1
|
Pipes SE, Lovell CR, Kathrein KL. In vivo examination of pathogenicity and virulence in environmentally isolated Vibrio vulnificus. Microbiologyopen 2024; 13:e1427. [PMID: 39041461 PMCID: PMC11264103 DOI: 10.1002/mbo3.1427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
Human exposure to Vibrio vulnificus, a gram-negative, halophilic environmental pathogen, is increasing. Despite this, the mechanisms of its pathogenicity and virulence remain largely unknown. Each year, hundreds of infections related to V. vulnificus occur, leading to hospitalization in 92% of cases and a mortality rate of 35%. The infection is severe, typically contracted through the consumption of contaminated food or exposure of an open wound to contaminated water. This can result in necrotizing fasciitis and the need for amputation of the infected tissue. Although several genes (rtxA1, vvpE, and vvhA) have been implicated in the pathogenicity of this organism, a defined mechanism has not been discovered. In this study, we examine environmentally isolated V. vulnificus strains using a zebrafish model (Danio rerio) to investigate their virulence capabilities. We found significant variation in virulence between individual strains. The commonly used marker gene of disease-causing strains, vcgC, did not accurately predict the more virulent strains. Notably, the least virulent strain in the study, V. vulnificus Sept WR1-BW6, which tested positive for vcgC, vvhA, and rtxA1, did not cause severe disease in the fish and was the only strain that did not result in any mortality. Our study demonstrates that virulence varies greatly among different environmental strains and cannot be accurately predicted based solely on genotype.
Collapse
Affiliation(s)
- Shannon E. Pipes
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Charles R. Lovell
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Katie L. Kathrein
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| |
Collapse
|
2
|
Ricketts OMA, Isaac SR, Lara RA, Mendela TS, Enzor LA, Silver AC. Elevated temperature and decreased salinity impacts on exogenous Vibrio parahaemolyticus infection of eastern oyster, Crassostrea virginica. Front Microbiol 2024; 15:1388511. [PMID: 39027095 PMCID: PMC11257037 DOI: 10.3389/fmicb.2024.1388511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024] Open
Abstract
Anthropogenic carbon emissions have resulted in drastic oceanic changes, including increased acidity, increased temperature, and decreased salinity. Anthropogenic carbon emissions have resulted in drastic oceanic changes, including increased acidity, increased temperature, and decreased salinity. Few studies have directly assessed the compounded impact of alterations to oceanic conditions on oyster physiology and the relation to the presence of V. parahaemolyticus. This project investigated the relationship between projected climate scenarios and their influence on both eastern oyster, Crassostrea virginica, and the aquatic bacteria, Vibrio parahaemolyticus. Specifically, we examined whether an increase in water temperature and/or decrease in salinity would impair oyster resistance to V. parahaemolyticus, a human food and waterborne pathogen. Using a culture-dependent approach, our data revealed that the alterations in environmental conditions did not significantly impact the numbers of V. parahaemolyticus numbers within oyster hemolymph or tissues. However, we did observe a dramatic increase in the total amount of bacteria and pathogenic native Vibrio species, Vibrio aestuarianus and Vibrio harveyi. Despite detecting V. parahaemolyticus in most tissues at 7 days post-challenge, oysters were able to reduce bacterial levels below our limit of detection by 28 days of exposure. Furthermore, in our second experimental trial exploring single vs. multiple inoculation of bacteria, we observed that oysters were either able to reduce total bacterial levels to pre-treatment burdens (i.e., below our limit of detection) or die. This study demonstrates that the synergistic effects of elevated temperature and decreased salinity do not inhibit oysters from preventing the long-term colonization of exogenous V. parahaemolyticus. However, our data do show these environmental stressors impact oyster physiology and the native microbiota. This can lead to the proliferation of opportunistic pathogens, which could have impacts on oyster population numbers and ecosystem and human health.
