microflora in the hydrothermal system. The genomic information of many novel carbohydrate-transforming enzymes was deciphered in the metagenomic description. Further, the genomic capacity of antimicrobial biomolecules and antibiotic resistance were discerned. CONCLUSION The study provided comprehensive molecular information about the microbial treasury as well as the metabolic features of the two geothermal sites. The thermal aquatic niches were found a potential bioresource of biocatalyst systems for biomass-processing. Overall, this study provides the whole metagenome based insights into the taxonomic and functional profiles of Polok and Reshi hot springs of the Sikkim Himalaya. The study generated a wealth of genomic data that can be explored for the discovery and characterization of novel genes encoding proteins of industrial importance.
Collapse
Affiliation(s)
- Nitish Sharma
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), SAS Nagar, Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Jitesh Kumar
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), SAS Nagar, Mohali, India
| | - Md Minhajul Abedin
- Institute of Bioresources and Sustainable Development, Sikkim Centre, Tadong, Gangtok, India
| | - Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development, Sikkim Centre, Tadong, Gangtok, India
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Amit K Rai
- Institute of Bioresources and Sustainable Development, Sikkim Centre, Tadong, Gangtok, India.
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), SAS Nagar, Mohali, India.
| |
Collapse
|
23
|
Microbial Diversity in Deep-Subsurface Hot Brines of Northwest Poland: from Community Structure to Isolate Characteristics. Appl Environ Microbiol 2020; 86:AEM.00252-20. [PMID: 32198175 PMCID: PMC7205482 DOI: 10.1128/aem.00252-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/10/2020] [Indexed: 01/06/2023] Open
Abstract
Deep-subsurface hot brines in northwest Poland, extracted through boreholes reaching 1.6 and 2.6 km below the ground surface, were microbiologically investigated using culture-independent and culture-dependent methods. The high-throughput sequencing of 16S rRNA gene amplicons showed a very low diversity of bacterial communities, which were dominated by phyla Proteobacteria and Firmicutes Bacterial genera potentially involved in sulfur oxidation and nitrate reduction (Halothiobacillus and Methylobacterium) prevailed in both waters over the sulfate reducers ("Candidatus Desulforudis" and Desulfotomaculum). Only one archaeal taxon, affiliated with the order Thermoplasmatales, was detected in analyzed samples. Bacterial isolates obtained from these deep hot brines were closely related to Bacillus paralicheniformis based on the 16S rRNA sequence similarity. However, genomic and physiological analyses made for one of the isolates, Bacillus paralicheniformis strain TS6, revealed the existence of more diverse metabolic pathways than those of its moderate-temperature counterpart. These specific traits may be associated with the ecological adaptations to the extreme habitat, which suggest that some lineages of B. paralicheniformis are halothermophilic.IMPORTANCE Deep-subsurface aquifers, buried thousands of meters down the Earth's crust, belong to the most underexplored microbial habitats. Although a few studies revealed the existence of microbial life at the depths, the knowledge about the microbial life in the deep hydrosphere is still scarce due to the limited access to such environments. Studying the subsurface microbiome provides unique information on microbial diversity, community structure, and geomicrobiological processes occurring under extreme conditions of the deep subsurface. Our study shows that low-diversity microbial assemblages in subsurface hot brines were dominated by the bacteria involved in biogeochemical cycles of sulfur and nitrogen. Based on genomic and physiological analyses, we found that the Bacillus paralicheniformis isolate obtained from the brine under study differed from the mesophilic species in the presence of specific adaptations to harsh environmental conditions. We indicate that some lineages of B. paralicheniformis are halothermophilic, which was not previously reported.
Collapse
|
24
|
Najar IN, Sherpa MT, Das S, Das S, Thakur N. Diversity analysis and metagenomic insights into antibiotic and metal resistance among Himalayan hot spring bacteriobiome insinuating inherent environmental baseline levels of antibiotic and metal tolerance. J Glob Antimicrob Resist 2020; 21:342-352. [PMID: 32344121 DOI: 10.1016/j.jgar.2020.03.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/24/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Mechanisms of occurrence and expression of antibiotic resistance genes (ARGs) in thermophilic bacteria are still unknown owing to limited research and data. In this research, comparative profiling of ARGs and metal tolerance genes among thermophilic bacteria has been done by functional metagenomic methods. METHODS Shotgun metagenomic sequence data were generated using Illumina HiSeq 4000. Putative ARGs from the PROKKA predicted genes were identified with the ardbAnno V.1.0 script available from the ARDB (Antibiotic Resistance Genes Database) consortium using the non-redundant resistance genes as a reference. Putative metal resistance genes (MRGs) were identified by using BacMetScan V.1.0. The whole-genome sequencing for bacterial isolates was performed using Illumina HiSeq 4000 sequencing technology with a paired-end sequencing module. RESULTS Metagenomic analysis showed the dominance of Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes in two hot springs of Sikkim. ARG analysis through shotgun gene sequencing was found to be negative in the case of thermophilic bacteria. However, few genes were detected but they showed maximum similarity with mesophilic bacteria. Concurrently, MRGs were also detected in the metagenome sequence of isolates from hot springs. Detection of MRGs and absence of ARGs investigated by whole-genome sequencing in the reference genome sequence of thermophilic Geobacillus also conveyed the same message. CONCLUSION The study of ARGs and MRGs (Heavy metal resistance gene) among culturable and non-culturable bacteria from the hot springs of Sikkim via metagenomics showed a preferential selection of MRGs over ARGs. The absence of ARGs also does not support the co-selection of ARGs and MRGs in these environments. This evolutionary selection of metal resistance over antibiotic genes may have been necessary to survive in the geological craters which have an abundance of different metals from earth sediments rather than antibiotics. Furthermore, the selection could be environment driven depending on the susceptibility of ARGs in a thermophilic environments as it reduces the chances of horizontal gene transfer.
