1
|
Xu J, Jia Q, Du N, Liang J, Wang H, Chai J, Yang Y, Xu T, Ma J, Ji P, Ma Y, Liu B, Yang W, Ma J, Yang Y, Li M. STC1 promotes esophageal squamous cell carcinoma progression and is associated with poor prognosis. Pathol Res Pract 2025; 265:155744. [PMID: 39612809 DOI: 10.1016/j.prp.2024.155744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a malignant tumor that poses a significant threat to human health. Patients are often diagnosed at advanced stages of the disease, resulting in poor clinical outcomes and a short survival period. Recent advances have revealed that ESCC tumors exhibit distinct molecular biological characteristics. Our study investigated the expression and biological function of Stanniocalcin-1 (STC1) in ESCC. METHODS We collected paraffin-embedded tumor tissues from 127 patients with ESCC at Xijing Hospital, as well as fresh tissue specimens from 21 patients who underwent radical resection of ESCC, including both tumor and adjacent normal tissues. The expression levels of STC1 in ESCC tissues and cells were assessed using immunohistochemistry (IHC) and Western blot analysis. We employed Kaplan-Meier survival analysis to explore the impact of STC1 expression on the prognosis of ESCC patients. Additionally, we evaluated the effect of STC1 expression on the malignant behavior of ESCC cells through both in vivo and in vitro experiments. RESULTS Compared to normal esophageal tissue, STC1 is overexpressed in ESCC tissue. Univariate and multivariate analyses of clinical data indicated that patients with STC1 overexpression had a poor prognosis (P = 0.009 and P = 0.015). Both cell experiments and xenograft models demonstrated that the upregulation of STC1 may promote the malignant behavior of ESCC, and conversely, its downregulation may inhibit such behavior. CONCLUSION The overexpression of STC1 enhances the migration, invasion and proliferation of ESCC cells, and is significantly associated with poor prognosis in ESCC patients. Therefore, STC1 may serve as a promising prognostic factor and could also be a potential target for ESCC-specific therapy.
Collapse
Affiliation(s)
- Junpeng Xu
- Department of Pathology, The 940th Hospital of the Joint Logistics Support Force, Lanzhou, China
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China
| | - Na Du
- No.2 Department of Medical Care, No.971 Hospital of the PLA Navy, Qingdao, China
| | - Jiayi Liang
- Department of Pathology, The 940th Hospital of the Joint Logistics Support Force, Lanzhou, China
| | - Huanhuan Wang
- Department of Pathology, The 940th Hospital of the Joint Logistics Support Force, Lanzhou, China
| | - Jia Chai
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanru Yang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tianqi Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianwu Ma
- Department of Pathology, The 940th Hospital of the Joint Logistics Support Force, Lanzhou, China
| | - Puzhong Ji
- Department of Pathology, The 940th Hospital of the Joint Logistics Support Force, Lanzhou, China
| | - Yingchun Ma
- Department of Pathology, The 940th Hospital of the Joint Logistics Support Force, Lanzhou, China
| | - Bin Liu
- Department of Pathology, The 940th Hospital of the Joint Logistics Support Force, Lanzhou, China
| | - Weiyi Yang
- Department of Neurology, Xi'an Daxing Hospital, Xi'an, China
| | - Jing Ma
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Yanli Yang
- Department of Pathology, The 940th Hospital of the Joint Logistics Support Force, Lanzhou, China.
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
2
|
Focaccio A, Rossi L, De Luca A. A spotlight on the role of copper in the epithelial to mesenchymal transition. Life Sci 2024; 354:122972. [PMID: 39142503 DOI: 10.1016/j.lfs.2024.122972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The complex process known as epithelial to mesenchymal transition (EMT) plays a fundamental role in several biological settings, encompassing embryonic development, wound healing, and pathological conditions such as cancer and fibrosis. In recent years, a bulk of research has brought to light the key role of copper, a trace element with essential functions in cellular metabolism, cancer initiation and progression. Indeed, copper, besides functioning as cofactor of enzymes required for essential cellular processes, such as energy production and oxidation reactions, has emerged as an allosteric regulator of kinases whose activity is required to fulfill cancer dissemination through the EMT. In this comprehensive review, we try to describe the intricate relationship between the transition metal copper and EMT, spanning from the earliest foundational studies to the latest advancements. Our aim is to shed light on the multifaceted roles undertaken by copper in EMT in cancer and to unveil the diverse mechanisms by which copper homeostasis exerts its influence over EMT regulators, signaling pathways, cell metabolic reprogramming and transcription factors ultimately contributing to the spread of cancer. Therefore, this review not only may contribute to a deeper comprehension of copper-mediated mechanisms in EMT but also supports the hypothesis that targeting copper may contribute to counteract the progression of EMT-associated pathologies.