Collapse
|
3
|
Sun C, Teng J, Wang D, Zhao J, Shan E, Wang Q. The adverse impact of microplastics and their attached pathogen on hemocyte function and antioxidative response in the mussel Mytilus galloprovincialis. CHEMOSPHERE 2023; 325:138381. [PMID: 36907490 DOI: 10.1016/j.chemosphere.2023.138381] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are widely distributed in marine environments, and they are easily attached by various microorganisms, including pathogenic bacteria. When bivalves mistakenly eat MPs, pathogenic bacteria attached to MPs enter their bodies through the Trojan horse effect, causing adverse effects. In this study, the mussel Mytilus galloprovincialis was exposed to aged polymethylmethacrylate MPs (PMMA-MPs, 20 μm) and Vibrio parahaemolyticus attached to PMMA-MPs to explore the effect of synergistic exposure by measuring lysosomal membrane stability, ROS content, phagocytosis, apoptosis in hemocytes, antioxidative enzyme activities and apoptosis-related gene expression in gills and digestive glands. The results showed that MP exposure alone did not cause significant oxidative stress in mussels, but after long-term coexposure to MPs and V. parahaemolyticus, the activities of antioxidant enzymes were significantly inhibited in the gills of mussels. Both single MP exposure and coexposure will affect hemocyte function. Coexposure can induce hemocytes to produce higher ROS, improve phagocytosis, significantly reduce the stability of the lysosome membrane, and induce the expression of apoptosis-related genes, causing apoptosis of hemocytes compared with single MP exposure. Our results demonstrate that MPs attached to pathogenic bacteria have stronger toxic effects on mussels, which also suggests that MPs with pathogenic bacteria might have an influence on the immune system and cause disease in mollusks. Thus, MPs may mediate the transmission of pathogens in marine environments, posing a threat to marine animals and human health. This study provides a scientific basis for the ecological risk assessment of MP pollution in marine environments.
Collapse
Affiliation(s)
- Chaofan Sun
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dongyu Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Encui Shan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
| |
Collapse
|
4
|
Changsen C, Likhitrattanapisal S, Lunha K, Chumpol W, Jiemsup S, Prachumwat A, Kongkasuriyachai D, Ingsriswang S, Chaturongakul S, Lamalee A, Yongkiettrakul S, Buates S. Incidence, genetic diversity, and antimicrobial resistance profiles of Vibrio parahaemolyticus in seafood in Bangkok and eastern Thailand. PeerJ 2023; 11:e15283. [PMID: 37193031 PMCID: PMC10183165 DOI: 10.7717/peerj.15283] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/03/2023] [Indexed: 05/18/2023] Open
Abstract
Background Emergence of Vibrio parahaemolyticus pandemic strain O3:K6 was first documented in 1996. Since then it has been accounted for large outbreaks of diarrhea globally. In Thailand, prior studies on pandemic and non-pandemic V. parahaemolyticus had mostly been done in the south. The incidence and molecular characterization of pandemic and non-pandemic strains in other parts of Thailand have not been fully characterized. This study examined the incidence of V. parahaemolyticus in seafood samples purchased in Bangkok and collected in eastern Thailand and characterized V. parahaemolyticus isolates. Potential virulence genes, VPaI-7, T3SS2, and biofilm were examined. Antimicrobial resistance (AMR) profiles and AMR genes (ARGs) were determined. Methods V. parahaemolyticus was isolated from 190 marketed and farmed seafood samples by a culture method and confirmed by polymerase chain reaction (PCR). The incidence of pandemic and non-pandemic V. parahaemolyticus and VPaI-7, T3SS2, and biofilm genes was examined by PCR. AMR profiles were verified by a broth microdilution technique. The presence of ARGs was verified by genome analysis. V. parahaemolyticus characterization was done by multilocus sequence typing (MLST). A phylogenomic tree was built from nucleotide sequences