1
|
Wu S, Hooks D, Brightwell G. Current Understanding on the Heterogenous Expression of Plastic Depolymerising Enzymes in Pichia pastoris. Bioengineering (Basel) 2025; 12:68. [PMID: 39851342 PMCID: PMC11760480 DOI: 10.3390/bioengineering12010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
Enzymatic depolymerisation is increasingly recognised as a reliable and environmentally friendly method. The development of this technology hinges on the availability of high-quality enzymes and associated bioreaction systems for upscaling biodegradation. Microbial heterologous expression systems have been studied for meeting this demand. Among these systems, the Pichia pastoris expression system has emerged as a widely used platform for producing secreted heterologous proteins. This article provides an overview of studies involving the recombinant expression of polymer-degrading enzymes using the P. pastoris expression system. Research on P. pastoris expression of interested enzymes with depolymerising ability, including cutinase, lipase, and laccase, are highlighted in the review. The key factors influencing the heterologous expression of polymer-degrading enzymes in P. pastoris are discussed, shedding light on the challenges and opportunities in the development of depolymerising biocatalysts through the P. pastoris expression system.
Collapse
Affiliation(s)
- Shuyan Wu
- AgResearch Ltd., Grasslands, Palmerston North 4442, New Zealand; (D.H.); (G.B.)
| | - David Hooks
- AgResearch Ltd., Grasslands, Palmerston North 4442, New Zealand; (D.H.); (G.B.)
| | - Gale Brightwell
- AgResearch Ltd., Grasslands, Palmerston North 4442, New Zealand; (D.H.); (G.B.)
- New Zealand Food Safety Science and Research Centre, Tennent Drive, Massey University, Palmerston North 4474, New Zealand
| |
Collapse
|
2
|
Chmelová D, Ondrejovič M, Miertuš S. Laccases as Effective Tools in the Removal of Pharmaceutical Products from Aquatic Systems. Life (Basel) 2024; 14:230. [PMID: 38398738 PMCID: PMC10890127 DOI: 10.3390/life14020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
This review aims to provide a comprehensive overview of the application of bacterial and fungal laccases for the removal of pharmaceuticals from the environment. Laccases were evaluated for their efficacy in degrading pharmaceutical substances across various categories, including analgesics, antibiotics, antiepileptics, antirheumatic drugs, cytostatics, hormones, anxiolytics, and sympatholytics. The capability of laccases to degrade or biotransform these drugs was found to be dependent on their structural characteristics. The formation of di-, oligo- and polymers of the parent compound has been observed using the laccase mediator system (LMS), which is advantageous in terms of their removal via commonly used processes in wastewater treatment plants (WWTPs). Notably, certain pharmaceuticals such as tetracycline antibiotics or estrogen hormones exhibited degradation or even mineralization when subjected to laccase treatment. Employing enzyme pretreatment mitigated the toxic effects of degradation products compared to the parent drug. However, when utilizing the LMS, careful mediator selection is essential to prevent potential increases in environment toxicity. Laccases demonstrate efficiency in pharmaceutical removal within WWTPs, operating efficiently under WWTP conditions without necessitating isolation.
Collapse
Affiliation(s)
- Daniela Chmelová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, J. Herdu 2, SK-91701 Trnava, Slovakia; (D.C.); (M.O.)
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, J. Herdu 2, SK-91701 Trnava, Slovakia; (D.C.); (M.O.)
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, J. Herdu 2, SK-91701 Trnava, Slovakia; (D.C.); (M.O.)
- ICARST n.o., Jamnického 19, SK-84101 Bratislava, Slovakia
| |
Collapse
|
3
|
Schmitz F, Röder A, Hoffrogge M, Urlacher VB, Koschorreck K. Agar plate-based activity assay for easy and fast screening of recombinant Pichia pastoris expressing unspecific peroxygenases. Biotechnol J 2024; 19:e2300421. [PMID: 38044796 DOI: 10.1002/biot.202300421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023]
Abstract
Unspecific peroxygenases (UPOs) are promising biocatalysts that catalyze oxyfunctionalization reactions without the need for costly cofactors. Pichia pastoris (reclassified as Komagataella phaffii) is considered an attractive host for heterologous expression of UPOs. However, integration of UPO-expression cassettes into the genome via a single cross-over yields recombinant Pichia transformants with different UPO gene copy numbers resulting in different expression levels. Selection of the most productive Pichia transformants by a commonly used screening in liquid medium in 96-well plates is laborious and lasts up to 5 days. In this work, we developed a simple two-step agar plate-based assay to screen P. pastoris transformants for UPO activity with less effort, within shorter time, and without automated screening devices. After cell growth and protein expression on agar plates supplemented with methanol and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), an additional top agar layer supplemented with ABTS and peroxide is added. UPO activity is visualized within 15 min by formation of green zones around UPO-secreting P. pastoris transformants. The assay was validated with two UPOs, AbrUPO from Aspergillus brasiliensis and evolved PaDa-I from Agrocybe aegerita. The assay results were confirmed in a quantitative 96-deep well plate screening in liquid medium.
Collapse
Affiliation(s)
- Fabian Schmitz
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany
| | - Annika Röder
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany
| | - Maike Hoffrogge
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany
| | - Katja Koschorreck
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany
| |
Collapse
|
4
|
Hoyos LV, Chaves A, Grandezz D, Medina A, Correa J, Ramirez-Castrillon M, Valencia D, Caicedo-Ortega NH. Systematic screening strategy for fungal laccase activity of endophytes from Otoba gracilipes with bioremediation potential. Fungal Biol 2023; 127:1298-1311. [PMID: 37821152 DOI: 10.1016/j.funbio.2023.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 10/13/2023]
Abstract
Fungal laccases are promising for biotechnological applications, including bioremediation and dye biotransformation, due to their high redox potential and broad substrate specificity. However, current bioprospecting methods for identifying laccase-producing fungi can be challenging and time-consuming. For early detection, it was developed a three-step, multi-criteria weighting system that evaluates fungal strains based on: First, the biotransformation capacity of three dyes (i.e., Congo red, brilliant blue G-250, and malachite green), at three different pH values, and with a relative weighting supported for the redox potential of each colorant. The relative decolorization coefficient (RDC), used as th2e first classification criterion, expressed their potential performance. Second, under the same conditions, laccase activity was estimated by observing the different degrees of oxidation of a given substrate. The selection criterion was the relative oxidation coefficient (ROC). Finally, laccase activity was quantified in submerged fermentations using three inducers (i.e., loofah sponge, Tween 80, and veratyl alcohol). This multicriteria screening strategy evaluated sixteen isolated endophytic fungal strains from Otoba gracilipes. The system identified Beltraniopsis sp. ET-17 (at pH values of 5.00 and 5.50) as a promising strain for dye biotransformation, and Phlebia floridensis as the best laccase producer, achieving a high activity of 116 μmol min-1 L-1 with loofah sponge as an inducer. In-vitro testing confirmed the efficacy of P. floridensis, with 53.61 % decolorization of a dye mixture (brilliant blue-Congo red. ratio 1:1) after 15 days of incubation. Thus, with the proposed screening strategy it was possible to highlight two species of interest at an early bioprospecting stage on a Colombian native tree poorly explored.