Collapse
Affiliation(s)
- Antonio Focaccio
- PhD School in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Anastasia De Luca
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
3
|
Shi C, Liu X, Han SS, Tang YF, Zeng HL, Du ML, Yang Y, Jia JN, Shi Q, Hou FG. Mechanism of Preventing Recurrence of Stage II-III Colorectal Cancer Metastasis with Immuno-inflammatory and Hypoxic Microenvironment by a Four Ingredients Chinese Herbal Formula: A Bioinformatics and Network Pharmacology Analysis. Curr Pharm Des 2024; 30:2007-2026. [PMID: 38867534 DOI: 10.2174/0113816128294401240523092259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Colorectal Cancer (CRC) is one of the top three malignancies with the highest incidence and mortality. OBJECTIVE The study aimed to identify the effect of Traditional Chinese Medicine (TCM) on postoperative patients with stage II-III CRC and explore the core herb combination and its mechanism. METHODS An observational cohort study was conducted on patients diagnosed with stage II-III CRC from January 2016 to January 2021. The primary outcome was disease-free survival, which was compared between the patients who received TCM or not, and the secondary outcome was the hazard ratio. The relevance principle was used to obtain the candidate herb combinations, and the core combination was evaluated through an assessment of efficacy and representativeness. Then, biological processes and signaling pathways associated with CRC were obtained by Gene Ontology function, Kyoto Encyclopedia of Gene and Genomes pathway, and Wikipathway. Furthermore, hub genes were screened by the Kaplan-Meier estimator, and molecular docking was employed to predict the binding sites of key ingredients to hub genes. The correlation analysis was employed for the correlations between the hub genes and tumor-infiltrating immune cells and hypoxiarelated genes. Ultimately, a quantitative polymerase chain reaction was performed to verify the regulation of hub genes by their major ingredients. RESULTS A total of 707 patients were included. TCM could decrease the metastatic recurrence associated with stage II-III CRC (HR: 0.61, log-rank P < 0.05). Among those patients in the TCM group, the core combination was Baizhu → Yinchen, Chenpi, and Fuling (C combination), and its antitumor mechanism was most likely related to the regulation of BCL2L1, XIAP, and TOP1 by its key ingredients, quercetin and tangeretin. The expression of these genes was significantly correlated with both tumor-infiltrating immune cells and hypoxia- related genes. In addition, quercetin and tangeretin down-regulated the mRNA levels of BCL2L1, XIAP, and TOP1, thereby inhibiting the growth of HCT116 cells. CONCLUSION Overall, a combination of four herbs, Baizhu → Yinchen, Chenpi, and Fuling, could reduce metastatic recurrence in postoperative patients with stage II-III CRC. The mechanism may be related to the regulation of BCL2L1, XIAP, and TOP1 by its key ingredients quercetin and tangeretin.