by UBCG2.0 and RAxML softwares. Results All 50 V. parahaemolyticus isolates including 21 pathogenic and 29 non-pathogenic strains from 190 samples had the toxRS/old sequence, indicating non-pandemic strains. All isolates had biofilm genes (VP0950, VP0952, and VP0962). None carried T3SS2 genes (VP1346 and VP1367), while VPaI-7 gene (VP1321) was seen in two isolates. Antimicrobial susceptibility profiles obtained from 36 V. parahaemolyticus isolates revealed high frequency of resistance to colistin (100%, 36/36) and ampicillin (83%, 30/36), but susceptibility to amoxicillin/clavulanic acid and piperacillin/tazobactam (100%, 36/36). Multidrug resistance (MDR) was seen in 11 isolates (31%, 11/36). Genome analysis revealed ARGs including blaCARB (100%, 36/36), tet(34) (83%, 30/36), tet(35) (42%, 15/36), qnrC (6%, 2/36), dfrA6 (3%, 1/36), and blaCTX-M-55 (3%, 1/36). Phylogenomic and MLST analyses classified 36 V. parahaemolyticus isolates into 5 clades, with 12 known and 13 novel sequence types (STs), suggesting high genetic variation among the isolates. Conclusions Although none V. parahaemolyticus strains isolated from seafood samples purchased in Bangkok and collected in eastern Thailand were pandemic strains, around one third of isolates were MDR V. parahaemolyticus strains. The presence of resistance genes of the first-line antibiotics for V. parahaemolyticus infection raises a major concern for clinical treatment outcome since these resistance genes could be highly expressed under suitable circumstances.
Collapse
Affiliation(s)
- Chartchai Changsen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Somsak Likhitrattanapisal
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Kamonwan Lunha
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wiyada Chumpol
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Surasak Jiemsup
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Anuphap Prachumwat
- AQHT, AAQG, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand
- CENTEX SHRIMP, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Darin Kongkasuriyachai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Supawadee Ingsriswang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Soraya Chaturongakul
- Molecular Medical Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Aekarin Lamalee
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suganya Yongkiettrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sureemas Buates
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Hu L, Zhao Y, Xu H. Trojan horse in the intestine: A review on the biotoxicity of microplastics combined environmental contaminants. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129652. [PMID: 35901632 DOI: 10.1016/j.jhazmat.2022.129652] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 05/14/2023]
Abstract
With the reported ability of microplastics (MPs) to act as "Trojan horses" carrying other environmental contaminants, the focus of researches has shifted from their ubiquitous occurrence to interactive toxicity. In this review, we provided the latest knowledge on the processes and mechanisms of interaction between MPs and co-contaminants (heavy metals, persistent organic pollutants, pathogens, nanomaterials and other contaminants) and discussed the influencing factors (environmental conditions and characteristics of polymer and contaminants) that affect the adsorption/desorption process. In addition, the bio-toxicological outcomes of mixtures are elaborated based on the damaging effects on the intestinal barrier. Our review showed that the interaction processes and toxicological outcomes of mixture are complex and variable, and the intestinal barrier should receive more attention as the first line of defensing against MPs and environmental contaminants invasion. Moreover, we pointed out several knowledge gaps in this new research area and suggested directions for future studies in order to understand the multiple factors involved, such as epidemiological assessment, nanoplastics, mechanisms for toxic alteration and the fate of mixtures after desorption.
