1
|
Vahidinasab M, Thewes L, Abrishamchi B, Lilge L, Reiße S, Benatto Perino EH, Hausmann R. In Vivo Quantification of Surfactin Nonribosomal Peptide Synthetase Complexes in Bacillus subtilis. Microorganisms 2024; 12:2381. [PMID: 39597769 PMCID: PMC11596262 DOI: 10.3390/microorganisms12112381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Surfactin, a potent biosurfactant produced by Bacillus subtilis, is synthesized using a non-ribosomal peptide synthetase (NRPS) encoded by the srfAA-AD operon. Despite its association with quorum sensing via the ComX pheromone, the dynamic behavior and in vivo quantification of the NRPS complex remain underexplored. This study established an in vivo quantification system using fluorescence labeling to monitor the availability of surfactin-forming NRPS subunits (SrfAA, SrfAB, SrfAC, and SrfAD) during bioprocesses. Four Bacillus subtilis sensor strains were constructed by fusing these subunits with the megfp gene, resulting in strains BMV25, BMV26, BMV27, and BMV28. These strains displayed growth and surfactin productivity similar to those of the parental strain, BMV9. Fluorescence signals indicated varying NRPS availability, with BMV27 showing the highest and BMV25 showing the lowest relative fluorescence units (RFUs). RFUs were converted to the relative number of NRPS molecules using open-source FPCountR package. During bioprocesses, NRPS availability peaked at the end of the exponential growth phase and declined in the stationary phase, suggesting reduced NRPS productivity under nutrient-limited conditions and potential post-translational regulation. This study provides a quantitative framework for monitoring NRPS dynamics in vivo, offering insights into optimizing surfactin production. The established sensor strains and quantification system enable the real-time monitoring of NRPS availability, aiding bioprocess optimization for industrial applications of surfactin and potentially other non-ribosomal peptides.
Collapse
Affiliation(s)
- Maliheh Vahidinasab
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (L.T.); (B.A.); (L.L.); (E.H.B.P.)
| | - Lisa Thewes
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (L.T.); (B.A.); (L.L.); (E.H.B.P.)
| | - Bahar Abrishamchi
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (L.T.); (B.A.); (L.L.); (E.H.B.P.)
| | - Lars Lilge
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (L.T.); (B.A.); (L.L.); (E.H.B.P.)
| | - Susanne Reiße
- Imaging Unit, Core Facility of Hohenheim, Emil-Wolff-Strasse 12, 70599 Stuttgart, Germany;
| | - Elvio Henrique Benatto Perino
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (L.T.); (B.A.); (L.L.); (E.H.B.P.)
| | - Rudolf Hausmann
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (L.T.); (B.A.); (L.L.); (E.H.B.P.)
| |
Collapse
|
2
|
Hiller E, Off M, Hermann A, Vahidinasab M, Benatto Perino EH, Lilge L, Hausmann R. The influence of growth rate-controlling feeding strategy on the surfactin production in Bacillus subtilis bioreactor processes. Microb Cell Fact 2024; 23:260. [PMID: 39343903 PMCID: PMC11440882 DOI: 10.1186/s12934-024-02531-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The production of surfactin, an extracellular accumulating lipopeptide produced by various Bacillus species, is a well-known representative of microbial biosurfactant. However, only limited information is available on the correlation between the growth rate of the production strain, such as B. subtilis BMV9, and surfactin production. To understand the correlation between biomass formation over time and surfactin production, the availability of glucose as carbon source was considered as main point. In fed-batch bioreactor processes, the B. subtilis BMV9 was used, a strain well-suited for high cell density fermentation. By adjusting the exponential feeding rates, the growth rate of the surfactin-producing strain, was controlled. RESULTS Using different growth rates in the range of 0.075 and 0.4 h-1, highest surfactin titres of 36 g/L were reached at 0.25 h-1 with production yields YP/S of 0.21 g/g and YP/X of 0.7 g/g, while growth rates lower than 0.2 h-1 resulted in insufficient and slowed biomass formation as well as surfactin production (YP/S of 0.11 g/g and YP/X of 0.47 g/g for 0.075 h-1). In contrast, feeding rates higher than 0.25 h-1 led to a stimulation of overflow metabolism, resulting in increased acetate formation of up to 3 g/L and an accumulation of glucose due to insufficient conversion, leading to production yields YP/S of 0.15 g/g and YP/X of 0.46 g/g for 0.4 h-1. CONCLUSIONS Overall, the parameter of adjusting exponential feeding rates have an important impact on the B. subtilis productivity in terms of surfactin production in fed-batch bioreactor processes. A growth rate of 0.25 h-1 allowed the highest surfactin production yield, while the total conversion of substrate to biomass remained constant at the different growth rates.