Collapse
Affiliation(s)
- Chuan Shi
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xing Liu
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Su-Su Han
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yu-Fei Tang
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Hai-Lun Zeng
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Mei-Lu Du
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yi Yang
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jia-Ning Jia
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Qi Shi
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Feng-Gang Hou
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| |
Collapse
|
4
|
Soares RB, Manguinhas R, Costa JG, Saraiva N, Gil N, Rosell R, Camões SP, Batinic-Haberle I, Spasojevic I, Castro M, Miranda JP, Guedes de Pinho P, Fernandes AS, Oliveira NG. The Redox-Active Manganese(III) Porphyrin, MnTnBuOE-2-PyP 5+, Impairs the Migration and Invasion of Non-Small Cell Lung Cancer Cells, Either Alone or Combined with Cisplatin. Cancers (Basel) 2023; 15:3814. [PMID: 37568630 PMCID: PMC10416961 DOI: 10.3390/cancers15153814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Manganese(III) porphyrin MnTnBuOE-2-PyP5+ (MnBuOE, BMX-001) is a third-generation redox-active cationic substituted pyridylporphyrin-based drug with a good safety/toxicity profile that has been studied in several types of cancer. It is currently in four phase I/II clinical trials on patients suffering from glioma, head and neck cancer, anal squamous cell carcinoma and multiple brain metastases. There is yet an insufficient understanding of the impact of MnBuOE on lung cancer. Therefore, this study aims to fill this gap by demonstrating the effects of MnBuOE on non-small cell lung cancer (NSCLC) A549 and H1975 cell lines. The cytotoxicity of MnBuOE alone or combined with cisplatin was evaluated by crystal violet (CV) and/or 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-Tetrazolium (MTS) reduction assays. Intracellular ROS levels were assessed using two fluorescent probes. Furthermore, the impact of MnBuOE alone or in combination with cisplatin on collective cell migration, individual chemotactic migration and chemoinvasion was assessed using the wound-healing and transwell assays. The expression of genes related to migration and invasion was assessed through RT-qPCR. While MnBuOE alone decreased H1975 cell viability at high concentrations, when combined with cisplatin it markedly reduced the viability of the more invasive H1975 cell line but not of A549 cell line. However, MnBuOE alone significantly decreased the migration of both cell lines. The anti-migratory effect was more pronounced when MnBuOE was combined with cisplatin. Finally, MnBuOE alone or combined with cisplatin significantly reduced cell invasion. MnBuOE alone or combined with cisplatin downregulated MMP2, MMP9, VIM, EGFR and VEGFA and upregulated CDH1 in both cell lines. Overall, our data demonstrate the anti-metastatic potential of MnBuOE for the treatment of NSCLC.
Collapse
Affiliation(s)
- Rita B. Soares
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (R.B.S.); (R.M.); (S.P.C.); (M.C.); (J.P.M.)
- Lung Unit, Champalimaud Clinical Centre, Champalimaud Foundation, Av. Brasília, 1400-038 Lisbon, Portugal;
| | - Rita Manguinhas
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (R.B.S.); (R.M.); (S.P.C.); (M.C.); (J.P.M.)
| | - João G. Costa
- Universidade Lusófona’s Research Center for Biosciences & Health Technologies (CBIOS), Campo Grande 376, 1749-024 Lisboa, Portugal; (J.G.C.); (N.S.)
| | - Nuno Saraiva
- Universidade Lusófona’s Research Center for Biosciences & Health Technologies (CBIOS), Campo Grande 376, 1749-024 Lisboa, Portugal; (J.G.C.); (N.S.)
| | - Nuno Gil
- Lung Unit, Champalimaud Clinical Centre, Champalimaud Foundation, Av. Brasília, 1400-038 Lisbon, Portugal;
| | - Rafael Rosell
- Laboratory of Cellular and Molecular Biology, Institute for Health Science Research Germans Trias I Pujol (IGTP), Campus Can Ruti, Ctra de Can Ruti, Camí de les Escoles, s/n, 08916 Badalona, Barcelona, Spain;
| | - Sérgio P. Camões
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (R.B.S.); (R.M.); (S.P.C.); (M.C.); (J.P.M.)
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA;
- PK/PD Core Laboratory, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matilde Castro
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (R.B.S.); (R.M.); (S.P.C.); (M.C.); (J.P.M.)
| | - Joana P. Miranda
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (R.B.S.); (R.M.); (S.P.C.); (M.C.); (J.P.M.)
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana S. Fernandes
- Universidade Lusófona’s Research Center for Biosciences & Health Technologies (CBIOS), Campo Grande 376, 1749-024 Lisboa, Portugal; (J.G.C.); (N.S.)
| | - Nuno G. Oliveira
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (R.B.S.); (R.M.); (S.P.C.); (M.C.); (J.P.M.)