Collapse
Affiliation(s)
- Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
6
|
Junaid M, Siddiqui JA, Sadaf M, Liu S, Wang J. Enrichment and dissemination of bacterial pathogens by microplastics in the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154720. [PMID: 35337880 DOI: 10.1016/j.scitotenv.2022.154720] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Microplastic pollution and associated impacts in the aquatic environment are spreading at an alarming rate worldwide. Plastic waste is increasing in the environment, and microplastics (MPs) are becoming a growing issue because they serve as vectors for pathogen transmission. This is the first comprehensive review that specifically addresses MPs as a source and vector of pathogenic bacteria, mainly associated with genera Vibrio, Pseudomonas, Acinetobacter, and so on, which are discovered to be more abundant on the aquatic plastisphere than that in the surrounding wastewater, freshwater, and marine water ecosystems. The horizontal gene transfer, chemotaxis, and co-selection and cross-selection could be the potential mechanism involved in the enrichment and dissemination of bacterial pathogens through the aquatic plastisphere. Further, bacterial pathogens through aquatic plastisphere can cause various ecological and human health impacts such as disrupted food chain, oxidative stress, tissue damages, disease transmission, microbial dysbiosis, metabolic disorders, among others. Last but not least, future research directions are also described to find answers to the challenging questions about bacterial pathogens in the aquatic plastisphere to ensure the integrity and safety of ecological and human health.
Collapse
Affiliation(s)
- Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Junaid Ali Siddiqui
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China
| | - Mamona Sadaf
- Knowledge Unit of Business, Economics, Accountancy and Commerce (KUBEAC), University of Management and Technology, Sialkot Campus, 51310, Pakistan
| | - Shulin Liu
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Multilocus Sequence Typing and Virulence Potential of Vibrio parahaemolyticus Strains Isolated from Aquatic Bird Feces. Microbiol Spectr 2022; 10:e0088622. [PMID: 35695558 PMCID: PMC9241773 DOI: 10.1128/spectrum.00886-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus is a Gram-negative, foodborne pathogenic bacterium that causes human gastroenteritis. This organism is ubiquitously present in the marine environment. Detection of V. parahaemolyticus in aquatic birds has been previously reported; however, the characterization of isolates of this bacterium recovered from these birds remains limited. The present study isolated and characterized V. parahaemolyticus from aquatic bird feces at the Bangpu Recreation Center (Samut Prakan province, Thailand) from 2016 to 2017, using multilocus sequence typing (MLST) and genome analysis. The results showed that V. parahaemolyticus was present in 34.9% (76/218) of the collected bird fecal samples. Among the ldh-positive V. parahaemolyticus isolates (n = 308), 1% (3/308) were positive for tdh, 1.3% (4/308) were positive for trh, and 0.3% (1/308) were positive for both tdh and trh. In turn, the MLST analysis revealed that 49 selected V. parahaemolyticus isolates resolved to 36 STs, 26 of which were novel (72.2%). Moreover, a total of 10 identified STs were identical to globally reported pathogenic strains (ST1309, ST1919, ST491, ST799, and ST2516) and environmental strains (ST1879, ST985, ST288, ST1925, and ST260). The genome analysis of isolates possessing tdh and/or trh (ST985, ST1923, ST1924, ST1929 and ST2516) demonstrated that the organization of the T3SS2α and T3SS2β genes in bird fecal isolates were almost identical to those of human clinical strains posing public health concerns of pathogen dissemination in the recreational area. The results of this study suggest that aquatic birds are natural reservoirs of new strains with high genetic diversity and are alternative sources of potentially pathogenic V. parahaemolyticus in the marine environment. IMPORTANCE To our knowledge, infection of foodborne bacterium V. parahamolyticus occurs via the consumption of undercooked seafood contaminated with pathogenic strains. Aquatic bird is a neglectable source that can transmit V. parahaemolyticus along coastal areas. This study reported the detection of potentially pathogenic V. parahamolyticus harboring virulence genes from aquatic bird feces at the recreational center situated near the Gulf of Thailand. These strains shared identical genetic profile to the clinical isolates that previously reported in many countries. Furthermore, the strains from aquatic birds showed extremely high genetic diversity. Our research pointed out that the aquatic bird is possibly involved in the evolution of novel strains of V. parahaemolyticus and play a role in dissimilation of the potentially pathogenic strains across geographical distance.