Collapse
Affiliation(s)
- Ishfaq Nabi Najar
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India.
| | - Mingma Thundu Sherpa
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India.
| | - Sayak Das
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India.
| | - Saurav Das
- Panhandle Research and Extension Center, University of Nebraska, Lincoln, NE, USA.
| | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India.
| |
Collapse
|
25
|
Pineda-Mendoza RM, Briones-Roblero CI, Gonzalez-Escobedo R, Rivera-Orduña FN, Martínez-Jerónimo F, Zúñiga G. Seasonal changes in the bacterial community structure of three eutrophicated urban lakes in Mexico city, with emphasis on Microcystis spp. Toxicon 2020; 179:8-20. [PMID: 32142716 DOI: 10.1016/j.toxicon.2020.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/08/2020] [Accepted: 02/26/2020] [Indexed: 10/24/2022]
Abstract
Artificial urban lakes commonly have physicochemical conditions that contribute to rapid anthropogenic eutrophication and development of cyanobacterial blooms. Microcystis is the dominat genus in most freshwater bodies and is one of the main producter of microcystins. Using 454-pyrosequencing we characterized the bacterial community, with special emphasis on Microcystis, in three recreational urban lakes from Mexico City in both wet and dry seasons. We also evaluated some physicochemical parameters that might influence the presence of Microcystis blooms, and we associated the relative abundance of heterotrophic and autotrophic bacterial communities with their possible metabolic capacities. A total of 14 phyla, 18 classes, 39 orders, 53 families and 48 bacterial genera were identified in both seasons in the three urban lakes. Cyanobacteria had the highest relative abundance followed by Proteobacteria and Actinobacteria. Microcystis was the dominant taxon followed by Arthrospira, Planktothrix and Synechococcus. We also found heterotrophic bacteria associated with the blooms, such as Rhodobacter, Pseudomonas, Sphingomonas and, Porphyrobacter. The highest richness, diversity and dominance were registered in the bacterial community of the Virgilio Uribe Olympic Rowing-Canoeing Track in both seasons, and the lowest values were found in the Chapultepec Lake. The canonical correspondence analysis showed that dissolved oxygen and NO3-N concentrations might explain the presence of Microcystis blooms. The metabolic prediction indicated that these communities are involved in photosynthesis, oxidative phosphorylation, methane metabolism, carbon fixation, and nitrogen and sulfur metabolism. The lakes studied had a high prevalence of Microcystis, but average values of microcystins did not exceed the maximum permissible level established by the United States Environmental Protection Agency for recreational and cultural activities. The presence of cyanobacteria and microcystins at low to moderate concentrations in the three lakes could result in ecosystem disruption and increase animal and human health risks.
Collapse
Affiliation(s)
- Rosa María Pineda-Mendoza
- Departamento de Zoología. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, Mexico
| | - Carlos Iván Briones-Roblero
- Departamento de Zoología. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, Mexico
| | - Roman Gonzalez-Escobedo
- Departamento de Zoología. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, Mexico
| | - Flor N Rivera-Orduña
- Departamento de Microbiología. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, Mexico
| | - Fernando Martínez-Jerónimo
- Departamento de Zoología. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, Mexico
| | - Gerardo Zúñiga
- Departamento de Zoología. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, Mexico.
| |
Collapse
|
26
|
Pérez V, Cortés J, Marchant F, Dorador C, Molina V, Cornejo-D’Ottone M, Hernández K, Jeffrey W, Barahona S, Hengst MB. Aquatic Thermal Reservoirs of Microbial Life in a Remote and Extreme High Andean Hydrothermal System. Microorganisms 2020; 8:E208. [PMID: 32028722 PMCID: PMC7074759 DOI: 10.3390/microorganisms8020208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 11/30/2022] Open
Abstract
Hydrothermal systems are ideal to understand how microbial communities cope with challenging conditions. Lirima, our study site, is a polyextreme, high-altitude, hydrothermal ecosystem located in the Chilean Andean highlands. Herein, we analyze the benthic communities of three nearby springs in a gradient of temperature (42-72 °C represented by stations P42, P53, and P72) and pH, and we characterize their microbial diversity by using bacteria 16S rRNA (V4) gene metabarcoding and 16S rRNA gene clone libraries (bacteria and archaea). Bacterial clone libraries of P42 and P53 springs showed that the community composition was mainly represented by phototrophic bacteria (Chlorobia, 3%, Cyanobacteria 3%, at P42; Chlorobia 5%, and Chloroflexi 5% at P53), Firmicutes (32% at P42 and 43% at P53) and Gammaproteobacteria (13% at P42 and 29% at P53). Furthermore, bacterial communities that were analyzed by 16S rRNA gene metabarcoding were characterized by an overall predominance of Chloroflexi in springs with lower temperatures (33% at P42), followed by Firmicutes in hotter springs (50% at P72). The archaeal diversity of P42 and P53 were represented by taxa belonging to Crenarchaeota, Diapherotrites, Nanoarchaeota, Hadesarchaeota, Thaumarchaeota, and Euryarchaeota. The microbial diversity of the Lirima hydrothermal system is represented by groups from deep branches of the tree of life, suggesting this ecosystem as a reservoir of primitive life and a key system to study the processes that shaped the evolution of the biosphere.