Collapse
Affiliation(s)
- Eric Hiller
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Manuel Off
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Alexander Hermann
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Maliheh Vahidinasab
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Elvio Henrique Benatto Perino
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany.
| | - Lars Lilge
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany.
| | - Rudolf Hausmann
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
3
|
Treinen C, Claassen L, Hoffmann M, Lilge L, Henkel M, Hausmann R. Evaluation of an external foam column for in situ product removal in aerated surfactin production processes. Front Bioeng Biotechnol 2023; 11:1264787. [PMID: 38026897 PMCID: PMC10657896 DOI: 10.3389/fbioe.2023.1264787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
In Bacillus fermentation processes, severe foam formation may occur in aerated bioreactor systems caused by surface-active lipopeptides. Although they represent interesting compounds for industrial biotechnology, their property of foaming excessively during aeration may pose challenges for bioproduction. One option to turn this obstacle into an advantage is to apply foam fractionation and thus realize in situ product removal as an initial downstream step. Here we present and evaluate a method for integrated foam fractionation. A special feature of this setup is the external foam column that operates separately in terms of, e.g., aeration rates from the bioreactor system and allows recycling of cells and media. This provides additional control points in contrast to an internal foam column or a foam trap. To demonstrate the applicability of this method, the foam column was exemplarily operated during an aerated batch process using the surfactin-producing Bacillus subtilis strain JABs24. It was also investigated how the presence of lipopeptides and bacterial cells affected functionality. As expected, the major foam formation resulted in fermentation difficulties during aerated processes, partially resulting in reactor overflow. However, an overall robust performance of the foam fractionation could be demonstrated. A maximum surfactin concentration of 7.7 g/L in the foamate and enrichments of up to 4 were achieved. It was further observed that high lipopeptide enrichments were associated with low sampling flow rates of the foamate. This relation could be influenced by changing the operating parameters of the foam column. With the methodology presented here, an enrichment of biosurfactants with simultaneous retention of the production cells was possible. Since both process aeration and foam fractionation can be individually controlled and designed, this method offers the prospect of being transferred beyond aerated batch processes.
Collapse
Affiliation(s)
- Chantal Treinen
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Linda Claassen
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Mareen Hoffmann
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Lars Lilge
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Marius Henkel
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Rudolf Hausmann
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
4
|
Treinen C, Biermann L, Vahidinasab M, Heravi KM, Lilge L, Hausmann R, Henkel M. Deletion of Rap-phosphatases for quorum sensing control in Bacillus and its effect on surfactin production. AMB Express 2023; 13:51. [PMID: 37243871 DOI: 10.1186/s13568-023-01555-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/03/2023] [Indexed: 05/29/2023] Open
Abstract
The complex regulatory network in Bacillus, known as quorum sensing, offers many opportunities to modify bacterial gene expression and hence to control bioprocesses. One target regulated by this mechanism is the activity of the PsrfA promoter, which is engaged in the formation of lipopeptide surfactin. It was hypothesised that deletion of rapC, rapF and rapH, encoding for prominent Rap-phosphatases known to affect PsrfA activity, would enhance surfactin production. Therefore, these genes were deleted in a sfp+ derivative of B. subtilis 168 with subsequent evaluation of quantitative data. Up to the maximum product formation of the reference strain B. subtilis KM1016 after 16 h of cultivation, the titers of the rap deletion mutants did not exceed the reference. However, an increase in both product yield per biomass YP/X and specific surfactin productivity qsurfactin was observed, without any considerable effect on the ComX activity. By extending the cultivation time, a 2.7-fold increase in surfactin titer was observed after 24 h for strain CT10 (ΔrapC) and a 2.5-fold increase for CT11 (ΔrapF) compared to the reference strain KM1016. In addition, YP/X was again increased for strains CT10 and CT11, with values of 1.33 g/g and 1.13 g/g, respectively. Interestingly, the effect on surfactin titer in strain CT12 (ΔrapH) was not as distinct, although it achieved the highest promoter activity (PsrfA-lacZ). The data presented support the possibility of involving the quorum sensing system of Bacillus in bioprocess control as shown here on the example of lipopeptide production.