| |
Collapse
|
5
|
Molaaghaee-Rouzbahani S, Asri N, Sapone A, Baghaei K, Yadegar A, Amani D, Rostami-Nejad M. Akkermansia muciniphila exerts immunomodulatory and anti-inflammatory effects on gliadin-stimulated THP-1 derived macrophages. Sci Rep 2023; 13:3237. [PMID: 36828897 PMCID: PMC9958093 DOI: 10.1038/s41598-023-30266-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Macrophages (MQs) pro-inflammatory phenotype is triggered by gliadin peptides. Akkermansia muciniphila (A. muciniphila) showed to enhance the anti-inflammatory phenotype of MQs. This study aimed to investigate the anti-inflammatory effects of A. muciniphila, on gliadin stimulated THP-1 derived macrophages. THP-1 cell line monocytes were differentiated into MQs by phorbol 12-myristate 13-acetate (PMA). MQs were treated with A. muciniphila before and after stimulation with gliadin (pre- and post-treat). CD11b, as a marker of macrophage differentiation, and CD206 and CD80, as M1 and M2 markers, were evaluated by flow cytometry technique. The mRNA expression of TGF-β, IL-6, and IL-10 and protein levels of IL-10 and TNF-α were measured by RT-PCR and ELISA techniques, respectively. Results show an increased percentage of M1 phenotype and release of proinflammatory cytokines (like TNF-α and IL-6) by macrophages upon incubation with gliadin. Pre- and post-treatment of gliadin-stimulated macrophages with A. muciniphila induced M2 phenotype associated with decreased proinflammatory (IL-6, TNF-α) and increased anti-inflammatory (IL-10, TGF-β) cytokines expression relative to the group that was treated with gliadin alone. This study suggests the potential beneficial effect of A. muciniphila on gliadin-stimulated MQs and the importance of future studies focusing on their exact mechanism of action on these cells.
Collapse
Affiliation(s)
- Sara Molaaghaee-Rouzbahani
- grid.411600.2Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- grid.411600.2Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anna Sapone
- Center for Celiac Research and Treatment, Massachusetts General Hospital, Boston, MA, 02114, USA.
| | - Kaveh Baghaei
- grid.411600.2Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- grid.411600.2Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davar Amani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Nunode M, Hayashi M, Nagayasu Y, Sawada M, Nakamura M, Sano T, Fujita D, Ohmichi M. miR-515-5p suppresses trophoblast cell invasion and proliferation through XIAP regulation in preeclampsia. Mol Cell Endocrinol 2023; 559:111779. [PMID: 36155776 DOI: 10.1016/j.mce.2022.111779] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 02/03/2023]
Abstract
MicroRNAs (miRNAs) are non-coding small RNA molecules that can be secreted into the circulation and which exist in remarkably stable forms. Circulating miRNAs regulate numerous biological process and are aberrantly expressed in pathological conditions. Differentially expressed circulating miRNAs have received attention as potential biomarkers for many diseases. In this study, we revealed that miR-515-5p was significantly upregulated in maternal serum from preeclampsia patients in comparison to normal pregnant women. Bioinformatics prediction and a dual-luciferase reporter gene assay revealed that miR-515-5p directly targets the X-linked inhibitor of apoptosis protein (XIAP) 3'-untranslated region. In addition, the overexpression of miR-515-5p inhibited the proliferation and invasion of HTR-8/SVneo trophoblast cells. The decreased XIAP expression and reduced epithelial-mesenchymal transition (EMT) were observed in the preeclamptic placenta. Collectively, miR-515-5p may play critical roles in the pathogenesis of preeclampsia through suppression of XIAP, and serum miR-515-5p may act as a potential biomarker for preeclampsia.
Collapse
Affiliation(s)
- Misa Nunode
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Masami Hayashi
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan.
| | - Yoko Nagayasu
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Masami Sawada
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Mayumi Nakamura
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Takumi Sano
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Daisuke Fujita
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
7
|
Azimirad M, Noori M, Azimirad F, Gholami F, Naseri K, Yadegar A, Asadzadeh Aghdaei H, Zali MR. Curcumin and capsaicin regulate apoptosis and alleviate intestinal inflammation induced by Clostridioides difficile in vitro. Ann Clin Microbiol Antimicrob 2022; 21:41. [PMID: 36155114 PMCID: PMC9511736 DOI: 10.1186/s12941-022-00533-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Background The dramatic upsurge of Clostridioides difficile infection (CDI) by hypervirulent isolates along with the paucity of effective conventional treatment call for the development of new alternative medicines against CDI. The inhibitory effects of curcumin (CCM) and capsaicin (CAP) were investigated on the activity of toxigenic cell-free supernatants (Tox-S) of C. difficile RT 001, RT 126 and RT 084, and culture-filtrate of C. difficile ATCC 700057. Methods Cell viability of HT-29 cells exposed to varying concentrations of CCM, CAP, C. difficile Tox-S and culture-filtrate was assessed by MTT assay. Anti-inflammatory and anti-apoptotic effects of CCM and CAP were examined by treatment of HT-29 cells with C. difficile Tox-S and culture-filtrate. Expression of BCL-2, SMAD3, NF-κB, TGF-β and TNF-α genes in stimulated HT-29 cells was measured using RT-qPCR. Results C. difficile Tox-S significantly (P < 0.05) reduced the cell viability of HT-29 cells in comparison with untreated cells. Both CAP and CCM significantly (P < 0.05) downregulated the gene expression level of BCL-2, SMAD3, NF-κB and TNF-α in Tox-S treated HT-29 cells. Moreover, the gene expression of TGF-β decreased in Tox-S stimulated HT-29 cells by both CAP and CCM, although these reductions were not significantly different (P > 0.05). Conclusion The results of the present study highlighted that CCM and CAP can modulate the inflammatory response and apoptotic effects induced by Tox-S from different clinical C. difficile strains in vitro. Further studies are required to accurately explore the anti-toxin activity of natural components, and their probable adverse risks in clinical practice.