Collapse
Affiliation(s)
- Vilma Pérez
- Laboratorio de Ecologia Molecular y Microbiologia Aplicada, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta 1240000, Chile; (V.P.);
- Australian Centre for Ancient DNA (ACAD), University of Adelaide, Adelaide, SA 5005, Australia
| | - Johanna Cortés
- Laboratorio de Ecologia Molecular y Microbiologia Aplicada, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta 1240000, Chile; (V.P.);
- Centro de Biotecnología y Bioingeniería (CeBiB), Universidad de Chile, Santiago 8320000, Chile; (F.M.); (C.D.)
| | - Francisca Marchant
- Centro de Biotecnología y Bioingeniería (CeBiB), Universidad de Chile, Santiago 8320000, Chile; (F.M.); (C.D.)
| | - Cristina Dorador
- Centro de Biotecnología y Bioingeniería (CeBiB), Universidad de Chile, Santiago 8320000, Chile; (F.M.); (C.D.)
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta & Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta 1240000, Chile;
| | - Verónica Molina
- Observatorio de Ecología Microbiana, Departamento de Biología Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2340000, Chile;
| | - Marcela Cornejo-D’Ottone
- Escuela de Ciencias del Mar & Instituto Milenio de Oceanografía, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile;
| | - Klaudia Hernández
- Centro de Investigación Marina Quintay CIMARQ, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago 8320000, Chile;
| | - Wade Jeffrey
- Center for Environmental Diagnostics & Bioremediation, University of West Florida, Pensacola, FL 32514, USA;
| | - Sergio Barahona
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta & Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta 1240000, Chile;
- Laboratorio de Microbiología Aplicada y Extremófilos, Universidad Católica del Norte, Antofagasta 1240000, Chile
| | - Martha B. Hengst
- Laboratorio de Ecologia Molecular y Microbiologia Aplicada, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta 1240000, Chile; (V.P.);
- Centro de Biotecnología y Bioingeniería (CeBiB), Universidad de Chile, Santiago 8320000, Chile; (F.M.); (C.D.)
| |
Collapse
|
27
|
Yasir M, Qureshi AK, Srinivasan S, Ullah R, Bibi F, Rehan M, Khan SB, Azhar EI. Domination of Filamentous Anoxygenic Phototrophic Bacteria and Prediction of Metabolic Pathways in Microbial Mats from the Hot Springs of Al Aridhah. Folia Biol (Praha) 2020; 66:24-35. [PMID: 32512656 DOI: 10.14712/fb2020066010024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Microbial mats in hot springs form a dynamic ecosystem and support the growth of diverse communities with broad-ranging metabolic capacity. In this study, we used 16S rRNA gene amplicon sequencing to analyse microbial communities in mat samples from two hot springs in Al Aridhah, Saudi Arabia. Putative metabolic pathways of the microbial communities were identified using phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt). Filamentous anoxygenic phototrophic bacteria associated with phylum Chloroflexi were abundant (> 50 %) in both hot springs at 48 °C. Chloroflexi were mainly represented by taxa Chloroflexus followed by Roseiflexus. Cyanobacteria of genus Arthrospira constituted 3.4 % of microbial mats. Heterotrophic microorganisms were mainly represented by Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. Archaea were detected at a lower relative abundance (< 1 %). Metabolic pathways associated with membrane transport, carbon fixation, methane metabolism, amino acid biosynthesis, and degradation of aromatic compounds were commonly found in microbial mats of both hot springs. In addition, pathways for production of secondary metabolites and antimicrobial compounds were predicted to be present in microbial mats. In conclusion, microbial communities in the hot springs of Al Aridhah were composed of diverse bacteria, with taxa of Chloroflexus being dominant.
Collapse
Affiliation(s)
- M Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A K Qureshi
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - S Srinivasan
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka-560100, India
| | - R Ullah
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - F Bibi
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - S B Khan
- Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - E I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Hira P, Singh P, Pinnaka AK, Korpole S, Lal R. Taxonomically Characterized and Validated Bacterial Species Based on 16S rRNA Gene Sequences from India During the Last Decade. Indian J Microbiol 2019; 60:54-61. [PMID: 32089574 DOI: 10.1007/s12088-019-00845-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/27/2019] [Indexed: 12/26/2022] Open
Abstract
Microbial taxonomy dealing with identification and characterization of prokaryotes like bacteria and archaea has always been a major area of research all over the world. Exploring diversity of microbes and description of novel species with different genes and secondary compounds is of utmost importance for better future and sustenance of life. India having an enormous range of ecosystems and diverse species inhabiting these niches is considered to be one of the richest biodiversity regions of the world. During the last decade, with newer methodologies and better technology, the prokaryotic taxonomy from India has extended our inventory of microbial communities in specific niches. However, there still exist some limitations in classifying the microbes from India as compared to that is done world-over. This review enlists the taxonomic description of novel taxa of prokaryotes from India in the past decade. A total of 378 new bacterial species have been classified from different habitats in India in the last ten years and no descriptions of archaeal species is documented till date.