Collapse
Affiliation(s)
- Laura V Hoyos
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia
| | - Amada Chaves
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia
| | - Daniela Grandezz
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia
| | - Allison Medina
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia
| | - Jhonatan Correa
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia
| | - Mauricio Ramirez-Castrillon
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia
| | - Drochss Valencia
- Omicas Program, Pontificia Universidad Javeriana sede Cali, Calle 18 No. 118-250, Cali, C.P. 760031, Colombia
| | - Nelson H Caicedo-Ortega
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia; Centro BioInc, Universidad Icesi, Cali, Colombia.
| |
Collapse
|
5
|
Study of Membrane-Immobilized Oxidoreductases in Wastewater Treatment for Micropollutants Removal. Int J Mol Sci 2022; 23:ijms232214086. [PMID: 36430564 PMCID: PMC9699638 DOI: 10.3390/ijms232214086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The development of efficient strategies for wastewater treatment to remove micropollutants is of the highest importance. Hence, in this study, we presented a rapid approach to the production of biocatalytic membranes based on commercially available cellulose membrane and oxidoreductase enzymes including laccase, tyrosinase, and horseradish peroxidase. Effective enzyme deposition was confirmed based on Fourier transform infrared spectra, whereas results of spectrophotometric measurements showed that immobilization yield for all proposed systems exceeded 80% followed by over 80% activity recovery, with the highest values (over 90%) noticed for the membrane-laccase system. Further, storage stability and reusability of the immobilized enzyme were improved, reaching over 75% after, respectively, 20 days of storage, and 10 repeated biocatalytic cycles. The key stage of the study concerned the use of produced membranes for the removal of hematoporphyrin, (2,4-dichlorophenoxy)acetic acid (2,4-D), 17α-ethynylestradiol, tetracycline, tert-amyl alcohol (anesthetic drug), and ketoprofen methyl ester from real wastewater sampling at various places in the wastewater treatment plant. Although produced membranes showed mixed removal rates, all of the analyzed compounds were at least partially removed from the wastewater. Obtained data clearly showed, however, that composition of the wastewater matrix, type of pollutants as well as type of enzyme strongly affect the efficiency of enzymatic treatment of wastewater.
Collapse
|
6
|
Gałązka A, Jankiewicz U. Endocrine Disrupting Compounds (Nonylphenol and Bisphenol A)-Sources, Harmfulness and Laccase-Assisted Degradation in the Aquatic Environment. Microorganisms 2022; 10:2236. [PMID: 36422306 PMCID: PMC9698202 DOI: 10.3390/microorganisms10112236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 01/23/2025] Open
Abstract
Environmental pollution with organic substances has become one of the world's major problems. Although pollutants occur in the environment at concentrations ranging from nanograms to micrograms per liter, they can have a detrimental effect on species inhabiting aquatic environments. Endocrine disrupting compounds (EDCs) are a particularly dangerous group because they have estrogenic activity. Among EDCs, the alkylphenols commonly used in households deserve attention, from where they go to sewage treatment plants, and then to water reservoirs. New methods of wastewater treatment and removal of high concentrations of xenoestrogens from the aquatic environment are still being searched for. One promising approach is bioremediation, which uses living organisms such as fungi, bacteria, and plants to produce enzymes capable of breaking down organic pollutants. These enzymes include laccase, produced by white rot fungi. The ability of laccase to directly oxidize phenols and other aromatic compounds has become the focus of attention of researchers from around the world. Recent studies show the enormous potential of laccase application in processes such as detoxification and biodegradation of pollutants in natural and industrial wastes.
Collapse
Affiliation(s)
| | - Urszula Jankiewicz
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-787 Warsaw, Poland
| |
Collapse
|
7
|
Dionizio BS, Rabelo CABS, de Jesus HCR, Varesche MBA, de Souza DHF. The Deconstruction of the Lignocellulolytic Structure of Sugarcane Bagasse by Laccases Improves the Production of H 2 and Organic Acids. Appl Biochem Biotechnol 2022; 194:3145-3166. [PMID: 35349085 DOI: 10.1007/s12010-022-03905-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/14/2022] [Indexed: 01/31/2023]
Abstract
The production of biofuels using sugarcane bagasse (SCB) as substrate can be considered an environmentally friendly approach, due to the possibility of combining energy production with the reuse of agroindustrial wastes. This study was undertaken to explore the applicability of a new extract with the enzymes (Lacmix) isolated from Chaetomium cupreum for SCB pretreatment. Lacmix was more active at pH of 2.2 to 4 and 50 to 60 °C. Further, the individual and mutual effects of SCB concentration (6.6 to 23.4 g L- 1), enzyme concentration (0.066 to 0.234 U L- 1), and incubation time of the SCB with Lacmix (19 to 221 min) on SCB pretreatment were evaluated using a response surface methodology and central composite design. The optimized conditions were 23.4 g L- 1 SCB, 0.234 U mL- 1 laccases, and 2.44 h resulting in 547 ± 108 mg L- 1 of total sugars. This value agrees with the predicted value (455 ± 41 mg L- 1) by the statistical model. Through the SCB pretreated with Lacmix fermentation, 96.1% more H2 and 22.5% more organic acids were observed compared to SCB without pretreatment. Therefore, laccases improve delignification, maximizing biomass fermentation for biofuel production.