Collapse
Affiliation(s)
- Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Noori
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Gholami
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Naseri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Suprapto RP, Suzuki Y, Nagano T, Hirata KI, Emoto N. The loss of endothelin-2 exhibits an anticancer effect in A549 human lung adenocarcinoma cell line. Can J Physiol Pharmacol 2022; 100:818-827. [PMID: 35679618 DOI: 10.1139/cjpp-2022-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, and adenocarcinoma is the most common subtype of lung cancer. Endothelin-2 (ET-2) is expressed in the epithelium of alveoli, and its expression is increased in cancer. However, the role of ET-2 in lung adenocarcinoma remains unclear. This study aimed to investigate the pathophysiological functions of ET-2 in A549 human lung adenocarcinoma cells. We analyzed the expression of ET-2 mRNA in lung adenocarcinoma tissues compared to that in non-tumor lung tissues using public online databases. The function of ET-2 in A549 cells was investigated using siRNA. ET-2 mRNA level was upregulated in lung adenocarcinoma tissues, and high ET-2 level was associated with poor overall survival in patients with lung adenocarcinoma. ET-2 silencing reduced the proliferation, migration, invasion, and enhanced apoptosis in A549 cells. Mechanistically, ET-2 silencing reduced the expression levels of X-linked inhibitor of apoptosis and survivin, which are members of the inhibitor apoptosis protein family. In addition, silencing ET-2 inhibited epithelial-mesenchymal transition, which halted migration. Therefore, the specific targeting of ET-2 may be a potential treatment strategy for lung adenocarcinoma.
Collapse
Affiliation(s)
- Ratih Paramita Suprapto
- Kobe Pharmaceutical University, 12883, Laboratory of Clinical Pharmaceutical Science, Kobe, Hyogo, Japan.,Kobe University Graduate School of Medicine School of Medicine, 38303, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe, Hyogo, Japan;
| | - Yoko Suzuki
- Kobe Pharmaceutical University, 12883, Laboratory of Clinical Pharmaceutical Science, Kobe, Hyogo, Japan;
| | - Tatsuya Nagano
- Kobe University Graduate School of Medicine Department of Internal Medicine Division of Respiratory Medicine, 592927, Kobe, Hyogo, Japan;
| | - Ken-Ichi Hirata
- Kobe University Graduate School of Medicine School of Medicine, 38303, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe, Hyogo, Japan;
| | - Noriaki Emoto
- Kobe Pharmaceutical University, 12883, Clinical Pharmaceutical Science, Kobe, Japan.,Kobe University Graduate School of Medicine School of Medicine, 38303, Division of Cardiovascular Medicine, Kobe, Japan;
| |
Collapse
|
9
|
Subcellular localization of X-linked inhibitor of apoptosis protein (XIAP) in cancer: does that matter? BBA ADVANCES 2022; 2:100050. [PMID: 37082602 PMCID: PMC10074912 DOI: 10.1016/j.bbadva.2022.100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
X-linked inhibitor of apoptosis protein (XIAP) finely tunes the balance between survival and death to control homeostasis. XIAP is found aberrantly expressed in cancer, which has been shown to promote resistance to therapy-induced apoptosis and confer poor outcome. Despite its predominant cytoplasmic localization in human tissues, growing evidence implicates the expression of XIAP in other subcellular compartments in sustaining cancer hallmarks. Herein, we review our current knowledge on the prognostic role of XIAP localization and discuss molecular mechanisms underlying differential biological functions played in each compartment. The comprehension of XIAP subcellular shuttling and functional dynamics might provide the rationale for future anticancer therapeutics.