Collapse
|
8
|
Song X, Lin Z, Yuan W. Toxin-antitoxin systems in pathogenic Vibrio species: a mini review from a structure perspective. 3 Biotech 2022; 12:125. [PMID: 35542053 DOI: 10.1007/s13205-022-03178-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/31/2022] [Indexed: 11/01/2022] Open
Abstract
Toxin-antitoxin (TA) genetic modules have been found to widely exist in bacterial chromosomes and mobile genetic elements. They are composed of stable toxins and less stable antitoxins that can counteract the toxicity of toxins. The interactions between toxins and antitoxins could play critical roles in the virulence and persistence of pathogenic bacteria. There are at least eight types of TA systems which have been identified in a variety of bacteria. Vibrio, a genus of Gram-negative bacteria, is widespread in aquatic environments and can cause various human diseases, such as epidemic cholera. In this review, we mainly explore the structures and functions of TA modules found in common Vibrio pathogens, mainly V. cholerae, for better understanding of TA action mechanisms in pathogenic bacteria.
Collapse
|
9
|
Zhang P, Wu X, Yuan R, Yan W, Xu D, Ji L, Chen L. Emergence and predominance of a new serotype of Vibrio parahaemolyticus in Huzhou, China. Int J Infect Dis 2022; 122:93-98. [PMID: 35568367 DOI: 10.1016/j.ijid.2022.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/26/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND During our surveillance period, we found a new type of Vibrio parahaemolyticus (V. parahaemolyticus) with serotype O10:K4, which had increased over the past 2 years in Huzhou and became the second most common serotype after O3:K6. METHODS Strains were isolated from stool samples of diarrhea patients in the First People's Hospital in Huzhou. The serotypes, virulence-associated genes, antimicrobial susceptibility, and pulsed field gel electrophoresis (PFGE) of these strains were analyzed. RESULTS Between January 2017 and December 2021, there were 598 (5.36%) V. parahaemolyticus-positive samples of 11,166 stool specimens. The V. parahaemolyticus detection rate was high in summer months. The O3:K6 was the dominant serotype in 2017-2020 and a new serotype, O10:K4, was the predominant serotype in 2021. The majority of isolates tested were resistant to ampicillin (86.8%). We randomly chose the strains with serotype O3:K6 and O10:K4 for PFGE to compare the genetic relationship between these two serotypes. The results showed that the PFGE profiles of V. parahaemolyticus O3:K6 and O10:K4 were genetically similar. The strains showed a tendency to cluster on the basis of their serotype profiles. However, some O3:K6 strains showed 100% similarity with O10:K4 strains. CONCLUSION A new serotype with pandemic potential of V. parahaemolyticus, O10:K4, was detected in 2020 and became dominant in 2021 in Huzhou.
Collapse
Affiliation(s)
- Peng Zhang
- Huzhou Center for Disease Control and Prevention, Huzhou, 313000, China.
| | - Xiaofang Wu
- Huzhou Center for Disease Control and Prevention, Huzhou, 313000, China.
| | - Rui Yuan
- Huzhou Center for Disease Control and Prevention, Huzhou, 313000, China.
| | - Wei Yan
- Huzhou Center for Disease Control and Prevention, Huzhou, 313000, China.
| | - Deshun Xu
- Huzhou Center for Disease Control and Prevention, Huzhou, 313000, China.
| | - Lei Ji
- Huzhou Center for Disease Control and Prevention, Huzhou, 313000, China.
| | - Liping Chen
- Huzhou Center for Disease Control and Prevention, Huzhou, 313000, China.