Collapse
Affiliation(s)
- Bruna Soares Dionizio
- Chemistry Department, Federal University of São Carlos, Rod Washington Luis s/n, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Camila Abreu B Silva Rabelo
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, Engineering School of São Carlos, University of São Paulo (EESC - USP) Campus II, 13563-120, São Carlos, SP, Brazil
| | - Hugo César Ramos de Jesus
- Chemistry Department, Federal University of São Carlos, Rod Washington Luis s/n, Km 235, 13565-905, São Carlos, SP, Brazil.,Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Maria Bernadete Amâncio Varesche
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, Engineering School of São Carlos, University of São Paulo (EESC - USP) Campus II, 13563-120, São Carlos, SP, Brazil
| | - Dulce Helena Ferreira de Souza
- Chemistry Department, Federal University of São Carlos, Rod Washington Luis s/n, Km 235, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
8
|
Jia Y, Huang Q, Zhu L, Pan C. Characterization of a Recombinant Laccase B from Trametes hirsuta MX2 and Its Application for Decolorization of Dyes. Molecules 2022; 27:1581. [PMID: 35268682 PMCID: PMC8912056 DOI: 10.3390/molecules27051581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Trametes hirsuta is able to secrete laccase isoenzymes including constitutive and inducible forms, and has potential application for bioremediation of environmental pollutants. Here, an inducible group B laccase from T. hirsuta MX2 was heterologously expressed in Pichia pastoris, and its yield reached 2.59 U/mL after 5 days of methanol inducing culture. The optimal pH and temperature of recombinant laccase (rLac1) to 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) were 2.5 and 60 °C, respectively. Metal ions showed different effect on rLac1 which Mg2+, Cu2+, and K+ increased enzyme activity as their concentration increased, whereas Zn2+, Na+, and Fe2+ inhibited enzyme activity as their concentration increased. rLac1 showed good tolerance to organic solvents, and more than 42% of its initial activity remained in 10% organic solvents. Additionally, rLac1 exhibited a more efficient decolorization ability for remazol brilliant blue R (RBBR) than for acid red 1 (AR1), crystal violet (CV), and neutral red (NR). Molecular docking results showed RBBR has a stronger binding affinity with laccase than other dyes by interacting with substrate binding cavity of enzyme. The results indicated rLac1 may be a potential candidate for dye removal from textile wastewater.
Collapse
Affiliation(s)
- Yitong Jia
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Y.J.); (Q.H.)
| | - Qianqian Huang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Y.J.); (Q.H.)
| | - Lanlan Zhu
- Science and Technology Service Center of Lin’an, Hangzhou 311300, China
| | - Chengyuan Pan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Y.J.); (Q.H.)
| |
Collapse
|
9
|
Zdarta J, Jesionowski T, Pinelo M, Meyer AS, Iqbal HMN, Bilal M, Nguyen LN, Nghiem LD. Free and immobilized biocatalysts for removing micropollutants from water and wastewater: Recent progress and challenges. BIORESOURCE TECHNOLOGY 2022; 344:126201. [PMID: 34710611 DOI: 10.1016/j.biortech.2021.126201] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023]
Abstract
Enzymatic conversion of micropollutants into less-toxic derivatives is an important bioremediation strategy. This paper aims to critically review the progress in water and wastewater treatment by both free and immobilized enzymes presenting this approach as highly efficient and performed under environmentally benign and friendly conditions. The review also summarises the effects of inorganic and organic wastewater matrix constituents on enzymatic activity and degradation efficiency of micropollutants. Finally, application of enzymatic reactors facilitate continuous treatment of wastewater and obtaining of pure final effluents. Of a particular note, enzymatic treatment of micropollutants from wastewater has been mostly reported by laboratory scale studies. Thus, this review also highlights key research gaps of the existing techniques and provides future perspectives to facilitate the transfer of the lab-scale solutions to a larger scale and to improve operationability of biodegradation processes.
Collapse
Affiliation(s)
- Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo, PL-60965 Poznan, Poland.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo, PL-60965 Poznan, Poland
| | - Manuel Pinelo
- Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, DK-2800 Kongens Lyngby, Denmark
| | - Anne S Meyer
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kongens Lyngby, Denmark
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
10
|
Sengupta A, Jebur M, Kamaz M, Wickramasinghe SR. Removal of Emerging Contaminants from Wastewater Streams Using Membrane Bioreactors: A Review. MEMBRANES 2021; 12:60. [PMID: 35054586 PMCID: PMC8778677 DOI: 10.3390/membranes12010060] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 11/25/2022]
Abstract
Water is a very valuable natural resource. As the demand for water increases the presence of emerging contaminants in wastewater has become a growing concern. This is particularly true when one considers direct reuse of wastewater. Obtaining sufficient removal of emerging contaminants will require determining the level of removal for the various unit operations in the wastewater treatment process. Membrane bioreactors are attractive as they combine an activated sludge process with a membrane separation step. They are frequently used in a wastewater treatment process and can operate at higher solid loadings than conventional activated sludge processes. Determining the level of removal of emerging contaminants in the membrane bioreactor step is, therefore, of great interest. Removal of emerging contaminants could be by adsorption onto the biomass or membrane surface, biotransformation, size exclusion by the membrane, or volatilization. Given the fact that most emerging contaminants are low molecule weight non-volatile compounds, the latter two methods of removal are usually unimportant. However, biotransformation and adsorption onto the biomass are important mechanisms of removal. It will be important to determine if the microorganisms present at given treatment facility are able to remove ECs present in the wastewater.
Collapse
Affiliation(s)
- Arijit Sengupta
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India;
| | - Mahmood Jebur
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
- Department of Chemical Engineering, Tikrit University, Tikrit 34001, Iraq
| | - Mohanad Kamaz
- Ministry of Oil, State Company of Gas Filling and Services, Karbala 56001, Iraq;
| | - S. Ranil Wickramasinghe
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
11
|
Isolation and Screening of Microorganisms for the Effective Pretreatment of Lignocellulosic Agricultural Wastes. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5514745. [PMID: 34604384 PMCID: PMC8481070 DOI: 10.1155/2021/5514745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
Lignocellulosic waste is the most abundant biorenewable biomass on earth, and its hydrolysis releases highly valued reducing sugars. However, the presence of lignin in the biopolymeric structure makes it highly resistant to solubilization thereby hindering the hydrolysis of cellulose and hemicellulose. Microorganisms are known for their potential complex enzymes that play a dominant role in lignocellulose conversion. Therefore, the current study was designed to isolate and screen potential microorganisms for their selective delignification ability for the pretreatment of lignocellulosic biomass. An extensive isolation and screening procedure yielded 36 desired isolates (22 bacteria, 7 basidiomycete fungi, and 7 filamentous fungi). Submerged cultivation of these desired microorganisms revealed 4 bacteria and 10 fungi with potent lignocellulolytic enzyme activities. The potent isolates were identified as Pleurotus, Trichoderma, Talaromyces, Bacillus, and Chryseobacterium spp. confirmed by morphological and molecular identification. The efficiency of these strains was determined through enzyme activities, and the degraded substrates were analyzed through scanning electron microscopy (SEM) and X-ray diffraction (XRD). Among all isolated microbes, Pleurotus spp. were found to have high laccase activity. The cellulose-decomposing and selective delignification strains were subjected to solid-state fermentation (SSF). SSF of field waste corn stalks as a single-carbon source provides Pleurotus spp. better condition for the secretion of ligninolytic enzymes. These isolated ligninolytic enzymes producing microorganisms may be used for the effective pretreatment of lignocellulosic agricultural wastes for the production of high value-added natural products by fermentation.