Collapse
Affiliation(s)
- Princy Hira
- 1Department of Zoology, Maitreyi College (University of Delhi), Chanakyapuri, New Delhi 110021 India
| | - Priya Singh
- 2Department of Zoology, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019 India
| | - Anil Kumar Pinnaka
- 3CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
| | - Suresh Korpole
- 3CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
| | - Rup Lal
- The Energy and Resource Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003 India
| |
Collapse
|
29
|
Soy S, Nigam VK, Sharma SR. Cellulolytic, amylolytic and xylanolytic potential of thermophilic isolates of Surajkund hot spring. J Biosci 2019; 44:124. [PMID: 31719233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A total of 41 isolates were obtained from various samples (soil, mud, and water) of Surajkund hot spring, Jharkhand, at three different isolation temperatures of 50°C, 60°C, and 70°C. However, our interest was in the thermophilic strains that were isolated at 60°C and 70°C. Four isolates at 70°C (BITSNS038, BITSNS039, BITSNS040, BITSNS041) are the producers of thermozymes, namely amylase, xylanase, and cellulase, respectively. The highlights of the present study also showed that three out of four isolates demonstrated all three enzymatic activities, i.e. amylolytic, xylanolytic and cellulolytic on agar plate assay conditions at 70°C. One of the isolates, BITSNS038, was further chosen for phenotypic characterization as well as 16S rRNA gene sequencing and was affiliated to Geobacillus icigianus. The presence of Geobacillus icigianus was reported first time from hot spring, Surajkund, which showed amylolytic index of 1.58, xylanolytic index of 1.5 and cellulolytic index of 2.3 based on plate assay, and amylase activity of 0.81 U/mL, xylanase activity of 0.72 U/mL and very less cellulase activity of 0.15 U/mL after 24 h of growth in submerged conditions. One isolate at 60°C BITSNS024 was found to exhibit maximum amylase activity with an enzymatic index value of 3.5 and was identified as Anoxybacillus gonensis.
Collapse
Affiliation(s)
- Snehi Soy
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, India
| | | | | |
Collapse
|
30
|
Cellulolytic, amylolytic and xylanolytic potential of thermophilic isolates of Surajkund hot spring. J Biosci 2019. [DOI: 10.1007/s12038-019-9938-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Chen SC, Weng CY, Lai MC, Tamaki H, Narihiro T. Comparative genomic analyses reveal trehalose synthase genes as the signature in genus Methanoculleus. Mar Genomics 2019; 47:100673. [PMID: 30935830 DOI: 10.1016/j.margen.2019.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/19/2019] [Accepted: 03/24/2019] [Indexed: 11/25/2022]
Abstract
To date, the only methanoarchaea isolated directly from methane hydrate bearing sediments were Methanoculleus submarinus Nankai-1T and Methanoculleus sp. MH98A. Here, we provide the genome of Methanoculleus taiwanensis CYW4T isolated from the deep-sea subseafloor sediment at the Deformation Front offshore southwestern Taiwan, where methane hydrate deposits are likely located. Through comparative genomics analyses of nine Methanoculleus strains from various habitats, 2-3 coding genes for trehalose synthases were found in all nine Methanoculleus genomes, which were not detected in other methanogens and are therefore suggested as a signature of genus Methanoculleus among methane-producing archaea. In addition, the structural genes adjacent to trehalose synthase genes are comprised of the signaling module of Per-Arnt-Sim (PAS) domain-containing proteins, Hsp20 family proteins, arabinose efflux permeases and multiple surface proteins with fasciclin-like (FAS) repeat. This indicates that trehalose synthase gene clusters in Methanoculleus might play roles in the response to various stresses and regulate carbon storage and modification of surface proteins through accumulation of trehalose. The non-gas hydrate-associated Methanoculleus strains harbor carbon-monoxide dehydrogenase (cooS/acsA) genes, which are important for the conversion of acetate to methane at the step of CO oxidation/CO2 reduction in acetoclastic methanogens and further implies that these strains may be able to utilize CO for methanogenesis in their natural habitats. In addition, both genomes of M. bourgensis strains MS2T and MAB1 harbor highly abundant transposase genes, which may be disseminated from microbial communities in their habitats, sewage treatment plants and biogas reactors, which are breeding grounds for antibiotic resistance. Through comparative genomic analyses, we gained insight into understanding the life of strictly anaerobic methane-producing archaea in various habitats, especially in methane-based deep-sea ecosystems.