| |
Collapse
|
10
|
Ragab W, Kawato S, Nozaki R, Kondo H, Hirono I. Comparative genome analyses of five Vibrio penaeicida strains provide insights into their virulence-related factors. Microb Genom 2022; 8. [PMID: 35171089 PMCID: PMC8942037 DOI: 10.1099/mgen.0.000766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vibrio penaeicida (family Vibrionaceae) is an important bacterial pathogen that affects Japanese shrimp aquaculture. Only two whole-genome sequences of V. penaeicida are publicly available, which has hampered our understanding of the pathogenesis of shrimp vibriosis caused by this bacterium. To gain insight into the genetic features, evolution and pathogenicity of V. penaeicida, we sequenced five V. penaeicida strains (IFO 15640T, IFO 15641, IFO 15642, TUMSAT-OK1 and TUMSAT-OK2) and performed comparative genomic analyses. Virulence factors and mobile genetic elements were detected. Furthermore, average nucleotide identities (ANIs), clusters of orthologous groups and phylogenetic relationships were evaluated. The V. penaeicida genome consists of two circular chromosomes. Chromosome I sizes ranged from 4.1 to 4.3 Mb, the GC content ranged from 43.9 to 44.1 %, and the number of predicted protein-coding sequences (CDSs) ranged from 3620 to 3782. Chromosome II sizes ranged from 2.2 to 2.4 Mb, the GC content ranged from 43.5 to 43.8 %, and the number of predicted CDSs ranged from 1992 to 2273. All strains except IFO 15641 harboured one plasmid, having sizes that ranged from 150 to 285 kb. All five genomes had typical virulence factors, including adherence, anti-phagocytosis, flagella-related proteins and toxins (repeats-in-toxin and thermolabile haemolysin). The genomes also contained factors responsible for iron uptake and the type II, IV and VI secretion systems. The genome of strain TUMSAT-OK2 tended to encode more prophage regions than the other strains, whereas the genome of strain IFO 15640T had the highest number of regions encoding genomic islands. For comparative genome analysis, we used V. penaeicida (strain CAIM 285T) as a reference strain. ANIs between strain CAIM 285T and the five V. penaeicida strains were >95 %, which indicated that these strains belong to the same species. Orthology cluster analysis showed that strains TUMSAT-OK1 and TUMSAT-OK2 had the greatest number of shared gene clusters, followed by strains CAIM 285T and IFO 15640T. These strains were also the most closely related to each other in a phylogenetic analysis. This study presents the first comparative genome analysis of V. penaeicida and these results will be useful for understanding the pathogenesis of this bacterium.
Collapse
Affiliation(s)
- Wafaa Ragab
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Satoshi Kawato
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Reiko Nozaki
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
- *Correspondence: Ikuo Hirono,
| |
Collapse
|
11
|
Comparative Genomics of Clinical and Environmental Isolates of Vibrio spp. of Colombia: Implications of Traits Associated with Virulence and Resistance. Pathogens 2021; 10:pathogens10121605. [PMID: 34959560 PMCID: PMC8706872 DOI: 10.3390/pathogens10121605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 01/22/2023] Open
Abstract
There is widespread concern about the increase in cases of human and animal infections caused by pathogenic Vibrio species due to the emergence of epidemic lineages. In Colombia, active surveillance by the National Institute of Health (INS) has confirmed the presence of Vibrio; however, in routine surveillance, these isolates are not genomically characterized. This study focused on the pangenome analysis of six Vibrio species: V. parahaemolyticus, V. vulnificus, V. alginolyticus, V. fluvialis, V. diabolicus and V. furnissii to determine the genetic architectures of potentially virulent and antimicrobial resistance traits. Isolates from environmental and clinical samples were genome sequenced, assembled and annotated. The most important species in public health were further characterized by multilocus sequence typing and phylogenomics. For V. parahaemolyticus, we found the virulent ST3 and ST120 genotypes. For V. vulnificus, we identified isolates belonging to lineages 1 and 2. Virulence gene homologues between species were found even in non-pathogenic species such as V. diabolicus. Annotations related to the mobilome, integrative mobile and conjugative elements and resistance genes were obtained from environmental and clinical isolates. This study contributes genomic information to the intensified surveillance program implemented by the INS to establish potential sources of vibriosis in Colombia.
