1
|
Kalmari A, Colagar AH. Exploration of SOD3 from gene to therapeutic prospects: a brief review. Mol Biol Rep 2024; 51:980. [PMID: 39269510 DOI: 10.1007/s11033-024-09919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Superoxide dismutase 3 (SOD3) is a type of antioxidant enzyme, which plays an important role in converting superoxide anion into hydrogen peroxide through its extracellular activity. This enzyme has been widely studied and evaluated from various points of view, including maintaining cellular redox balance, protecting against oxidative damage, and enhancing overall cellular resilience. The current paper focuses on SOD3 expression from a functional perspective. In addition to a detailed examination of the gene and protein structure, we found ample evidence indicating that the expression level of SOD3 undergoes alterations in response to various transcription factors, signaling pathways, and diverse conditions. These fluctuations, by disrupting the homeostasis of SOD3, can serve as crucial indicators of the onset or exacerbation of specific diseases. In this regard, significant efforts have been dedicated in recent years to the treatment of diseases through the regulation of SOD3 expression. The ultimate goal of this review is to extensively highlight and demonstrate the immense potential of SOD3 as a therapeutic target, emphasizing its profound impact on health outcomes.
Collapse
Affiliation(s)
- Amin Kalmari
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, Babolsar, 47416-95447, Mazandaran, Iran
| | - Abasalt Hosseinzadeh Colagar
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, Babolsar, 47416-95447, Mazandaran, Iran.
| |
Collapse
|
2
|
Fadaghi S, Mahmoodi M, Derakhshani A, Sedghy F, Ranjkesh M, Behzadi A. Enhancement the antioxidative and immunomodulatory functions of mesenchymal stem cells by tetrandrine. Heliyon 2024; 10:e35667. [PMID: 39220890 PMCID: PMC11365297 DOI: 10.1016/j.heliyon.2024.e35667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
In this study, mesenchymal stem cells (MSCs) were primed with Tetrandrine (TET) having anti-inflammatory and immunomodulatory effects to examine the effects of this molecule on the antioxidative potential of MSCs as well as their modulatory effects on activated peripheral blood mononuclear cells (PBMCs). The viability of primed MSCs was detected using MTT assay and Trypan blue staining. Moreover, flow cytometry technique was applied to evaluate cell cycle distribution and immunophenotype of MSCs. The production of superoxide dismutase 3 (SOD3), malondialdehyde (MDA), kynurenine, TGF-β, and IFN-γ were also measured by spectrophotometry to assess the alteration of antioxidative and immunomodulatory potential of MSCs. Then, TET-primed MSCs were cocultured with PBMCs. The MTT assay was used to measure the proliferation of PBMCs. Cell cycle progression of PBMCs and frequency of regulatory T cells were evaluated using Flow cytometry. ELISA assay was also applied to determine the concentrations of TGF-β and IFN-γ after coculturing. According to our data, TET enhanced the secretion of SOD3 and kynurenine from MSCs, while the production of IFN-γ was reduced. No changes were observed in the viability, proliferation, and immunophenotype of MSCs after priming with TET. Moreover, the proliferation and frequency of PBMCs in the S and G2/M phases of cell cycle reduced after co-culturing with TET-primed MSCs. The concentration of TGF-β was increased in the supernatant of PBMCs, but the level of IFN-γ was reduced. Our data suggested this priming method as a novel strategy for increasing the antioxidative and immunomodulatory activity of MSCs.
Collapse
Affiliation(s)
- Shohreh Fadaghi
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Merat Mahmoodi
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Derakhshani
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Farnaz Sedghy
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdi Ranjkesh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmadreza Behzadi
- School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Haneef K, Salim A, Hashim Z, Ilyas A, Syed B, Ahmed A, Zarina S. Chemical Hypoxic Preconditioning Improves Survival and Proliferation of Mesenchymal Stem Cells. Appl Biochem Biotechnol 2024; 196:3719-3730. [PMID: 37755639 DOI: 10.1007/s12010-023-04743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
Increasing evidence has demonstrated that mesenchymal stem cells (MSCs) have been linked to tissue regeneration both in vitro and in vivo. However, poor engraftment and low survival rate of transplanted MSCs are still a major concern. It has been found that the proliferation, survival, and migration of MSCs are all increased by hypoxic preconditioning. However, the molecular mechanism through which hypoxic preconditioning enhances these beneficial properties of MSCs remains to be fully investigated. Therefore, the present study is aimed to investigate the mechanism by which hypoxic preconditioning enhances the survival of MSCs. We used proteomic analysis to explore the molecules that may contribute to the survival and proliferation of hypoxic preconditioned (HP) MSCs. The analysis revealed a higher expression of prelamin A/C (Lmna), glutamate dehydrogenase 1(Glud1), Actin, cytoplasmic 1(Actb), Alpha-enolase (Eno1), Glucose-6-phosphate 1-dehydrogenase (G6pd), Protein disulfide-isomerase A3 (Pdia3), Malate dehydrogenase (Mdh1), Peroxiredoxin-6 (Prdx6), Superoxide dismutase (Sod1), and Annexin A2 (Anxa2) in HP-MSCs. These proteins are possibly involved in cellular survival and proliferation through various cellular pathways. This research could aid in understanding the processes involved in hypoxic preconditioning of MSCs and designing of cell-based therapeutic strategies for tissue regeneration.