Collapse
Affiliation(s)
- Sheng-Chung Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chieh-Yin Weng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Mei-Chin Lai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan; Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
32
|
Delineating thermophilic xylanase from Bacillus licheniformis DM5 towards its potential application in xylooligosaccharides production. World J Microbiol Biotechnol 2019; 35:34. [DOI: 10.1007/s11274-019-2605-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
|
33
|
Zhang B, Xu X, Zhu L. Activated sludge bacterial communities of typical wastewater treatment plants: distinct genera identification and metabolic potential differential analysis. AMB Express 2018; 8:184. [PMID: 30430271 PMCID: PMC6236004 DOI: 10.1186/s13568-018-0714-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 11/07/2018] [Indexed: 12/26/2022] Open
Abstract
To investigate the differences in activated sludge microbial communities of different wastewater treatment plants (WWTPs) and understand their metabolic potentials, we sampled sludge from every biological treatment unit of 5 full-scale waste water treatment systems in 3 typical Chinese municipal WWTPs. The microbial communities and overall metabolic patterns were not only affected by influent characteristics but also varied between different biological treatment units. Distinct genera in different wastewater treatment systems were identified. The important microorganisms in domestic sewage treatment systems were unclassified SHA-20, Caldilinea, Dechloromonas, and unclassified genera from Rhodospirilaceae and Caldilineaceae. The important microorganisms in dyeing wastewater treatment systems were Nitrospira, Sphingobacteriales, Thiobacillus, Sinobacteraceae and Comamonadaceae. Compared with the obvious differences in microbial community composition, the metabolic potential showed no significant differences.
Collapse
|
34
|
Kaushal G, Kumar J, Sangwan RS, Singh SP. Metagenomic analysis of geothermal water reservoir sites exploring carbohydrate-related thermozymes. Int J Biol Macromol 2018; 119:882-895. [DOI: 10.1016/j.ijbiomac.2018.07.196] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/17/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
|
35
|
Tang J, Liang Y, Jiang D, Li L, Luo Y, Shah MMR, Daroch M. Temperature-controlled thermophilic bacterial communities in hot springs of western Sichuan, China. BMC Microbiol 2018; 18:134. [PMID: 30332987 PMCID: PMC6191902 DOI: 10.1186/s12866-018-1271-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
Background Ganzi Prefecture in Western China is situated geographically at the transition regions between Tibetan Plateau and Sichuan Basin in a highly tectonically active boundary area between the India and Eurasia plates. The region hosts various hot springs that span a wide range of temperature from 30 to 98 °C and are located at high altitude (up to 4200 m above sea level) in the region of large geothermal anomalies and active Xianshuihe slip-fault that has been active since Holocene. The site represents a biodiversity reservoir for thermophiles, yet their diversity and relationship to geochemical parameters are largely unknown. In the present work, bacterial diversity and community structure in 14 hot springs of Ganzi were investigated using Illumina MiSeq sequencing. Results Bacterial community compositions were evidently distinct among the 14 hot springs, and the bacterial communities in hot springs were majorly abundant in phyla Aquificae, Cyanobacteria and Proteobacteria. Both clustering and PCoA analysis suggested the existence of four bacterial community patterns in these hot springs. Temperature contributed to shaping bacterial community structure of hot springs as revealed by correlation analysis. Abundant unassigned-genus sequences detected in this study strongly implied the presence of novel genera or genetic resources in these hot springs. Conclusion The diversity of hot springs of Ganzi prefecture in Western Sichuan, China is evidently shaped by temperature. Interestingly disproportionally abundant unassigned-genus sequences detected in this study show indicate potential of novel genera or phylotypes. We hypothesize that frequent earthquakes and rapidly changing environment might have contributed to evolution of these potentially new lineages. Overall, this study provided first insight into the bacterial diversity of hot springs located in Western Sichuan, China and its comparison with other similar communities worldwide. Electronic supplementary material The online version of this article (10.1186/s12866-018-1271-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Tang
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Yuanmei Liang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Dong Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Liheng Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yifan Luo
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Md Mahfuzur R Shah
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
36
|
Jardine JL, Stoychev S, Mavumengwana V, Ubomba-Jaswa E. Screening of potential bioremediation enzymes from hot spring bacteria using conventional plate assays and liquid chromatography - Tandem mass spectrometry (Lc-Ms/Ms). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:787-796. [PMID: 29986326 DOI: 10.1016/j.jenvman.2018.06.089] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 06/15/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
The search for an eco-friendly, non-toxic, economical and efficient means of cleaning water through bioremediation is not only more favourable but critical to maintaining water quality globally especially in water-scarce countries. Thermophilic bacteria including Bacillus species are an important source of novel enzymes for biotechnology applications. In this study, 56 bacterial isolates which were cultured from five hot springs in South Africa were identified predominantly as Bacillus sp. or Bacillus-related spp by 16S rDNA gene sequencing. These isolates were screened for potentially useful enzymes for water bioremediation. Using conventional agar plate assays, 56% (n = 43), 68% (n = 38) and 16% (n = 31) were positive for amylase, protease and bromothymol blue decolorisation respectively. In liquid starch culture, three amylase-positive isolates differentially degraded starch by 34% (isolate 20S) to 98% (isolate 9T). Phenol degradation revealed that five out of thirty reduced phenol up to 42% by colorimetric assay. A thermophilic strain of Anoxybacillus rupiensis 19S (optimal growth temperature of 50 °C), which degraded starch, protein and phenol, was selected for further analysis by tandem LC-MS/MS. This newer technique identified potential enzymes for water bioremediation relating to pollutants from the food industry (amylase, proteases), polyaromatic hydrocarbons and dye pollutants (catalase peroxidase, superoxide dismutase, azoreductase, quinone oxidoreductase), antibiotic residues (ribonucleases), solubilisation of phosphates (inorganic pyrophosphatase) and reduction of chromate and lead. In addition, potential enzymes for biomonitoring of environmental pollutants were also identified. Specifically, dehydrogenases were found to decrease as the level of inorganic heavy metals and petroleum increased in soil samples. This study concludes that bacteria found in South African hot springs are a potential source of novel enzymes with tandem LC-MS/MS revealing substantially more information compared with conventional assays, which can be used for various applications of water bioremediation.