Collapse
|
12
|
Pazhani GP, Chowdhury G, Ramamurthy T. Adaptations of Vibrio parahaemolyticus to Stress During Environmental Survival, Host Colonization, and Infection. Front Microbiol 2021; 12:737299. [PMID: 34690978 PMCID: PMC8530187 DOI: 10.3389/fmicb.2021.737299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023] Open
Abstract
Vibrio parahaemolyticus (Vp) is an aquatic Gram-negative bacterium that may infect humans and cause gastroenteritis and wound infections. The first pandemic of Vp associated infection was caused by the serovar O3:K6 and epidemics caused by the other serovars are increasingly reported. The two major virulence factors, thermostable direct hemolysin (TDH) and/or TDH-related hemolysin (TRH), are associated with hemolysis and cytotoxicity. Vp strains lacking tdh and/or trh are avirulent and able to colonize in the human gut and cause infection using other unknown factors. This pathogen is well adapted to survive in the environment and human host using several genetic mechanisms. The presence of prophages in Vp contributes to the emergence of pathogenic strains from the marine environment. Vp has two putative type-III and type-VI secretion systems (T3SS and T6SS, respectively) located on both the chromosomes. T3SS play a crucial role during the infection process by causing cytotoxicity and enterotoxicity. T6SS contribute to adhesion, virulence associated with interbacterial competition in the gut milieu. Due to differential expression, type III secretion system 2 (encoded on chromosome-2, T3SS2) and other genes are activated and transcribed by interaction with bile salts within the host. Chromosome-1 encoded T6SS1 has been predominantly identified in clinical isolates. Acquisition of genomic islands by horizontal gene transfer provides enhanced tolerance of Vp toward several antibiotics and heavy metals. Vp consists of evolutionarily conserved targets of GTPases and kinases. Expression of these genes is responsible for the survival of Vp in the host and biochemical changes during its survival. Advanced genomic analysis has revealed that various genes are encoded in Vp pathogenicity island that control and expression of virulence in the host. In the environment, the biofilm gene expression has been positively correlated to tolerance toward aerobic, anaerobic, and micro-aerobic conditions. The genetic similarity analysis of toxin/antitoxin systems of Escherichia coli with VP genome has shown a function that could induce a viable non-culturable state by preventing cell division. A better interpretation of the Vp virulence and other mechanisms that support its environmental fitness are important for diagnosis, treatment, prevention and spread of infections. This review identifies some of the common regulatory pathways of Vp in response to different stresses that influence its survival, gut colonization and virulence.
Collapse
Affiliation(s)
- Gururaja Perumal Pazhani
- School of Pharmaceutical Sciences, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Goutam Chowdhury
- ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
13
|
Meng J, Zhang Q, Zheng Y, He G, Shi H. Plastic waste as the potential carriers of pathogens. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Kamruzzaman M, Wu AY, Iredell JR. Biological Functions of Type II Toxin-Antitoxin Systems in Bacteria. Microorganisms 2021; 9:microorganisms9061276. [PMID: 34208120 PMCID: PMC8230891 DOI: 10.3390/microorganisms9061276] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
After the first discovery in the 1980s in F-plasmids as a plasmid maintenance system, a myriad of toxin-antitoxin (TA) systems has been identified in bacterial chromosomes and mobile genetic elements (MGEs), including plasmids and bacteriophages. TA systems are small genetic modules that encode a toxin and its antidote and can be divided into seven types based on the nature of the antitoxin molecules and their mechanism of action to neutralise toxins. Among them, type II TA systems are widely distributed in chromosomes and plasmids and the best studied so far. Maintaining genetic material may be the major function of type II TA systems associated with MGEs, but the chromosomal TA systems contribute largely to functions associated with bacterial physiology, including the management of different stresses, virulence and pathogenesis. Due to growing interest in TA research, extensive work has been conducted in recent decades to better understand the physiological roles of these chromosomally encoded modules. However, there are still controversies about some of the functions associated with different TA systems. This review will discuss the most current findings and the bona fide functions of bacterial type II TA systems.