Collapse
|
12
|
Ren L, Ji H, Heuzé K, Faure B, Genin E, Rousselot Pailley P, Tron T. Modulation of laccase catalysed oxidations at the surface of magnetic nanoparticles. Colloids Surf B Biointerfaces 2021; 206:111963. [PMID: 34293579 DOI: 10.1016/j.colsurfb.2021.111963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022]
Abstract
We explored the coupling of laccases to magnetic nanoparticles (MNPs) with different surface chemical coating. Two laccase variants offering two opposite and precise orientations of the substrate oxidation site were immobilised onto core-shell MNPs presenting either aliphatic aldehyde, aromatic aldehyde or azide functional groups at the particles surface. Oxidation capabilities of the six-resulting laccase-MNP hybrids were compared on ABTS and coniferyl alcohol. Herein, we show that the original interfaces created differ substantially in their reactivities with an amplitude from 1 to > 4 folds depending on the nature of the substrate. Taking enzyme orientation into account in the design of surface modification represents a way to introduce selectivity in laccase catalysed reactions.
Collapse
Affiliation(s)
- Lu Ren
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR7313, 13397 Marseille, France
| | - Hongtao Ji
- Institut des Sciences Moléculaires, Université de Bordeaux, CNRS UMR5255, 33405 Talence cedex, France
| | - Karine Heuzé
- Institut des Sciences Moléculaires, Université de Bordeaux, CNRS UMR5255, 33405 Talence cedex, France.
| | - Bruno Faure
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR7313, 13397 Marseille, France
| | - Emilie Genin
- Institut des Sciences Moléculaires, Université de Bordeaux, CNRS UMR5255, 33405 Talence cedex, France
| | | | - Thierry Tron
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR7313, 13397 Marseille, France.
| |
Collapse
|
13
|
Ardila-Leal LD, Poutou-Piñales RA, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE. A Brief History of Colour, the Environmental Impact of Synthetic Dyes and Removal by Using Laccases. Molecules 2021; 26:3813. [PMID: 34206669 PMCID: PMC8270347 DOI: 10.3390/molecules26133813] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/07/2022] Open
Abstract
The history of colour is fascinating from a social and artistic viewpoint because it shows the way; use; and importance acquired. The use of colours date back to the Stone Age (the first news of cave paintings); colour has contributed to the social and symbolic development of civilizations. Colour has been associated with hierarchy; power and leadership in some of them. The advent of synthetic dyes has revolutionized the colour industry; and due to their low cost; their use has spread to different industrial sectors. Although the percentage of coloured wastewater discharged by the textile; food; pharmaceutical; cosmetic; and paper industries; among other productive areas; are unknown; the toxic effect and ecological implications of this discharged into water bodies are harmful. This review briefly shows the social and artistic history surrounding the discovery and use of natural and synthetic dyes. We summarise the environmental impact caused by the discharge of untreated or poorly treated coloured wastewater to water bodies; which has led to physical; chemical and biological treatments to reduce the colour units so as important physicochemical parameters. We also focus on laccase utility (EC 1.10.3.2), for discolouration enzymatic treatment of coloured wastewater, before its discharge into water bodies. Laccases (p-diphenol: oxidoreductase dioxide) are multicopper oxidoreductase enzymes widely distributed in plants, insects, bacteria, and fungi. Fungal laccases have employed for wastewater colour removal due to their high redox potential. This review includes an analysis of the stability of laccases, the factors that influence production at high scales to achieve discolouration of high volumes of contaminated wastewater, the biotechnological impact of laccases, and the degradation routes that some dyes may follow when using the laccase for colour removal.
Collapse
Affiliation(s)
- Leidy D. Ardila-Leal
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Raúl A. Poutou-Piñales
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Aura M. Pedroza-Rodríguez
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Microbiología Ambiental y de Suelos, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Balkys E. Quevedo-Hidalgo
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Aplicada, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| |
Collapse
|
14
|
Püllmann P, Weissenborn MJ. Improving the Heterologous Production of Fungal Peroxygenases through an Episomal Pichia pastoris Promoter and Signal Peptide Shuffling System. ACS Synth Biol 2021; 10:1360-1372. [PMID: 34075757 DOI: 10.1021/acssynbio.0c00641] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fungal peroxygenases (UPOs) have emerged as oxyfunctionalization catalysts of tremendous interest in recent years. However, their widespread use in the field of biocatalysis is still hampered by their challenging heterologous production, substantially limiting the panel of accessible enzymes for investigation and enzyme engineering. Building upon previous work on UPO production in yeast, we have developed a combined promoter and signal peptide shuffling system for episomal high throughput UPO production in the industrially relevant, methylotrophic yeast Pichia pastoris. Eleven endogenous and orthologous promoters were shuffled with a diverse set of 17 signal peptides. Three previously described UPOs were selected as first test set, leading to the identification of beneficial promoter/signal peptide combinations for protein production. We applied the system then successfully to produce two novel UPOs: MfeUPO from Myceliophthora fergusii and MhiUPO from Myceliophthora hinnulea. To demonstrate the feasibility of the developed system to other enzyme classes, it was applied for the industrially relevant lipase CalB and the laccase Mrl2. In total, approximately 3200 transformants of eight diverse enzymes were screened and the best promoter/signal peptide combinations studied at various cofeeding, derepression, and induction conditions. High volumetric production titers were achieved by subsequent creation of stable integration lines and harnessing orthologous promoters from Hansenula polymorpha. In most cases promising yields were also achieved without the addition of methanol under derepressed conditions. To foster the use of the episomal high throughput promoter/signal peptide Pichia pastoris system, we made all plasmids available through Addgene.