Collapse
Affiliation(s)
- Kanwal Haneef
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan.
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Zehra Hashim
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Amber Ilyas
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Basir Syed
- School of Pharmacy, Chapman University, Orange, CA, 92866, USA
| | - Aftab Ahmed
- School of Pharmacy, Chapman University, Orange, CA, 92866, USA
| | - Shamshad Zarina
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
4
|
Steinmetz EL, Scherer A, Calvet C, Müller U. Orthologs of NOX5 and EC-SOD/SOD3: dNox and dSod3 Impact Egg Hardening Process and Egg Laying in Reproductive Function of Drosophila melanogaster. Int J Mol Sci 2024; 25:6138. [PMID: 38892326 PMCID: PMC11173305 DOI: 10.3390/ijms25116138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The occurrence of ovarian dysfunction is often due to the imbalance between the formation of reactive oxygen species (ROS) and the ineffectiveness of the antioxidative defense mechanisms. Primary sources of ROS are respiratory electron transfer and the activity of NADPH oxidases (NOX) while superoxide dismutases (SOD) are the main key regulators that control the levels of ROS and reactive nitrogen species intra- and extracellularly. Because of their central role SODs are the subject of research on human ovarian dysfunction but sample acquisition is low. The high degree of cellular and molecular similarity between Drosophila melanogaster ovaries and human ovaries provides this model organism with the best conditions for analyzing the role of ROS during ovarian function. In this study we clarify the localization of the ROS-producing enzyme dNox within the ovaries of Drosophila melanogaster and by a tissue-specific knockdown we show that dNox-derived ROS are involved in the chorion hardening process. Furthermore, we analyze the dSod3 localization and show that reduced activity of dSod3 impacts egg-laying behavior but not the chorion hardening process.
Collapse
Affiliation(s)
- Eva Louise Steinmetz
- Zoology & Physiology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building B2.1, D-66123 Saarbrücken, Germany
| | | | | | | |
Collapse
|
5
|
Piras IS, DiStefano JK. Comprehensive meta-analysis reveals distinct gene expression signatures of MASLD progression. Life Sci Alliance 2024; 7:e202302517. [PMID: 38565287 PMCID: PMC10987979 DOI: 10.26508/lsa.202302517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its progressive form, metabolic dysfunction-associated steatohepatitis (MASH), pose significant risks of severe fibrosis, cirrhosis, and hepatocellular carcinoma. Despite their widespread prevalence, the molecular mechanisms underlying the development and progression of these common chronic hepatic conditions are not fully understood. Here, we conducted the most extensive meta-analysis of hepatic gene expression datasets from liver biopsy samples to date, integrating 10 RNA-sequencing and microarray datasets (1,058 samples). Using a random-effects meta-analysis model, we compared over 12,000 shared genes across datasets. We identified 685 genes differentially expressed in MASLD versus normal liver, 1,870 in MASH versus normal liver, and 3,284 in MASLD versus MASH. Integrating these results with genome-wide association studies and coexpression networks, we identified two functionally relevant, validated coexpression modules mainly driven by SMOC2, ITGBL1, LOXL1, MGP, SOD3, and TAT, HGD, SLC25A15, respectively, the latter not previously associated with MASLD and MASH. Our findings provide a comprehensive and robust analysis of hepatic gene expression alterations associated with MASLD and MASH and identify novel key drivers of MASLD progression.