Collapse
|
10
|
Hassan MS, Cwidak N, Awasthi N, von Holzen U. Cytokine Interaction With Cancer-Associated Fibroblasts in Esophageal Cancer. Cancer Control 2022; 29:10732748221078470. [PMID: 35442094 PMCID: PMC9024076 DOI: 10.1177/10732748221078470] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Esophageal cancer (EC) is a highly aggressive cancer with poor outcomes under current treatment regimens. More recent findings suggest stroma elements, specifically cancer-associated fibroblasts (CAFs), play a role in disease occurrence and progression. Cancer-associated fibroblasts are largely the product of converted fibroblasts, but a variety of other local cell types including epithelial cells, endothelial cells, and mesenchymal cells have also been shown to transform to CAFs under the correct conditions. Cancer-associated fibroblasts primarily function in the communication between the tumor microenvironment and cancer cells via cytokine and chemokine secretions that accentuate immunosuppression and cancer growth. Cancer-associated fibroblasts also pose issues for EC treatment by contributing to resistance of current chemotherapeutics like cisplatin. Targeting this cell type directly proves difficult given the heterogeneity between CAFs subpopulations, but emerging research provides hope that treatment is on the horizon. This review aims to unravel some of the complexities surrounding CAFs’ impact on EC growth and therapy.
Collapse
Affiliation(s)
- Md Sazzad Hassan
- Department of Surgery, 158720Indiana University School of Medicine, South Bend, IN 46617, USA.,Harper Cancer Research Institute, South Bend, IN 46617, USA
| | - Nicholas Cwidak
- Department of Surgery, 158720Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Niranjan Awasthi
- Department of Surgery, 158720Indiana University School of Medicine, South Bend, IN 46617, USA.,Harper Cancer Research Institute, South Bend, IN 46617, USA
| | - Urs von Holzen
- Department of Surgery, 158720Indiana University School of Medicine, South Bend, IN 46617, USA.,Harper Cancer Research Institute, South Bend, IN 46617, USA.,Goshen Center for Cancer Care, Goshen, Goshen, IN 46526, USA.,University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Fang Y, Sun B, Gao J, Huang Y, Wang C. LncRNA SLCO4A1-AS1 Accelerates Growth and Metastasis of Gastric Cancer via Regulation of the miR-149/XIAP Axis. Front Oncol 2021; 11:683256. [PMID: 34650909 PMCID: PMC8505954 DOI: 10.3389/fonc.2021.683256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/30/2021] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Recently, long noncoding RNA SLCO4A1 antisense RNA 1 (SLCO4A1-AS1) has been shown to act as an oncogene in several cancer types; however, its role in gastric cancer (GC) and its underlying molecular mechanisms are yet to be elucidated. METHODS Using the ENCORI database, we identified SLCO4A1-AS1, miR-149-5p (miR-149), and the X-linked inhibitor of apoptosis (XIAP) whose expressions were obviously changed in GC samples, and analyzed the correlation between their expressions in GC samples. Moreover, we explored the expression of SLCO4A1-AS1, miR-149, and XIAP in clinical samples and GC cell lines using RT-qPCR and western blotting assay; the correlation between them was analyzed using RNA immunoprecipitation and dual-luciferase reporter. CCK-8, colony formation, and Transwell assays were conducted to determine the effects of SLCO4A1-AS1, miR-149, and XIAP expression on cell proliferation, migration, and invasion, respectively. A nude mouse xenograft model was used to explore their function in xenograft growth. RESULTS SLCO4A1-AS1 was significantly upregulated in the GC samples and cell lines, and a high level of SLCO4A1-AS1 was associated with an advanced tumor stage and shortened patient survival. Mechanistically, SLCO4A1-AS1 post-transcriptionally regulated XIAP by functioning as competing endogenous RNA in GC to sponge miR-149. Further functional assays revealed that the overexpression of miR-149 and knockdown of XIAP considerably inhibited GC cell viability and its migratory and invasive characteristics in vitro. SLCO4A1-AS1 knockdown also determined the function of GC cells but was diminished by the miR-149 inhibitor in vitro. Finally, we demonstrated that the deletion of SLCO4A1-AS1 suppressed tumor growth and metastasis in vivo. CONCLUSIONS Altogether, these findings suggest that SLCO4A1-AS1 functions as a crucial oncogenic lncRNA in GC and it can facilitate GC tumor growth and metastasis by interacting with miR-149 and enhancing XIAP expression. Therefore, SLCO4A1-AS1 is a potential novel therapeutic target in GC treatment.