Collapse
Affiliation(s)
- Pascal Püllmann
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Martin J. Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle (Saale), Germany
| |
Collapse
|
15
|
Enhancement of laccase production by Cerrena unicolor through fungal interspecies interaction and optimum conditions determination. Arch Microbiol 2021; 203:3905-3917. [PMID: 34014357 DOI: 10.1007/s00203-021-02374-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/24/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
The present study aimed to identify a pair of fungal strains that promote laccase production in the co-cultivation of white-rot basidiomycetes and to determine the optimum conditions to enhance enzyme synthesis under co-fermentation of mandarin peels. Co-cultivation of Cerrena unicolor with Trametes versicolor, Lenzites betulina, and Panus lecomtei led to up-regulation of laccase activity. Moreover, interspecific interaction of Cerrena unicolor and Trametes versicolor induced the production of two new laccase isoenzymes. By contrast, interactions of Cerrena unicolor with Trametes coccineus and Trametes hirsuta resulted in a multiple decreased ability of Cerrena unicolor to produce laccase. Co-cultivation of Cerrena unicolor with other fungi 3- to 12-fold down-regulated manganese peroxidase (MnP) activity. The outcomes of these fungal interactions are closely related to the initial concentration and availability of the nutrients, the partners' inoculum ratio, time, and sequence of their inoculation. Co-cultivation of Cerrena unicolor and Trametes versicolor in fermenter resulted in the accumulation of 476 U/mL laccase and 1.12 U/mL MnP.
Collapse
|
16
|
Gabdulkhakov A, Kolyadenko I, Oliveira P, Tamagnini P, Mikhaylina A, Tishchenko S. The role of positive charged residue in the proton-transfer mechanism of two-domain laccase from Streptomyces griseoflavus Ac-993. J Biomol Struct Dyn 2021; 40:8324-8331. [PMID: 33870857 DOI: 10.1080/07391102.2021.1911852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Multi-copper oxidases are capable of coupling the one-electron oxidation of four substrate equivalents to the four-electron reduction of dioxygen to two molecules of water. This process takes place at the trinuclear copper center of the enzymes. Previously, the main catalytic stages for three-domain (3D) laccases have been identified. However, for bacterial small two-domain (2D) laccases several questions remain to be answered. One of them is the nature of the protonation events upon the reductive cleavage of dioxygen to water. In 3D laccases, acidic residues play a key role in the protonation mechanisms. In this study, the role of the Arg240 residue, located within the T2 tunnel of 2D laccase from Streptomyces griseoflavus Ac-993, was investigated. X-ray structural analysis and kinetic characterization of two mutants, R240A and R240H, have provided support for a role of this residue in the protonation events. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Azat Gabdulkhakov
- Institute of Protein Research, RAS, Pushchino, Moscow Region, Russia
| | - Ilya Kolyadenko
- Institute of Protein Research, RAS, Pushchino, Moscow Region, Russia
| | - Paulo Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Alisa Mikhaylina
- Institute of Protein Research, RAS, Pushchino, Moscow Region, Russia
| | | |
Collapse
|
17
|
Adivitiya, Babbal, Mohanty S, Khasa YP. Nitrogen supplementation ameliorates product quality and quantity during high cell density bioreactor studies of Pichia pastoris: A case study with proteolysis prone streptokinase. Int J Biol Macromol 2021; 180:760-770. [PMID: 33716129 DOI: 10.1016/j.ijbiomac.2021.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
Streptokinase is a well-established cost-effective therapeutic molecule for thrombo-embolic complications. In the current study, a tag-free variant of streptokinase with a native N-terminus (N-rSK) was developed using the Pichia expression system. A three-copy clone was screened that secreted 1062 mg/L of N-rSK in the complex medium at shake flask level. The biologically active (67,552.61 IU/mg) N-rSK recovered by anion exchange chromatography was predicted to contain 15.43% α-helices, 26.43% β-sheets. The fermentation run in a complex medium yielded a poor quality product due to excessive N-rSK degradation. Therefore, modified basal salt medium was also employed during fermentation operations to reduce the proteolytic processing of the recombinant product. The concomitant feeding of 1 g/L/h soya flour hydrolysate with methanol during the protein synthesis phase reduced the proteolysis and yielded 2.29 g/L of N-rSK. The fermentation medium was also supplemented with urea during growth and induction phases. The combined feeding approach of nitrogen-rich soya flour hydrolysate and urea during bioreactor operations showed significant improvement in protein stability and resulted in a 4-fold increase in N-rSK concentration to a level of 4.03 g/L over shake flask. Under optimized conditions, the volumetric productivity and specific product yield were 52.33 mg/L/h and 33.24 mg/g DCW, respectively.
Collapse
Affiliation(s)
- Adivitiya
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Babbal
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Shilpa Mohanty
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Yogender Pal Khasa
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
18
|
Debnath R, Mistry P, Roy P, Roy B, Saha T. Partial purification and characterization of a thermophilic and alkali-stable laccase of Phoma herbarum isolate KU4 with dye-decolorization efficiency. Prep Biochem Biotechnol 2021; 51:901-918. [PMID: 33586595 DOI: 10.1080/10826068.2021.1875235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Production of an extracellular thermophilic and alkali stable laccase from Phoma herbarum isolate KU4 was reported for the first time, both in submerged fermentation (SmF, highest 1590 U/mL) and solid state fermentation (SSF, highest 2014.21 U/mL) using agro-industrial residues. The laccase was partially purified to 7.93 fold with the apparent molecular weight of 298 kDa. The enzyme had pH optimum at 5.0 and temperature optimum at 50 °C, with maximum stability at pH 8.0. It showed activity towards various phenolic and non-phenolic compounds. The kinetic parameters, Km, Vmax and Kcat of the laccase for DMP were 0.216 mM, 270.27 U/mg and 506.69 s-1, respectively. Laccase activity was inhibited by various metal ions and conventional inhibitors, however, it was slightly increased by Zn2+. The laccase showed good decolorization efficiency towards four industrial dyes, namely, methyl violet (75.66%), methyl green (65%), indigo carmine (58%) and neutral red (42%) within 24 h. FTIR analysis of the decolorized products confirmed the degradation of the dyes. The decolorization efficiency of the enzyme suggests that the partially purified laccase could be used to decolorize synthetic dyes present in industrial effluents and for waste water treatments. The thermophilic and alkali stable laccase may also have wider potential industrial applications.