Collapse
Affiliation(s)
- J L Jardine
- Department of Biotechnology, University of Johannesburg, 37 Nind Street, Doornfontein, Gauteng, South Africa
| | - S Stoychev
- Council for Scientific and Industrial Research, Biosciences, Box 395, Pretoria 0001, South Africa
| | - V Mavumengwana
- Department of Biotechnology, University of Johannesburg, 37 Nind Street, Doornfontein, Gauteng, South Africa
| | - E Ubomba-Jaswa
- Department of Biotechnology, University of Johannesburg, 37 Nind Street, Doornfontein, Gauteng, South Africa; Water Research Commission, Lynnwood Bridge Office Park, Bloukrans Building, 4 Daventry Street, Lynnwood Manor, Pretoria, South Africa.
| |
Collapse
|
37
|
Najar IN, Sherpa MT, Das S, Das S, Thakur N. Microbial ecology of two hot springs of Sikkim: Predominate population and geochemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:730-745. [PMID: 29758429 DOI: 10.1016/j.scitotenv.2018.05.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Northeastern regions of India are known for their floral and faunal biodiversity. Especially the state of Sikkim lies in the eastern Himalayan ecological hotspot region. The state harbors many sulfur rich hot springs which have therapeutic and spiritual values. However, these hot springs are yet to be explored for their microbial ecology. The development of neo generation techniques such as metagenomics has provided an opportunity for inclusive study of microbial community of different environment. The present study describes the microbial diversity in two hot springs of Sikkim that is Polok and Borong with the assist of culture dependent and culture independent approaches. The culture independent techniques used in this study were next generation sequencing (NGS) and Phospholipid Fatty Acid Analysis (PLFA). Having relatively distinct geochemistry both the hot springs are thermophilic environments with the temperature range of 50-77 °C and pH range of 5-8. Metagenomic data revealed the dominance of bacteria over archaea. The most abundant phyla were Proteobacteria and Bacteroidetes although other phyla were also present such as Acidobacteria, Nitrospirae, Firmicutes, Proteobacteria, Parcubacteria and Spirochaetes. The PLFA studies have shown the abundance of Gram Positive bacteria followed by Gram negative bacteria. The culture dependent technique was correlative with PLFA studies. Most abundant bacteria as isolated and identified were Gram-positive genus Geobacillus and Anoxybacillus. The genus Geobacillus has been reported for the first time in North-Eastern states of India. The Geobacillus species obtained from the concerned hot springs were Geobacillus toebii, Geobacillus lituanicus, Geobacillus Kaustophillus and the Anoxybacillus species includes Anoxybacillus gonensis and Anoxybacillus Caldiproteolyticus. The distribution of major genera and their statistical correlation analyses with the geochemistry of the springs predicted that the temperature, pH, alkalinity, Ca2+, Mg2+, Cl2+, and sulfur were main environmental variables influencing the microbial community composition and diversity. Also the piper diagram suggested that the water of both the hot springs are Ca-HCO3- type and can be predicted as shallow fresh ground waters. This study has provided an insight into the ecological interaction of the diverse microbial communities and associated physicochemical parameters, which will help in determining the future studies on different biogeochemical pathways in these hot springs.
Collapse
Affiliation(s)
- Ishfaq Nabi Najar
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India
| | - Mingma Thundu Sherpa
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India
| | - Sayak Das
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India
| | - Saurav Das
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India
| | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India.
| |
Collapse
|
38
|
Miller HC, Morgan MJ, Walsh T, Wylie JT, Kaksonen AH, Puzon GJ. Preferential feeding in Naegleria fowleri; intracellular bacteria isolated from amoebae in operational drinking water distribution systems. WATER RESEARCH 2018; 141:126-134. [PMID: 29783165 DOI: 10.1016/j.watres.2018.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
The amoeba Naegleria fowleri is the causative agent of the highly fatal disease, primary amoebic meningoencephalitis, and estimated to cause 16 deaths per year in the United States alone. Colonisation of drinking water distribution systems (DWDSs) by the N. fowleri is a significant public health issue. Understanding the factors which enable this pathogen to colonise and thrive in DWDSs is critical for proper management. The microbial ecology within DWDSs may influence the ability of N. fowleri to colonise DWDSs by facilitating the availability of an appropriate food source. Using biofilm samples obtained from operational DWDSs, 16S rRNA amplicon metabarcoding was combined with genus-specific PCR and Sanger sequencing of intracellular associated bacteria from isolated amoeba and their parental biofilms to identify Meiothermus chliarophilus as a potential food source for N. fowleri. Meiothermus was confirmed as a food source for N. fowleri following successful serial culturing of axenic N. fowleri with M. chliarophilus or M. ruber as the sole food source. The ability to identify environmental and ecological conditions favourable to N. fowleri colonisation, including the detection of appropriate food sources such as Meiothermus, could provide water utilities with a predictive tool for managing N. fowleri colonisation within the DWDS.