Collapse
Affiliation(s)
- Yantian Fang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bo Sun
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianpeng Gao
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yakai Huang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenchen Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
12
|
Sabbadini F, Bertolini M, De Matteis S, Mangiameli D, Contarelli S, Pietrobono S, Melisi D. The Multifaceted Role of TGF-β in Gastrointestinal Tumors. Cancers (Basel) 2021; 13:cancers13163960. [PMID: 34439114 PMCID: PMC8391793 DOI: 10.3390/cancers13163960] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The transforming growth factor β signaling pathway elicits a broad range of physiological re-sponses, and its misregulation has been related to cancer. The secreted cytokine TGFβ exerts a tumor-suppressive effect that counteracts malignant transformation. However, once tumor has developed, TGFβ can support tumor progression regulating epithelial to mesenchymal transition, invasion and metastasis, stimulating fibrosis, angiogenesis and immune suppression. Here we review the dichotomous role of TGF-β in the progression of gastrointestinal tumors, as well as its intricate crosstalk with other signaling pathways. We also discuss about the therapeutic strate-gies that are currently explored in clinical trials to counteract TGF-β functions. Abstract Transforming growth factor-beta (TGF-β) is a secreted cytokine that signals via serine/threonine kinase receptors and SMAD effectors. Although TGF-β acts as a tumor suppressor during the early stages of tumorigenesis, it supports tumor progression in advanced stages. Indeed, TGF-β can modulate the tumor microenvironment by modifying the extracellular matrix and by sustaining a paracrine interaction between neighboring cells. Due to its critical role in cancer development and progression, a wide range of molecules targeting the TGF-β signaling pathway are currently under active clinical development in different diseases. Here, we focused on the role of TGF-β in modulating different pathological processes with a particular emphasis on gastrointestinal tumors.
Collapse
Affiliation(s)
- Fabio Sabbadini
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
| | - Monica Bertolini
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
| | - Serena De Matteis
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
- Department of Experimental, Diagnostic and Specialty Medicine, AlmaMater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Domenico Mangiameli
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
| | - Serena Contarelli
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
| | - Silvia Pietrobono
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
| | - Davide Melisi
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
- Experimental Cancer Medicine Unit, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy
- Correspondence:
| |
Collapse
|
13
|
Zhao Y, Gao J, Xie X, Nan P, Liu F, Sun Y, Zhao X. BACH1 promotes the progression of esophageal squamous cell carcinoma by inducing the epithelial-mesenchymal transition and angiogenesis. Cancer Med 2021; 10:3413-3426. [PMID: 33932125 PMCID: PMC8124123 DOI: 10.1002/cam4.3884] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 02/06/2023] Open
Abstract
Metastasis to regional lymph nodes or distal organs predicts the progression of the disease and poor prognosis in esophageal squamous cell carcinoma (ESCC). Previous studies demonstrated that BTB and CNC homology 1 (BACH1) participates in various types of tumor metastasis. However, the function of BACH1 in ESCC was rarely reported. The present study demonstrated that BACH1 protein was overexpressed in ESCC tissues compared with paired esophageal epithelial tissues according to immunohistochemical staining (IHC). Higher levels of BACH1 mRNA were associated with decreased overall survival (OS) and shorter disease‐free survival (DFS) of ESCC patients based on an analysis of The Cancer Genome Atlas (TCGA) datasets. BACH1 significantly enhanced the migration and invasion of ESCC in vitro. Mechanistically, BACH1 promoted the epithelial–mesenchymal transition (EMT) by directly activating the transcription of CDH2, SNAI2, and VIM, as determined by chromatin immunoprecipitation‐quantitative polymerase chain reaction (ChIP‐qPCR). BACH1 overexpression significantly enhanced CDH2 promoter activity according to the results of a luciferase assay. The results of subsequent experiments indicated that BACH1 enhanced the growth of tumor xenografts. The density of CD31+ blood vessels and the expression of vascular endothelial growth factor C (VEGFC) in tumor xenografts were significantly associated with BACH1 levels according to the results of IHC and immunofluorescence (IF) analyses performed in vivo. Moreover, ChIP‐qPCR analysis demonstrated that the transcriptional activity of VEGFC was also upregulated by BACH1. Thus, BACH1 contributes to ESCC metastasis and tumorigenesis by partially facilitating the EMT and angiogenesis, and BACH1 may be a promising therapeutic target or molecular marker in ESCC.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiajia Gao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiufeng Xie