Collapse
Affiliation(s)
- Ignazio S Piras
- https://ror.org/02hfpnk21 Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Johanna K DiStefano
- https://ror.org/02hfpnk21 Diabetes and Metabolic Disease Research Unit, Translational Genomics Research Institute, Phoenix, AZ, USA
| |
Collapse
|
6
|
Kim MB, Park SM, Lim GH, Oh YH, Seo KW, Youn HY. Neuroprotective and immunomodulatory effects of superoxide dismutase on SH-SY5Y neuroblastoma cells and RAW264.7 macrophages. PLoS One 2024; 19:e0303136. [PMID: 38743689 PMCID: PMC11093368 DOI: 10.1371/journal.pone.0303136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
Superoxide dismutase (SOD) is an antioxidant enzyme that protects the body from free radicals. It has both antioxidant and immunomodulatory properties, inducing macrophage polarization from M1 to M2. Macrophages, key mediators of the innate immune response, are divided into the M1 (pro-inflammatory) and M2 (anti-inflammatory) subtypes. In this study, we aimed to assess the antioxidant and neuroprotective effects of SOD on nerve cells and its immunomodulatory effects on macrophages. We observed that SOD inhibited the accumulation of reactive oxygen species and enhanced the viability of H2O2-treated nerve cells. Furthermore, SOD reduced the degree of necrosis in nerve cells treated with the conditioned medium from macrophages, which induced inflammation. In addition, SOD promoted the M1 to M2 transition of macrophages. Our findings suggest that SOD protects nerve cells and regulates immune responses.
Collapse
Affiliation(s)
- Moon-Beom Kim
- Department of Veterinary Clinical Sciences, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Su-Min Park
- Department of Veterinary Clinical Sciences, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ga-Hyun Lim
- Department of Veterinary Clinical Sciences, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yong-Hun Oh
- Department of Veterinary Clinical Sciences, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Won Seo
- Department of Veterinary Clinical Sciences, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hwa-Young Youn
- Department of Veterinary Clinical Sciences, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Houldsworth A. Role of oxidative stress in neurodegenerative disorders: a review of reactive oxygen species and prevention by antioxidants. Brain Commun 2024; 6:fcad356. [PMID: 38214013 PMCID: PMC10783645 DOI: 10.1093/braincomms/fcad356] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/26/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024] Open
Abstract
Neurological disorders include a variety of conditions, including Alzheimer's disease, motor neuron disease and Parkinson's disease, affecting longevity and quality of life, and their pathogenesis is associated with oxidative stress. Several of the chronic neurodegenerative pathologies of the CNS share some common features, such as oxidative stress, inflammation, synapse dysfunctions, protein misfolding and defective autophagia. Neuroinflammation can involve the activation of mast cells, contributing to oxidative stress, in addition to other sources of reactive oxygen species. Antioxidants can powerfully neutralize reactive oxygen species and free radicals, decreasing oxidative damage. Antioxidant genes, like the manganese superoxide dismutase enzyme, can undergo epigenetic changes that reduce their expression, thus increasing oxidative stress in tissue. Alternatively, DNA can be altered by free radical damage. The epigenetic landscape of these genes can change antioxidant function and may result in neurodegenerative disease. This imbalance of free radical production and antioxidant function increases the reactive oxygen species that cause cell damage in neurons and is often observed as an age-related event. Increased antioxidant expression in mice is protective against reactive oxygen species in neurons as is the exogenous supplementation of antioxidants. Manganese superoxide dismutase requires manganese for its enzymic function. Antioxidant therapy is considered for age-related neurodegenerative diseases, and a new mimetic of a manganese superoxide dismutase, avasopasem manganese, is described and suggested as a putative treatment to reduce the oxidative stress that causes neurodegenerative disease. The aim of this narrative review is to explore the evidence that oxidative stress causes neurodegenerative damage and the role of antioxidant genes in inhibiting reactive oxygen species damage. Can the neuronal environment of oxidative stress, causing neuroinflammation and neurodegeneration, be reduced or reversed?
Collapse
|
8
|
Yahya TSANT, Azmi NC, Yee FS, Chyang PJ, Ting NS, Seng TC. The Effects of Tiger Milk Mushroom Lignosus rhinocerus TM02® (Agaricomycetes) on Leukemogenicity Tyrosine Kinase Cell Lines. Int J Med Mushrooms 2024; 26:55-66. [PMID: 38505903 DOI: 10.1615/intjmedmushrooms.2024052325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Leukemia can be a result of genetic changes associated with protein tyrosine kinase activity such as in MPL W515L and BCR/ABL genes. However, the current conventional treatment of leukemia produces severe side effects that urge the approach to use natural products. A medicinal mushroom, Lignosus rhinocerus shows potential as an anti-cancer treatment. To investigate the efficacy and mechanism of action of the L. rhinocerus cultivar (TM02®) extract on leukemogenic tyrosine kinase cell lines, a cold-water extract (CWE) was produced by using TM02® sclerotia powder at 4°C. The carbohydrate and protein contents were found to be 77.24% and 1.75% respectively. In comparison to the normal Ba/F3 cell, the CWE TM02® shows significant effects on exhibiting proliferation of Ba/F3 expressed MPL W515L and BCR/ABL, possibly due to the presence of phenolic compounds and antioxidant properties of TM02®, which contribute to act on various signaling pathways, and the reported apoptotic activity of CWE TM02®. In contrast, CWE TM02® significantly exhibited high scavenging activity of both Ba/F3 expressed MPL W515L and BCR/ABL. At concentrations of 125 μg/mL and 500 μg/mL of CWE TM02® decreased 49.5% and 67.5% of cell migration activity of Ba/F3 expressed MPL W515L and BCR/ABL respectively. Therefore, we postulate that CWE TM02® has the capability to mediate the migration route of the leukemogenic tyrosine kinase cell lines.