Collapse
Affiliation(s)
- Haylea C Miller
- CSIRO Land and Water, Private Bag No.5, Wembley, Western Australia 6913, Australia; School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Matthew J Morgan
- CSIRO Land and Water, Black Mountain Laboratories, P.O. Box 1700, Canberra, ACT, 2601, Australia
| | - Tom Walsh
- CSIRO Land and Water, Black Mountain Laboratories, P.O. Box 1700, Canberra, ACT, 2601, Australia
| | - Jason T Wylie
- CSIRO Land and Water, Private Bag No.5, Wembley, Western Australia 6913, Australia
| | - Anna H Kaksonen
- CSIRO Land and Water, Private Bag No.5, Wembley, Western Australia 6913, Australia; School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Geoffrey J Puzon
- CSIRO Land and Water, Private Bag No.5, Wembley, Western Australia 6913, Australia.
| |
Collapse
|
39
|
Selvarajan R, Sibanda T, Tekere M. Thermophilic bacterial communities inhabiting the microbial mats of "indifferent" and chalybeate (iron-rich) thermal springs: Diversity and biotechnological analysis. Microbiologyopen 2018; 7:e00560. [PMID: 29243409 PMCID: PMC5911995 DOI: 10.1002/mbo3.560] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/13/2017] [Accepted: 10/24/2017] [Indexed: 11/08/2022] Open
Abstract
Microbial mats are occasionally reported in thermal springs and information on such mats is very scarce. In this study, microbial mats were collected from two hot springs (Brandvlei (BV) and Calitzdorp (CA)), South Africa and subjected to scanning electron microscopy (SEM) and targeted 16S rRNA gene amplicon analysis using Next Generation Sequencing (NGS). Spring water temperature was 55°C for Brandvlei and 58°C for Calitzdorp while the pH of both springs was slightly acidic, with an almost identical pH range (6.2-6.3). NGS analysis resulted in a total of 4943 reads, 517 and 736 OTUs for BV and CA at, respectively, a combined total of 14 different phyla in both samples, 88 genera in CA compared to 45 in BV and 37.64% unclassified sequences in CA compared to 27.32% recorded in BV. Dominant bacterial genera in CA microbial mat were Proteobacteria (29.19%), Bacteroidetes (9.41%), Firmicutes (9.01%), Cyanobacteria (6.89%), Actinobacteria (2.65%), Deinococcus-Thermus (2.57%), and Planctomycetes (1.94%) while the BV microbial mat was dominated by Bacteroidetes (47.3%), Deinococcus-Thermus (12.35%), Proteobacteria (7.98%), and Planctomycetes (2.97%). Scanning electron microscopy results showed the presence of microbial filaments possibly resembling cyanobacteria, coccids, rod-shaped bacteria and diatoms in both microbial mats. Dominant genera that were detected in this study have been linked to different biotechnological applications including hydrocarbon degradation, glycerol fermentation, anoxic-fermentation, dehalogenation, and biomining processes. Overall, the results of this study exhibited thermophilic bacterial community structures with high diversity in microbial mats, which have a potential for biotechnological exploitation.
Collapse
Affiliation(s)
- Ramganesh Selvarajan
- Department of Environmental SciencesCollege of Agriculture and Environmental SciencesUNISA Science CampusFloridaSouth Africa
| | - Timothy Sibanda
- Department of Environmental SciencesCollege of Agriculture and Environmental SciencesUNISA Science CampusFloridaSouth Africa
| | - Memory Tekere
- Department of Environmental SciencesCollege of Agriculture and Environmental SciencesUNISA Science CampusFloridaSouth Africa
| |
Collapse
|
40
|
Untapped bacterial diversity and metabolic potential within Unkeshwar hot springs, India. Arch Microbiol 2018; 200:753-770. [PMID: 29396619 DOI: 10.1007/s00203-018-1484-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 01/04/2023]
Abstract
Hot springs support diverse and interesting groups of microorganisms adapted to extreme conditions and gaining attention in biotechnological applications. However, due to limitations of cultivation methods, a majority of such extremophiles remain uncultivated and unexplored. The advent of multiple cultivation conditions and specialized culture media could possibly aid to access the unexplored microbial portion of hot springs. In the present study, different media and isolation strategies were applied to isolate hitherto unexplored bacterial taxa in the water samples collected from Unkeshwar hot springs, India. Molecular, phylogenetic and predictive functional characterization of the isolated bacterial population was done using 16S rRNA sequencing coupled with Tax4Fun tools. Furthermore, representative isolates were screened for important enzymes (cellulase, xylanase, amylase, and protease) and heavy metal tolerance (chromium, arsenic) properties. A total of 454 bacterial isolates obtained were mapped into 57 unique bacterial genera and 4 different bacterial phyla. Interestingly, 37 genera not previously isolated from Indian hot springs, were isolated for the first time in the present study. However, most of these genera (23 out of 37) were reported only in metagenomics studies from Indian and global hot springs. Furthermore, around 14 genera not previously cultivated and not detected in metagenomics studies of hot springs are documented here. The metabolic potential was ascertained by determining the abundance of specific genes using in silico based Tax4Fun tool, which identified around 315 metabolic pathways for metabolism of carbohydrates, synthesis of secondary metabolites and degradation of xenobiotic compounds. Bioprospection study revealed that 33 and 25 bacterial genera were positive for enzyme production and resistance to the heavy metals, respectively. The present study revealed the advantages of cultivation methods using a comprehensive multiple isolation approach for exploring untapped and unique bacterial diversity, and also utilities for various biotechnological and environmental applications.