Collapse
Affiliation(s)
- Rinku Debnath
- Department of Molecular Biology and Biotechnology, Faculty of Science, University of Kalyani, Kalyani, India
| | - Prasenjit Mistry
- Department of Chemistry, Faculty of Science, University of Kalyani, Kalyani, India
| | - Priyabrata Roy
- Department of Molecular Biology and Biotechnology, Faculty of Science, University of Kalyani, Kalyani, India
| | - Brindaban Roy
- Department of Chemistry, Faculty of Science, University of Kalyani, Kalyani, India
| | - Tanima Saha
- Department of Molecular Biology and Biotechnology, Faculty of Science, University of Kalyani, Kalyani, India
| |
Collapse
|
19
|
Tülek A, Karataş E, Çakar MM, Aydın D, Yılmazcan Ö, Binay B. Optimisation of the Production and Bleaching Process for a New Laccase from Madurella mycetomatis, Expressed in Pichia pastoris: from Secretion to Yielding Prominent. Mol Biotechnol 2020; 63:24-39. [PMID: 33058020 DOI: 10.1007/s12033-020-00281-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 01/06/2023]
Abstract
Laccases are polyphenol oxidoreductases used in a number of industrial applications. Due to the increasing demand for these "green catalysis" enzymes, the identification and biochemical characterisation of their novel properties is essential. In our study, cloned Madurella mycetomatis laccase (mmlac) genes were heterologously expressed in the methylotrophic yeast host Pichia pastoris. The high yield of the active recombinant protein in P. pastoris demonstrates the efficiency of a reliably constructed plasmid to express the laccase gene. The optimal biochemical conditions for the successfully expressed MmLac enzyme were identified. Detailed structural properties of the recombinant laccase were determined, and its utility in decolourisation and textile bleaching applications was examined. MmLac demonstrates good activity in an acidic pH range (4.0-6.0); is stable in the presence of cationic metals, organic solvents and under high temperatures (50-60 °C); and is stable for long-term storage at - 20 °C and - 80 °C for up to eight weeks. The structural analysis revealed that the catalytic residues are partially similar to other laccases. MmLac resulted in an increase in whiteness, whilst demonstrating high efficiency and stability and requiring the input of fewer chemicals. The performance of this enzyme makes it worthy of investigation for use in textile biotechnology applications, as well as within environmental and food technologies.
Collapse
Affiliation(s)
- Ahmet Tülek
- Department of Molecular Biology and Genetics, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Ersin Karataş
- Department of Molecular Biology and Genetics, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Mehmet Mervan Çakar
- Department of Molecular Biology and Genetics, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Derya Aydın
- Ak-Kim Kimya San. Ve Tic. A.S., 77600, Çiftlikköy, Yalova, Turkey
| | - Özlem Yılmazcan
- Ak-Kim Kimya San. Ve Tic. A.S., 77600, Çiftlikköy, Yalova, Turkey
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
20
|
Vats A, Mishra S. Laccase isoform diversity on basal medium in Cyathus bulleri and role in decolorization/detoxification of textile dyes and effluent. World J Microbiol Biotechnol 2020; 36:164. [PMID: 33000328 DOI: 10.1007/s11274-020-02939-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/20/2020] [Indexed: 12/01/2022]
Abstract
Laccases (EC 1.10.3.2) are multi-copper oxidases that can degrade several xenobiotics, including textile dyes. Present study investigated the nature of laccase isoforms induced by 2,6-dimethylaniline in Cyathus bulleri cultivated on basal salt medium. Two isoforms, LacI and LacII were identified and purified by a combination of ultrafiltration and ion-exchange chromatography. The MS spectrum of the two proteins displayed a number of non-identical and identical molecular peaks (m/z), and, the latter were mapped to protein originating from the previously reported Laccase (Lcc) 1 gene. The LacI isoform exhibited higher catalytic efficiency (Kcat/Km) towards 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), 2,6-dimethoxyphenol, guaiacol and pyrogallol and was tolerant to high levels of chloride ions and resistant to EDTA. Higher decolorization of several dyes such as Direct Scarlet B (67%), Reactive Brilliant blue-R (96%), Direct Orange 34 (50%) and Reactive Red198 (95%) by the LacI isoform makes it a good candidate for degradation of synthetic dyes. The decolorization of Direct Orange 34 by laccases is being reported for the first time. Many of the properties exhibited by this isoform make it a good candidate for large scale production and applications for use in the dyeing industry.
Collapse
Affiliation(s)
- A Vats
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - S Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi, 110016, India.
| |
Collapse
|
21
|
From Laboratory Tests to the Ecoremedial System: The Importance of Microorganisms in the Recovery of PPCPs-Disturbed Ecosystems. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The presence of a wide variety of emerging pollutants in natural water resources is an important global water quality challenge. Pharmaceuticals and personal care products (PPCPs) are known as emerging contaminants, widely used by modern society. This objective ensures availability and sustainable management of water and sanitation for all, according to the 2030 Agenda. Wastewater treatment plants (WWTP) do not always mitigate the presence of these emerging contaminants in effluents discharged into the environment, although the removal efficiency of WWTP varies based on the techniques used. This main subject is framed within a broader environmental paradigm, such as the transition to a circular economy. The research and innovation within the WWTP will play a key role in improving the water resource management and its surrounding industrial and natural ecosystems. Even though bioremediation is a green technology, its integration into the bio-economy strategy, which improves the quality of the environment, is surprisingly rare if we compare to other corrective techniques (physical and chemical). This work carries out a bibliographic review, since the beginning of the 21st century, on the biological remediation of some PPCPs, focusing on organisms (or their by-products) used at the scale of laboratory or scale-up. PPCPs have been selected on the basics of their occurrence in water resources. The data reveal that, despite the advantages that are associated with bioremediation, it is not the first option in the case of the recovery of systems contaminated with PPCPs. The results also show that fungi and bacteria are the most frequently studied microorganisms, with the latter being more easily implanted in complex biotechnological systems (78% of bacterial manuscripts vs. 40% fungi). A total of 52 works has been published while using microalgae and only in 7% of them, these organisms were used on a large scale. Special emphasis is made on the advantages that are provided by biotechnological systems in series, as well as on the need for eco-toxicological control that is associated with any process of recovery of contaminated systems.