Collapse
Affiliation(s)
| | | | - Fung Shin Yee
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pang Jyh Chyang
- Universiti Kuala Lumpur, Institute of Medical Science and Technology, Taman Kajang Sentral, 43000 Kajang, Selangor, Malaysia
| | - Ng Szu Ting
- Ligno Biotech Sdn Bhd, Balakong Jaya, Selangor, Malaysia
| | - Tan Chon Seng
- Ligno Biotech Sdn Bhd, Balakong Jaya, Selangor, Malaysia
| |
Collapse
|
9
|
Choi H, Miller MR, Nguyen HN, Surratt VE, Koch SR, Stark RJ, Lamb FS. Extracellular SOD modulates canonical TNFα signaling and α5β1 integrin transactivation in vascular smooth muscle cells. Free Radic Biol Med 2023; 209:152-164. [PMID: 37852546 PMCID: PMC10841345 DOI: 10.1016/j.freeradbiomed.2023.10.397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/03/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
TNFα activates NADPH oxidase 1 (Nox1) in vascular smooth muscle cells (VSMCs). The extracellular superoxide anion (O2•-) produced is essential for the pro-inflammatory effects of the cytokine but the specific contributions of O2•- to signal transduction remain obscure. Extracellular superoxide dismutase (ecSOD, SOD3 gene) is a secreted protein that binds to cell surface heparin sulfate proteoglycans or to Fibulin-5 (Fib-5, FBLN5 gene), an extracellular matrix protein that also associates with elastin and integrins. ecSOD converts O2•- to hydrogen peroxide (H2O2) which prevents NO• inactivation, limits generation of hydroxyl radical (OH•), and creates high local concentrations of H2O2. We hypothesized that ecSOD modifies TNFα signaling in VSMCs. Knockdown of ecSOD (siSOD3) suppressed downstream TNFα signals including MAPK (JNK and ERK phosphorylation) and NF-κB activation (luciferase reporter and IκB phosphorylation), interleukin-6 (IL-6) secretion, iNOS and VCAM expression, and proliferation (Sulforhodamine B assay, PCNA western blot). These effects were associated with significant reductions in the expression of both Type1 and 2 TNFα receptors. Reduced Fib-5 expression (siFBLN5) similarly impaired NF-κB activation by TNFα, but potentiated FAK phosphorylation at Y925. siSOD3 also increased both resting and TNFα-induced phosphorylation of FAK and of glycogen synthase kinase-3β (GSK3β), a downstream target of integrin linked kinase (ILK). These effects were dependent upon α5β1 integrins and siSOD3 increased resting sulfenylation (oxidation) of both integrin subunits, while preventing TNFα-induced increases in sulfenylation. To determine how ecSOD modified TNFα-induced inflammation in intact blood vessels, mesenteric arteries from VSMC-specific ecSOD knockout (KO) mice were exposed to TNFα (10 ng/ml) in culture for 48 h. Relaxation to acetylcholine and sodium nitroprusside was impaired in WT but not ecSOD KO vessels. Thus, ecSOD association with Fib-5 supports pro-inflammatory TNFα signaling while tonically inhibiting α5β1 integrin activation.
Collapse
Affiliation(s)
- Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Michael R Miller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Hong-Ngan Nguyen
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Victoria E Surratt
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Stephen R Koch
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ryan J Stark
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Fred S Lamb
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
10
|
Yang J, Xiao M, Ma K, Li H, Ran M, Yang S, Yang Y, Fu X, Yang S. Therapeutic effects of mesenchymal stem cells and their derivatives in common skin inflammatory diseases: Atopic dermatitis and psoriasis. Front Immunol 2023; 14:1092668. [PMID: 36891306 PMCID: PMC9986293 DOI: 10.3389/fimmu.2023.1092668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Chronic skin inflammatory diseases including atopic dermatitis (AD) and psoriasis have been considered uncontrolled inflammatory responses, which have usually troubled patients around the world. Moreover, the recent method to treat AD and psoriasis has been based on the inhibition, not regulation, of the abnormal inflammatory response, which can induce a number of side effects and drug resistance in long-term treatment. Mesenchymal stem/stromal cells (MSCs) and their derivatives have been widely used in immune diseases based on their regeneration, differentiation, and immunomodulation with few adverse effects, which makes MSCs a promising treatment for chronic skin inflammatory diseases. As a result, in this review, we aim to systematically discuss the therapeutic effects of various resources of MSCs, the application of preconditioning MSCs and engineering extracellular vesicles (EVs) in AD and psoriasis, and the clinical evaluation of the administration of MSCs and their derivatives, which can provide a comprehensive vision for the application of MSCs and their derivatives in future research and clinical treatment.