Collapse
Affiliation(s)
- Muhammad Kamruzzaman
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Correspondence: (M.K.); (J.R.I.)
| | - Alma Y. Wu
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
| | - Jonathan R. Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence: (M.K.); (J.R.I.)
| |
Collapse
|
15
|
Bowley J, Baker-Austin C, Porter A, Hartnell R, Lewis C. Oceanic Hitchhikers - Assessing Pathogen Risks from Marine Microplastic. Trends Microbiol 2020; 29:107-116. [PMID: 32800610 DOI: 10.1016/j.tim.2020.06.011] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/01/2022]
Abstract
As plastic debris in the environment continues to increase, an emerging concern is the potential for microplastic to act as vectors for pathogen transport. With aquaculture the fastest growing food sector, and microplastic contamination of shellfish increasingly demonstrated, understanding any risk of pathogen transport associated with microplastic is important for this industry. However, there remains a lack of detailed, systematic studies assessing the interactions and potential impacts that the attachment of human and animal pathogens on microplastic may have. Here we synthesise current knowledge regarding these distinct microplastic-associated bacterial communities and microplastic uptake pathways into bivalves, and discuss whether they represent a human and animal health threat, highlighting the outstanding questions critical to our understanding of this potential risk to food safety.
Collapse
Affiliation(s)
- Jake Bowley
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Exeter, EX4 4QD, UK
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Weymouth, Dorset, DT4 8UB, UK
| | - Adam Porter
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Exeter, EX4 4QD, UK
| | - Rachel Hartnell
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Weymouth, Dorset, DT4 8UB, UK
| | - Ceri Lewis
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Exeter, EX4 4QD, UK.
| |
Collapse
|
16
|
Fourie JCJ, Bezuidenhout CC, Sanko TJ, Mienie C, Adeleke R. Inside environmental Clostridium perfringens genomes: antibiotic resistance genes, virulence factors and genomic features. JOURNAL OF WATER AND HEALTH 2020; 18:477-493. [PMID: 32833675 DOI: 10.2166/wh.2020.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Until recently, research has focused on Clostridium perfringens in clinical settings without considering environmental isolates. In this study, environmental genomes were used to investigate possible antibiotic resistance and the presence of virulence traits in C. perfringens strains from raw surface water. In silico assembly of three C. perfringens strains, DNA generated almost complete genomes setting their length ranging from 3.4 to 3.6 Mbp with GC content of 28.18%. An average of 3,175 open reading frames was identified, with the majority associated with carbohydrate and protein metabolisms. The genomes harboured several antibiotic resistance genes for glycopeptides, macrolide-lincosamide-streptogramin B, β-lactam, trimethoprim, tetracycline and aminoglycosides and also the presence of several genes encoding for polypeptides and multidrug resistance efflux pumps and 35 virulence genes. Some of these encode for haemolysins, sialidase, hyaluronidase, collagenase, perfringolysin O and phospholipase C. All three genomes contained sequences indicating phage, antibiotic resistance and pathogenic islands integration sites. A genomic comparison of these three strains confirmed high similarity and shared core genes with clinical C. perfringens strains, highlighting their health security risks. This study provides a genomic insight into the potential pathogenicity of C. perfringens present in the environment and emphasises the importance of monitoring this niche in the future.
Collapse
Affiliation(s)
| | | | - Tomasz Janusz Sanko
- Unit for Environmental Science and Management, North-West University, Potchefstroom, South Africa E-mail:
| | - Charlotte Mienie
- Unit for Environmental Science and Management, North-West University, Potchefstroom, South Africa E-mail:
| | - Rasheed Adeleke
- Unit for Environmental Science and Management, North-West University, Potchefstroom, South Africa E-mail:
| |
Collapse
|