Collapse
|
22
|
Ulu A, Birhanli E, Boran F, Köytepe S, Yesilada O, Ateş B. Laccase-conjugated thiolated chitosan-Fe3O4 hybrid composite for biocatalytic degradation of organic dyes. Int J Biol Macromol 2020; 150:871-884. [DOI: 10.1016/j.ijbiomac.2020.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/20/2022]
|
23
|
Metabolic Capability of Penicillium oxalicum to Transform High Concentrations of Anti-Inflammatory and Analgesic Drugs. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) and analgesics are two of the most employed drug groups around the world due to their use in the treatment of edema and pain. However, they also present an ecological challenge because they are considered as potential water pollutants. In this work, the biodegradation of four NSAIDs (diclofenac, ibuprofen, naproxen and ketoprofen) and one analgesic (acetaminophen) at 50 µM (initial concentration) by Penicillium oxalicum, at both flask and bioreactor bench scales, was evaluated. An important co-metabolic mechanism as part of the global bioremediation process for the elimination of these drugs was observed, as in some cases it was necessary to supplement glucose to achieve a 100% removal rate: both individually and as a complex mixture. Identical behavior in the implementation of a fluidized bench-scale batch bioreactor, inoculated with pellets of this fungus and the complex mix of the drugs, was observed. The role of the cytochrome P450 enzymes (CYP) in the biodegradation of the drugs mix were evidenced by the observation of hydroxylated by-products. The results on the reduction of toxicity (micro and phyto) were not conclusive; however, a reduction in phytotoxicity was detected.
Collapse
|
24
|
Mohit E, Tabarzad M, Faramarzi MA. Biomedical and Pharmaceutical-Related Applications of Laccases. Curr Protein Pept Sci 2020; 21:78-98. [DOI: 10.2174/1389203720666191011105624] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 12/07/2022]
Abstract
The oxidation of a vast range of phenolic and non-phenolic substrates has been catalyzed by
laccases. Given a wide range of substrates, laccases can be applied in different biotechnological applications.
The present review was conducted to provide a broad context in pharmaceutical- and biomedical-
related applications of laccases for academic and industrial researchers. First, an overview of biological
roles of laccases was presented. Furthermore, laccase-mediated strategies for imparting antimicrobial
and antioxidant properties to different surfaces were discussed. In this review, laccase-mediated
mechanisms for endowing antimicrobial properties were divided into laccase-mediated bio-grafting of
phenolic compounds on lignocellulosic fiber, chitosan and catheters, and laccase-catalyzed iodination.
Accordingly, a special emphasis was placed on laccase-mediated functionalization for creating antimicrobials,
particularly chitosan-based wound dressings. Additionally, oxidative bio-grafting and oxidative
polymerization were described as the two main laccase-catalyzed reactions for imparting antioxidant
properties. Recent laccase-related studies were also summarized regarding the synthesis of antibacterial
and antiproliferative agents and the degradation of pharmaceuticals and personal care products.
Collapse
Affiliation(s)
- Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| |
Collapse
|
25
|
Expression of a novel manganese peroxidase from Cerrena unicolor BBP6 in Pichia pastoris and its application in dye decolorization and PAH degradation. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107402] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
He F, Machemer-Noonan K, Golfier P, Unda F, Dechert J, Zhang W, Hoffmann N, Samuels L, Mansfield SD, Rausch T, Wolf S. The in vivo impact of MsLAC1, a Miscanthus laccase isoform, on lignification and lignin composition contrasts with its in vitro substrate preference. BMC PLANT BIOLOGY 2019; 19:552. [PMID: 31830911 PMCID: PMC6909574 DOI: 10.1186/s12870-019-2174-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/28/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Understanding lignin biosynthesis and composition is of central importance for sustainable bioenergy and biomaterials production. Species of the genus Miscanthus have emerged as promising bioenergy crop due to their rapid growth and modest nutrient requirements. However, lignin polymerization in Miscanthus is poorly understood. It was previously shown that plant laccases are phenol oxidases that have multiple functions in plant, one of which is the polymerization of monolignols. Herein, we link a newly discovered Miscanthus laccase, MsLAC1, to cell wall lignification. Characterization of recombinant MsLAC1 and Arabidopsis transgenic plants expressing MsLAC1 were carried out to understand the function of MsLAC1 both in vitro and in vivo. RESULTS Using a comprehensive suite of molecular, biochemical and histochemical analyses, we show that MsLAC1 localizes to cell walls and identify Miscanthus transcription factors capable of regulating MsLAC1 expression. In addition, MsLAC1 complements the Arabidopsis lac4-2 lac17 mutant and recombinant MsLAC1 is able to oxidize monolignol in vitro. Transgenic Arabidopsis plants over-expressing MsLAC1 show higher G-lignin content, although recombinant MsLAC1 seemed to prefer sinapyl alcohol as substrate. CONCLUSIONS In summary, our results suggest that MsLAC1 is regulated by secondary cell wall MYB transcription factors and is involved in lignification of xylem fibers. This report identifies MsLAC1 as a promising breeding target in Miscanthus for biofuel and biomaterial applications.
Collapse
Affiliation(s)
- Feng He
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Katja Machemer-Noonan
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Philippe Golfier
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Faride Unda
- Department of Wood Science, University of British Columbia, Vancouver, Canada
| | - Johanna Dechert
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Wan Zhang
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Natalie Hoffmann
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, Canada
| | - Thomas Rausch
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Sebastian Wolf
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
27
|
Laccase isoform diversity in basidiomycete Lentinus strigosus 1566: Potential for phenylpropanoid polymerization. Int J Biol Macromol 2019; 137:1199-1210. [DOI: 10.1016/j.ijbiomac.2019.07.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/23/2019] [Accepted: 07/07/2019] [Indexed: 11/17/2022]
|
28
|
Xu G, Wu Y, Zhang Y, Fang W, Xiao Y, Fang Z. Role of N-glycosylation on the specific activity of a Coprinopsis cinerea laccase Lcc9 expressed in Pichia pastoris. J Biosci Bioeng 2019; 128:518-524. [PMID: 31196789 DOI: 10.1016/j.jbiosc.2019.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
Abstract
Laccase Lcc9 from Coprinopsis cinerea heterologously expressed in Pichia pastoris (rLcc9) displayed different molecular weight and specific activity from the native laccase (nLcc9). Glycosylation may play a role in regulating the Lcc9 specific activity. To elucidate this hypothesis, in this study, firstly we demonstrated that rLcc9 and nLcc9 were glycoproteins, and then enzymatically deglycosylated them. The obtained drLcc9 and dnLcc9 showed an apparent decrease in their specific activities. Three putative N-glycosylation sites (N293, N313, and N454) were then predicted in Lcc9 and substituted to evaluate their roles in its specific activity. Molecular weight analysis on those mutants suggested that glycosylation should have occurred on N313 and N454 whereas not on N293 in rLcc9. Comparison of catalytic properties of those mutants revealed that glycosylation at N313 and N454 in rLcc9 could affect the binding affinity to substrates and the catalytic rate, respectively. In addition, the glycosylation could also affect the thermal stability of rLcc9 and nLcc9 since deglycosylation of those Lcc9s resulted in decreases in their thermal stability to some extent. These results will help us to understand the effect of glycosylation on biochemical characteristics of fungal laccases, and provide us support for the improvement of fungal laccase activity based on N-linked glycosylation modification.