Collapse
Affiliation(s)
- Jie Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Minglu Xiao
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Kui Ma
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Hongyu Li
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China.,Tianjin Medical University, Tianjin, China
| | - Mingzi Ran
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Shuxu Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Yuguang Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China
| | - Xiaobing Fu
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Siming Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| |
Collapse
|
11
|
Novel Role of Mammalian Cell Senescence-Sustenance of Muscle Larvae of Trichinella spp. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1799839. [PMID: 36478989 PMCID: PMC9722307 DOI: 10.1155/2022/1799839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022]
Abstract
Muscle larva of the parasitic nematode Trichinella spp. lives in a portion of muscle fibre transformed to a nurse cell (NC). Based on our previous transcriptomic studies, NC growth arrest was inferred to be accompanied by cellular senescence. In the current study, NC was proven to display the following markers of senescence: high senescence-associated β-galactosidase activity, lipid deposition, DNA damage, and cell cycle inhibition. Moreover, the nuclear localization of Activator Protein 1 (c-Fos, c-Jun, and FosB), as well as the upregulation of numerous AP-1 target genes in the NC, remained in accord with AP-1 recently identified as a master transcription factor in senescence. An increase in reactive oxygen species generation and the upregulation of antioxidant defence enzymes, including glutathione peroxidases 1 and 3, catalase, superoxide dismutases 1 and 3, and heme oxygenase 1, indicated an ongoing oxidative stress to proceed in the NC. Interestingly, antioxidant defence enzymes localized not only to the NC but also to the larva. These results allowed us to hypothesize that oxidative stress accompanying muscle regeneration and larval antigenic properties lead to the transformation of a regenerating myofibre into a senescent cell. Cellular senescence apparently represents a state of metabolism that sustains the long-term existence of muscle larva and ultimately provides it with the antioxidant capacity needed during the next host colonization. Senotherapy, a therapeutic approach aimed at selective elimination of senescent cells, can thus be viewed as potentially effective in the treatment of trichinosis.
Collapse
|
12
|
SOD3 Expression in Tumor Stroma Provides the Tumor Vessel Maturity in Oral Squamous Cell Carcinoma. Biomedicines 2022; 10:biomedicines10112729. [DOI: 10.3390/biomedicines10112729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor angiogenesis is one of the hallmarks of solid tumor development. The progressive tumor cells produce the angiogenic factors and promote tumor angiogenesis. However, how the tumor stromal cells influence tumor vascularization is still unclear. In the present study, we evaluated the effects of oral squamous cell carcinoma (OSCC) stromal cells on tumor vascularization. The tumor stromal cells were isolated from two OSCC patients with different subtypes: low invasive verrucous squamous carcinoma (VSCC) and highly invasive squamous cell carcinoma (SCC) and co-xenografted with the human OSCC cell line (HSC-2) on nude mice. In comparison, the CD34+ vessels in HSC-2+VSCC were larger than in HSC-2+SCC. Interestingly, the vessels in the HSC-2+VSCC expressed vascular endothelial cadherin (VE-cadherin), indicating well-formed vascularization. Our microarray data revealed that the expression of extracellular superoxide dismutase, SOD3 mRNA is higher in VSCC stromal cells than in SCC stromal cells. Moreover, we observed that SOD3 colocalized with VE-cadherin on endothelial cells of low invasive stroma xenograft. These data suggested that SOD3 expression in stromal cells may potentially regulate tumor vascularization in OSCC. Thus, our study suggests the potential interest in SOD3-related vascular integrity for a better OSCC therapeutic strategy.