Collapse
|
41
|
Pervasiveness of UVC254-resistant Geobacillus strains in extreme environments. Appl Microbiol Biotechnol 2018; 102:1869-1887. [DOI: 10.1007/s00253-017-8712-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022]
|
42
|
Differences in Temperature and Water Chemistry Shape Distinct Diversity Patterns in Thermophilic Microbial Communities. Appl Environ Microbiol 2017; 83:AEM.01363-17. [PMID: 28821552 DOI: 10.1128/aem.01363-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/11/2017] [Indexed: 01/22/2023] Open
Abstract
This report describes the biodiversity and ecology of microbial mats developed in thermal gradients (20 to 65°C) in the surroundings of three drillings (Chiraleu [CH], Ciocaia [CI], and Mihai Bravu [MB]) tapping a hyperthermal aquifer in Romania. Using a metabarcoding approach, 16S rRNA genes were sequenced from both DNA and RNA transcripts (cDNA) and compared. The relationships between the microbial diversity and the physicochemical factors were explored. Additionally, the cDNA data were used for in silico functionality predictions, bringing new insights into the functional potential and dynamics of these communities. The results showed that each hot spring determined the formation of distinct microbial communities. In the CH mats (40 to 53°C), the abundance of Cyanobacteria decreased with temperature, opposite to those of Chloroflexi and ProteobacteriaEctothiorhodospira, Oscillatoria, and methanogenic archaea dominated the CI communities (20 to 65°C), while the MB microbial mats (53 to 65°C) were mainly composed of Chloroflexi, Hydrogenophilus, Thermi, and Aquificae Alpha-diversity was negatively correlated with the increase in water temperature, while beta-diversity was shaped in each hot spring by the unique combination of physicochemical parameters, regardless of the type of nucleic acid analyzed (DNA versus cDNA). The rank correlation analysis revealed a unique model that associated environmental data with community composition, consisting in the combined effect of Na+, K+, HCO3-, and PO43- concentrations, together with temperature and electrical conductivity. These factors seem to determine the grouping of samples according to location, rather than with the similarities in thermal regimes, showing that other parameters beside temperature are significant drivers of biodiversity.IMPORTANCE Hot spring microbial mats represent a remarkable manifestation of life on Earth and have been intensively studied for decades. Moreover, as hot spring areas are isolated and have a limited exchange of organisms, nutrients, and energy with the surrounding environments, hot spring microbial communities can be used in model studies to elucidate the colonizing potential within extreme settings. Thus, they are of great importance in evolutionary biology, microbial ecology, and exobiology. In spite of all the efforts that have been made, the current understanding of the influence of temperature and water chemistry on the microbial community composition, diversity, and abundance in microbial mats is limited. In this study, the composition and diversity of microbial communities developed in thermal gradients in the vicinity of three hot springs from Romania were investigated, each having particular physicochemical characteristics. Our results expose new factors that could determine the formation of these ecosystems, expanding the current knowledge in this regard.
Collapse
|
43
|
Poddar A, Das SK. Microbiological studies of hot springs in India: a review. Arch Microbiol 2017; 200:1-18. [PMID: 28887679 DOI: 10.1007/s00203-017-1429-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/22/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
The earliest microbiological studies on hot springs in India date from 2003, a much later date compared to global attention in this striking field of study. As of today, 28 out of 400 geothermal springs have been explored following both culturable and non-culturable approaches. The temperatures and pH of the springs are 37-99 °C and 6.8-10, respectively. Several studies have been performed on the description of novel genera and species, characterization of different bio-resources, metagenomics of hot spring microbiome and whole genome analysis of few isolates. 17 strains representing novel species and many thermostable enzymes, including lipase, protease, chitinase, amylase, etc. with potential biotechnological applications have been reported by several authors. Influence of physico-chemical conditions, especially that of temperature, on shaping the hot spring microbiome has been established by metagenomic investigations. Bacteria are the predominant life forms in all the springs with an abundance of phyla Firmicutes, Proteobacteria, Actinobacteria, Thermi, Bacteroidetes, Deinococcus-Thermus and Chloroflexi. In this review, we have discussed the findings on all microbiological studies that have been carried out to date, on the 28 hot springs. Further, the possibilities of extrapolating these studies for practical applications and environmental impact assessment towards protection of natural ecosystem of hot springs have also been discussed.
Collapse
Affiliation(s)
- Abhijit Poddar
- Biosafety Support Unit, Regional Centre for Biotechnology, NPC Building, 5-6 Institutional Area, Lodhi Road, New Delhi, 110003, India.
| | - Subrata K Das
- Department of Biotechnology, Institute of Life Sciences, Bhubaneswar, 751023, India.
| |
Collapse
|
44
|
Panda AK, Bisht SS, Kaushal BR, De Mandal S, Kumar NS, Basistha BC. Bacterial diversity analysis of Yumthang hot spring, North Sikkim, India by Illumina sequencing. BIG DATA ANALYTICS 2017. [DOI: 10.1186/s41044-017-0022-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|