Collapse
Affiliation(s)
- Ganfei Xu
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Yawen Wu
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Yinliang Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Wei Fang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China; Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
29
|
Bilal M, Adeel M, Rasheed T, Zhao Y, Iqbal HMN. Emerging contaminants of high concern and their enzyme-assisted biodegradation - A review. ENVIRONMENT INTERNATIONAL 2019; 124:336-353. [PMID: 30660847 DOI: 10.1016/j.envint.2019.01.011] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/07/2018] [Accepted: 01/04/2019] [Indexed: 02/08/2023]
Abstract
The widespread occurrence and adverse environmental and health-related impacts of various types of emerging contaminants (ECs) have become an issue of high concern. With ever increasing scientific knowledge, socio-economic awareness, health-related problems and ecological apprehensions, people are more concerned about the widespread ECs, around the globe. Among ECs, biologically active compounds from pharmaceutical, cosmeceutical, biomedical, personal care products (PPCPs), endocrine-disrupting chemicals (EDCs), and flame-retardants are of paramount concern. The presence and persistence of ECs in water bodies are of continued and burning interest, worldwide. Various types of ECs are being discharged knowingly/unknowingly with/without partial treatments into the aquatic environments that pose serious health issues and affects the entire living ecosystem. So far, various approaches have been developed for ECs degradation and removal to diminish their adverse impact. Many previous and/or ongoing studies have focused on contaminants degradation and efficient removal via numerous treatment strategies, i.e. (1) physical, (2) chemical and (3) biological. However, the experimental evidence is lacking to enable specific predictions about ECs mechanistic degradation and removal fate across various in-practice systems. In this context, the deployment oxidoreductases such as peroxidases (lignin peroxidases, manganese-dependent peroxidases, and horseradish peroxidase), aromatic dioxygenases, various oxygenases, laccases, and tyrosinases have received considerable research attention. Immobilization is highlighted as a promising approach to improve enzyme catalytic performance and stabilization, as well as, to protect the three-dimensional structure of the enzyme against the undesirable consequences of harsh reaction environment. This work overviews the current and state-of-the-art critical aspect related to hazardous pollutants at large and ECs in particular by the immobilized oxidoreductase enzymes. The first part of the review focuses on the occurrence, physiochemical behavior, potent sources and significant routes of ECs. Following that, environmentally-related adverse impacts and health-related issues of ECs are discussed in the second part. In the third part, biodegradation and removal strategies with a comparative overview of several conventional vs. non-conventional methods are presented briefly. The fourth part majorly focuses on operational modes of different oxidoreductase enzyme-based biocatalytic processes for the biodegradation and biotransformation of a wide array of harmful environmental contaminants. Finally, the left behind research gaps, concluding remarks as well as future trends and recommendations in the use of carrier-immobilized oxidoreductases for environmental perspective are also discussed.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Muhammad Adeel
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tahir Rasheed
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
30
|
Bronikowski A, Koschorreck K, Urlacher VB. Redesign of a New Manganese Peroxidase Highly Expressed in
Pichia pastoris
towards a Lignin‐Degrading Versatile Peroxidase. Chembiochem 2018; 19:2481-2489. [DOI: 10.1002/cbic.201800500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Agathe Bronikowski
- Institute of Biochemistry and Bioeconomy Science Center (BioSc)Heinrich Heine University Düsseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
| | - Katja Koschorreck
- Institute of Biochemistry and Bioeconomy Science Center (BioSc)Heinrich Heine University Düsseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
| | - Vlada B. Urlacher
- Institute of Biochemistry and Bioeconomy Science Center (BioSc)Heinrich Heine University Düsseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
| |
Collapse
|
31
|
Mtibaà R, Barriuso J, de Eugenio L, Aranda E, Belbahri L, Nasri M, Martínez MJ, Mechichi T. Purification and characterization of a fungal laccase from the ascomycete Thielavia sp. and its role in the decolorization of a recalcitrant dye. Int J Biol Macromol 2018; 120:1744-1751. [PMID: 30268749 DOI: 10.1016/j.ijbiomac.2018.09.175] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 01/25/2023]
Abstract
A laccase-producing ascomycete was isolated from arid soil in Tunisia. This fungus was identified as Thielavia sp. using the phylogenetic analysis of rDNA internal transcribed spacers. The extracellular laccase produced by the fungus was purified to electrophoretic homogeneity, showing a molecular mass around 70 kDa. The enzyme had an optimum pH of 5.0 and 6.0 for ABTS and 2,6‑DMP, respectively and it showed remarkable high thermal stability, showing its optimal temperature at 70 °C (against 2,6‑DMP). It presented slight inhibiting effect by EDTA, SDS and l‑cyst although this effect was more marked by sodium azide (0.1 mM). On the other hand, it showed tolerance to up to 300 mM NaCl, retaining around 50% of its activity at 900 mM. Among the metal ions tested on TaLac1, Mn2+ showed an activating effect. Their kinetic parameters Km and kcat were 23.7 μM and 4.14 s-1 for ABTS, and 24.3 μM and 3.46 s-1 towards 2,6‑DMP. The purified enzyme displayed greater efficiency in Remazol Brilliant Blue R decolorization (90%) in absence of redox mediator, an important property for biotechnological applications.
Collapse
Affiliation(s)
- Rim Mtibaà
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National School of Engineers of Sfax, BP «1173», 3038 Sfax, Tunisia.
| | - Jorge Barriuso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientίficas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Laura de Eugenio
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientίficas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Elisabet Aranda
- Department of Microbiology, Institute of Water Research, University of Granada, Calle Ramón y Cajal 4, E-18071 Granada, Spain
| | - Lasaad Belbahri
- Laboratory of Soil Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2009 Neuchâtel, Switzerland
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National School of Engineers of Sfax, BP «1173», 3038 Sfax, Tunisia
| | - María Jesùs Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientίficas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Tahar Mechichi
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National School of Engineers of Sfax, BP «1173», 3038 Sfax, Tunisia
| |
Collapse
|
32
|
Nakajima VM, Soares FEDF, Queiroz JHD. Screening and decolorizing potential of enzymes from spent mushroom composts of six different mushrooms. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2017.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|