Collapse
|
13
|
Liu YH, Chen YH, Ko CH, Kuo CW, Yen CC, Chen W, Chong KY, Chen CM. SOD3 and IL-18 Predict the First Kidney Disease-Related Hospitalization or Death during the One-Year Follow-Up Period in Patients with End-Stage Renal Disease. Antioxidants (Basel) 2022; 11:antiox11061198. [PMID: 35740095 PMCID: PMC9231321 DOI: 10.3390/antiox11061198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 01/27/2023] Open
Abstract
End-stage renal disease (ESRD) patients experience oxidative stress due to excess exogenous or endogenous oxidants and insufficient antioxidants. Hence, oxidative stress and inflammation cause endothelial damage, contributing to vascular dysfunction and atherosclerosis. Therefore, ESRD patients suffer more cardiovascular and hospitalization events than healthy people. This study aims to test the correlations between ROS, SOD3, IL-2, IL-6, and IL-18 and the first kidney disease-related hospitalization or death events in ESRD patients undergoing regular hemodialysis. A total of 212 participants was enrolled, including 45 normal healthy adults and 167 ESRD patients on regular dialysis. Blood samples from all participants were collected for ROS, SOD3, IL-2, IL-6, and IL-18 measurement at the beginning of the study, and every kidney disease-related admission or death was recorded for the next year. Multivariate analysis was conducted by fitting a linear regression model, logistic regression model, and Cox proportional hazards model to estimate the adjusted effects of risk factors, prognostic factors, or predictors on continuous, binary, and survival outcome data. The results showed that plasma SOD3 and serum IL-18 were two strong predictors of the first kidney disease-related hospitalization or death. In the Cox proportional hazards models (run in R), higher IL-18 concentration (>69.054 pg/mL) was associated with a hazard ratio of 3.376 for the first kidney disease-related hospitalization or death (95% CI: 1.2644 to 9.012), while log(SOD3) < 4.723 and dialysis clearance (Kt/V; 1.11 < value < 1.869) had a hazard ratio = 0.2730 (95% CI: 0.1133 to 0.6576) for reducing future kidney disease-related hospitalization or death. Other markers, including body mass index (BMI), transferrin saturation, total iron binding capacity, and sodium and alkaline phosphate, were also found to be significant in our study. These results reveal the new predictors SOD3 and IL-18 for the medical care of end-stage renal disease patients.
Collapse
Affiliation(s)
- Yu-Hsien Liu
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Y.-H.L.); (Y.-H.C.); (C.-H.K.); (C.-W.K.)
- Department of Internal Medicine, Jen-Ai Hospital, Dali Branch, Taichung 402, Taiwan
| | - Yu-Hsuan Chen
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Y.-H.L.); (Y.-H.C.); (C.-H.K.); (C.-W.K.)
| | - Chi-Hua Ko
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Y.-H.L.); (Y.-H.C.); (C.-H.K.); (C.-W.K.)
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Yunlin 638, Taiwan
| | - Chia-Wen Kuo
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Y.-H.L.); (Y.-H.C.); (C.-H.K.); (C.-W.K.)
- Department of Internal Medicine, Taichung Armed Forces General Hospital, Taichung 411, Taiwan
| | - Chih-Ching Yen
- Department of Internal Medicine, China Medical University Hospital, College of Health Care, China Medical University, Taichung 404, Taiwan;
| | - Wei Chen
- Division of Pulmonary and Critical Care Medicine, Chia-Yi Christian Hospital, Chiayi 600, Taiwan;
| | - Kowit-Yu Chong
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Hyperbaric Oxygen Medical Research Lab, Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- Correspondence: (K.-Y.C.); (C.-M.C.); Tel.: +886-4-2285-6309 (K.-Y.C.); +886-2-2118393 (C.-M.C.)
| | - Chuan-Mu Chen
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Y.-H.L.); (Y.-H.C.); (C.-H.K.); (C.-W.K.)
- The iEGG and Animal Biotechnology Center, The Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (K.-Y.C.); (C.-M.C.); Tel.: +886-4-2285-6309 (K.-Y.C.); +886-2-2118393 (C.-M.C.)
| |
Collapse
|
14
|
Bonczidai-Kelemen D, Sciortino G, May NV, Garribba E, Fábián I, Lihi N. Introducing the penicillamine moiety into a metallopeptide mimicking the NiSOD enzyme: electronic and kinetic effects. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01025e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel NiSOD related metallopeptide incorporates penicillamine moiety in the active center which alters both the electronic and kinetic features.