Collapse
Affiliation(s)
- Chantal Treinen
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany
| | - Lennart Biermann
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Maliheh Vahidinasab
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Kambiz Morabbi Heravi
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Lars Lilge
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, Groningen, 9747 AG, The Netherlands
| | - Rudolf Hausmann
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Marius Henkel
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany.
| |
Collapse
|
5
|
Yang P, Geng C, Zhu S, Zhou Z, Bilal M, Gu C, Xu H, Ji L, Xiao B, Wang J, Qian Z, Zhao L, Zhao Y, Lu H. Identification and functional analysis of non-coding regulatory small RNA FenSr3 in Bacillus amyloliquefaciens LPB-18. PeerJ 2023; 11:e15236. [PMID: 37214100 PMCID: PMC10194069 DOI: 10.7717/peerj.15236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/28/2023] [Indexed: 05/24/2023] Open
Abstract
Bacillus amyloliquefaciens is an interesting microbe in the food processing and manufacturing industries. Non-coding small RNAs (sRNAs) have been shown to play a crucial role in the physiology and metabolism of bacteria by post-transcriptionally regulating gene expression. This study investigated the function of novel sRNA FenSr3 by constructing fenSr3 deficient strain and complementary strains in B. amyloliquefaciens LPB-18 , which were named LPN-18N and LPB-18P, respectively. The result showed significant differences in fengycin yield between strain LPB -18N and LPB-18P. The production of fengycin was significantly enhanced in B. amyloliquefaciens LPB-18N, compared with that of the strain LPB-18 from 190.908 mg/L to 327.598 mg/L. Moreover, the production of fengycin decreased from 190.464 mg/L to 38.6 mg/L in B . amyloliquefaciens LPB-18P. A comparative transcriptome sequencing was carried out to better understand the complex regulatory mechanism. Transcription analysis revealed that 1037 genes were differentially expressed between B. amyloliquefaciens LPB-18 and B. amyloliquefaciens LPB-18N, including the key regulatory genes in fatty acid, amino acid biosynthesis, and central carbon metabolism, which could provide sufficient quantities of building precursors for fengycin biosynthesis. The biofilm formation and sporulation was also enhanced in the strain LPB-18N, which indicates that FenSr3 could play a vital role in stress resistance and promotes survival in B. amyloliquefaciens. Some sRNAs involved in stress response have been identified in the literature, but their regulatory roles in fengycin production remain unclear. The study will contribute a novel perspective to the regulation mechanism of biosynthesis and the optimization of key metabolites of B. amyloliquefaciens.
Collapse
Affiliation(s)
- Panping Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Chengxin Geng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Weigang, China
| | - Shaohui Zhu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Zhen Zhou
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Chengyuan Gu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Hai Xu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Linchun Ji
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Benchang Xiao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Jingye Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Zhoujie Qian
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Li Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Hedong Lu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaiyin Institute of Technology, Huaian, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan College, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
Akintayo SO, Treinen C, Vahidinasab M, Pfannstiel J, Bertsche U, Fadahunsi I, Oellig C, Granvogl M, Henkel M, Lilge L, Hausmann R. Exploration of surfactin production by newly isolated Bacillus and Lysinibacillus strains from food related sources. Lett Appl Microbiol 2022; 75:378-387. [PMID: 35486075 DOI: 10.1111/lam.13731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
As a lipopeptide (LP), surfactin exhibits properties, such as emulsifying and dispersing ability, which are useful in food industry. Discovery of new LP-producing strains from food sources is an important step towards possible application of surfactin in foods. A total of 211 spore-forming, Gram-positive, and catalase-positive bacterial strains were isolated from fermented African locust beans (iru) and Palm Oil Mill Effluents in a screening process and examined for their ability to produce surfactin. This was achieved by a combination of methods, which included microbiological and molecular classification of strains, along with chemical analysis of surfactin production. Altogether, 29 isolates, positive for oil spreading and emulsification assays, were further identified with 16S rDNA analysis. The strains belonged to nine species including less commonly reported strains of Lysinibacillus, Bacillus flexus, B. tequilensis, and B. aryabhattai. The surfactin production was quantitatively and qualitatively analyzed by high-performance thin-layer chromatography (HPTLC) and liquid chromatography-mass spectrometry (LC-MS). Confirmation of surfactin by MS was achieved in all the 29 strains. Highest surfactin production capability was found in B. subtilis IRB2-A1 with a titer of 1444.1 mg L-1 .
Collapse
Affiliation(s)
- Stephen Olusanmi Akintayo
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany.,Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Chantal Treinen
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Maliheh Vahidinasab
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Core Facility, University of Hohenheim, Ottilie-Zeller-Weg 2, 70599, Stuttgart, Germany
| | - Ute Bertsche
- Core Facility Hohenheim, Mass Spectrometry Core Facility, University of Hohenheim, Ottilie-Zeller-Weg 2, 70599, Stuttgart, Germany
| | | | - Claudia Oellig
- Department of Food Chemistry and Analytical Chemistry, Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany
| | - Michael Granvogl
- Department of Food Chemistry and Analytical Chemistry, Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany
| | - Marius Henkel
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Lars Lilge
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Rudolf Hausmann
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|