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yulin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohang Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Cao LJ, Zhang YJ, Dong SQ, Li XZ, Tong XT, Chen D, Wu ZY, Zheng XH, Xue WQ, Jia WH, Zhang JB. ATAD2 interacts with C/EBPβ to promote esophageal squamous cell carcinoma metastasis via TGF-β1/Smad3 signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:109. [PMID: 33757572 PMCID: PMC7986551 DOI: 10.1186/s13046-021-01905-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/08/2021] [Indexed: 12/27/2022]
Abstract
Background Distant metastasis is the leading cause of death for esophageal squamous cell carcinoma (ESCC) with limited treatment options and unsatisfactory effectiveness. Bromodomain (BRD) containing proteins are emerging targets for cancer therapy with promising effects. As a unique member of BRD family, the function and molecular mechanism of ATAD2 in cancer development is seldomly investigated. Methods The clinical impact of ATAD2 was assessed both at RNA and protein level in 75 and 112 ESCC patients separately. The biological function of ATAD2 was investigated in vitro and in vivo. Signaling pathway and downstream effectors of ATAD2 were identified by RNA sequencing, luciferase reporter, co-immunoprecipitation, chromatin immunoprecipitation, immunofluorescence and western blot assay. Results We found that elevated ATAD2 expression was significantly associated with lymph node metastasis, advanced clinical stage as well as poor survival of ESCC patients. Silencing ATAD2 significantly suppressed ESCC cell migration and invasion in vitro, and inhibited tumor growth and lung metastasis in vivo. Mechanically, we identified a new cofactor, C/EBPβ. ATAD2 directly interacted with C/EBPβ and promoted its nuclear translocation, which directly bound to the promoter region of TGF-β1 and activated its expression. Further, we demonstrated that TGF-β1 activated its downstream effectors in a Smad3 dependent manner. In addition, we further found that ATAD2 promoted ESCC metastasis through TGF-β signaling induced Snail expression and the subsequent epithelial-mesenchymal transition. Conclusion Our findings demonstrated the pro-metastatic function of ATAD2 and uncovered the new molecular mechanism by regulating C/EBPβ/TGF-β1/Smad3/Snail signaling pathway, thus providing a potential target for the treatment of ESCC metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01905-x.
Collapse
Affiliation(s)
- Lian-Jing Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi-Jun Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Si-Qi Dong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xia-Ting Tong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zi-Yi Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Jiang-Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
15
|
Lee HY, Son SW, Moeng S, Choi SY, Park JK. The Role of Noncoding RNAs in the Regulation of Anoikis and Anchorage-Independent Growth in Cancer. Int J Mol Sci 2021; 22:ijms22020627. [PMID: 33435156 PMCID: PMC7827914 DOI: 10.3390/ijms22020627] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a global health concern, and the prognosis of patients with cancer is associated with metastasis. Multistep processes are involved in cancer metastasis. Accumulating evidence has shown that cancer cells acquire the capacity of anoikis resistance and anchorage-independent cell growth, which are critical prerequisite features of metastatic cancer cells. Multiple cellular factors and events, such as apoptosis, survival factors, cell cycle, EMT, stemness, autophagy, and integrins influence the anoikis resistance and anchorage-independent cell growth in cancer. Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are dysregulated in cancer. They regulate cellular signaling pathways and events, eventually contributing to cancer aggressiveness. This review presents the role of miRNAs and lncRNAs in modulating anoikis resistance and anchorage-independent cell growth. We also discuss the feasibility of ncRNA-based therapy and the natural features of ncRNAs that need to be contemplated for more beneficial therapeutic strategies against cancer.
Collapse
|
16
|
Kumar S, Fairmichael C, Longley DB, Turkington RC. The Multiple Roles of the IAP Super-family in cancer. Pharmacol Ther 2020; 214:107610. [PMID: 32585232 DOI: 10.1016/j.pharmthera.2020.107610] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/16/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022]
Abstract
The Inhibitor of Apoptosis proteins (IAPs) are a family of proteins that are mainly known for their anti-apoptotic activity and ability to directly bind and inhibit caspases. Recent research has however revealed that they have extensive roles in governing numerous other cellular processes. IAPs are known to modulate ubiquitin (Ub)-dependent signaling pathways through their E3 ligase activity and influence activation of nuclear factor κB (NF-κB). In this review, we discuss the involvement of IAPs in individual hallmarks of cancer and the current status of therapies targeting these critical proteins.
Collapse
Affiliation(s)
- Swati Kumar
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Ciaran Fairmichael
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Richard C Turkington
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom.
| |
Collapse
|