Collapse
Affiliation(s)
- Dóra Bonczidai-Kelemen
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032, Debrecen, Hungary
| | - Giuseppe Sciortino
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Technology, 43007 Tarragona, Spain
| | - Nóra V. May
- Centre for Structural Science, Research Centre for Natural Sciences, H-1117, Budapest, Hungary
| | - Eugenio Garribba
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, I-07100 Sassari, Italy
| | - István Fábián
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032, Debrecen, Hungary
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, University of Debrecen, H-4032, Debrecen, Hungary
| | - Norbert Lihi
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032, Debrecen, Hungary
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, University of Debrecen, H-4032, Debrecen, Hungary
| |
Collapse
|
15
|
Awazu M. Structural and functional changes in the kidney caused by adverse fetal and neonatal environments. Mol Biol Rep 2021; 49:2335-2344. [PMID: 34817775 DOI: 10.1007/s11033-021-06967-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
Health and disease risk in the adulthood are known to be affected by the early developmental environment. Kidney diseases are one of these diseases, and kidneys are altered both structurally and functionally by adverse pre- and perinatal events. The most known structural change is low nephron number seen in subjects born low birth weight and/or preterm. In various animal models of intrauterine growth restriction (IUGR), one of the causes of low birth weight, the mechanism of low nephron number was investigated. While apoptosis of metanephric mesenchyme has been suggested to be the cause, I showed that suppression of ureteric branching, global DNA methylation, and caspase-3 activity also contributes to the mechanism. Other structural changes caused by adverse fetal and neonatal environments include peritubular and glomerular capillary rarefaction and low podocyte endowment. These are aggravated by postnatal development of focal glomerulosclerosis and tubulointerstitial fibrosis that result from low nephron number. Functional changes can be seen in tubules, endothelium, renin-angiotensin system, sympathetic nervous system, oxidative stress, and others. As an example, I reported that aggravated nitrosative stress in a rat IUGR model resulted in more severe tubular necrosis and tubulointerstitial fibrosis after unilateral ureteral obstruction. The mechanism of various functional changes needs to be clarified but may be explained by epigenetic modifications.
Collapse
Affiliation(s)
- Midori Awazu
- Department of Pediatrics, Tokyo Metropolitan Ohtsuka Hospital, Tokyo, Japan.
| |
Collapse
|
16
|
Superoxide Dismutase 3-Transduced Mesenchymal Stem Cells Preserve Epithelial Tight Junction Barrier in Murine Colitis and Attenuate Inflammatory Damage in Epithelial Organoids. Int J Mol Sci 2021; 22:ijms22126431. [PMID: 34208517 PMCID: PMC8233984 DOI: 10.3390/ijms22126431] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 01/08/2023] Open
Abstract
Superoxide dismutase 3 (SOD3), also known as extracellular superoxide dismutase, is an enzyme that scavenges reactive oxygen species (ROS). It has been reported that SOD3 exerts anti-inflammatory abilities in several immune disorders. However, the effect of SOD3 and the underlying mechanism in inflammatory bowel disease (IBD) have not been uncovered. Therefore, in the present study, we investigated whether SOD3 can protect intestinal cells or organoids from inflammation-mediated epithelial damage. Cells or mice were treated with SOD3 protein or SOD3-transduced mesenchymal stem cells (MSCs). Caco-2 cells or intestinal organoids stimulated with pro-inflammatory cytokines were used to evaluate the protective effect of SOD3 on epithelial junctional integrity. Dextran sulfate sodium (DSS)-induced colitis mice received SOD3 or SOD3-transduced MSCs (SOD3-MSCs), and were assessed for severity of disease and junctional protein expression. The activation of the mitogen-activated protein kinase (MAPK) pathway and elevated expression of cytokine-encoding genes decreased in TNF-α-treated Caco-2 cells or DSS-induced colitis mice when treated with SOD3 or SOD3-MSCs. Moreover, the SOD3 supply preserved the expression of tight junction (ZO-1, occludin) or adherence junction (E-cadherin) proteins when inflammation was induced. SOD3 also exerted a protective effect against cytokine- or ROS-mediated damage to intestinal organoids. These results indicate that SOD3 can effectively alleviate enteritis symptoms by maintaining the integrity of epithelial junctions and regulating inflammatory- and oxidative stress.
Collapse
|
17
|
Biological Response Induced in Primary Human Gingival Fibroblasts upon Exposure to Various Types of Injectable Astringent Retraction Agents. MATERIALS 2021; 14:ma14082081. [PMID: 33924145 PMCID: PMC8074361 DOI: 10.3390/ma14082081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/30/2022]
Abstract
Traditional chemo-mechanical retraction/displacement materials can impact the gingival margin tissues. This study was undertaken to analyze biological responses induced in human gingival fibroblasts (HGFs) upon application of injectable astringent-based agents used in the cordless retraction technique. HGFs were exposed to hemostatic agents (five gels, three pastes, and one foam) based on aluminium chloride, aluminium sulphate and ferric sulphate. Changes in cell viability and proliferation were evaluated using an MTT assay and a BrdU assay. The cytoskeleton structure organization (zyxin and F-actin) was visualized by confocal laser scanning microscopy. Oxidative stress was determined using the Griess Reagent System. The RNA expression levels of antioxidant enzymes were quantified by real-time RT-PCR. The statistical significance was evaluated using Student’s t-test and one-way ANOVA with post-hoc Tukey HSD test. The evaluated agents did not downregulate fibroblast viability or proliferation. No significant cytoskeleton reorganization was observed. Only one agent (Expasyl) induced oxidative stress, demonstrated by the increased level of nitrites. Incubation with the studied agents significantly increased the RNA expression of some antioxidant enzymes (SOD1, SOD3, GPX1). However, no significant influence on the expression of SOD2 and HMOX1 was detected. The injectable forms of chemical retraction agents revealed biocompatibility with HGFs, suggesting their potential clinical usefulness in gingival margin retraction.
Collapse
|
18
|
Rosa AC, Corsi D, Cavi N, Bruni N, Dosio F. Superoxide Dismutase Administration: A Review of Proposed Human Uses. Molecules 2021; 26:1844. [PMID: 33805942 PMCID: PMC8037464 DOI: 10.3390/molecules26071844] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Superoxide dismutases (SODs) are metalloenzymes that play a major role in antioxidant defense against oxidative stress in the body. SOD supplementation may therefore trigger the endogenous antioxidant machinery for the neutralization of free-radical excess and be used in a variety of pathological settings. This paper aimed to provide an extensive review of the possible uses of SODs in a range of pathological settings, as well as describe the current pitfalls and the delivery strategies that are in development to solve bioavailability issues. We carried out a PubMed query, using the keywords "SOD", "SOD mimetics", "SOD supplementation", which included papers published in the English language, between 2012 and 2020, on the potential therapeutic applications of SODs, including detoxification strategies. As highlighted in this paper, it can be argued that the generic antioxidant effects of SODs are beneficial under all tested conditions, from ocular and cardiovascular diseases to neurodegenerative disorders and metabolic diseases, including diabetes and its complications and obesity. However, it must be underlined that clinical evidence for its efficacy is limited and consequently, this efficacy is currently far from being demonstrated.
Collapse
Affiliation(s)
- Arianna Carolina Rosa
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (D.C.); (N.C.); (F.D.)
| | - Daniele Corsi
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (D.C.); (N.C.); (F.D.)
| | - Niccolò Cavi
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (D.C.); (N.C.); (F.D.)
| | - Natascia Bruni
- Istituto Farmaceutico Candioli, Strada Comunale di None, 1, 10092 Beinasco, Italy;
| | - Franco Dosio
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (D.C.); (N.C.); (F.D.)
| |
Collapse
|
19
|
Shi W, Li Y, Dong Y, Xin M, Zhang X, Xu Q. The effect of ocean acidification on the enzyme activity of Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2021; 108:1-6. [PMID: 33197584 DOI: 10.1016/j.fsi.2020.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
The influence of ocean acidification (OA) is particularly significant on calcifying organisms. The sea cucumber Apostichopus japonicus is an important cultured calcifying organism in the northern China seas. Little was known about the effects of OA on this economically important species. In this study, individuals from embryo to juveniles stage of A. japonicus, cultured in different levels of acidified seawater, were measured their enzymes activities, including five metabolic enzymes and three immune enzymes. The activity of acid phosphatase (ACP) and alkaline phosphatase (ALP) was significantly lower in the severely acid group (pH 7.1), while the content of lactate dehydrogenase (LDH) was significantly higher. Superoxide dismutase (SOD) and catalase (CAT) were significantly lower in the severely acid group. The multivariate statistical results showed that the significant difference of enzyme assemblage existed among three experimental groups. This study indicated that OA could reduce the biomineralization capacity, influence the anaerobic metabolism and severely affect the immune process of A. japonicas. More researches are needed in the future to reveal the mechanisms of enzyme regulation and expression of A. japonicas underlying mixture environmental stress.
Collapse
Affiliation(s)
- Wenge Shi
- Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Yixuan Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Yue Dong
- Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Ming Xin
- Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Xuelei Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Qinzeng Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|
20
|
Martínez-Rey D, Carmona-Rodríguez L, Fernández-Aceñero MJ, Mira E, Mañes S. Extracellular Superoxide Dismutase, the Endothelial Basement Membrane, and the WNT Pathway: New Players in Vascular Normalization and Tumor Infiltration by T-Cells. Front Immunol 2020; 11:579552. [PMID: 33250894 PMCID: PMC7673374 DOI: 10.3389/fimmu.2020.579552] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) are major players in the immune-mediated control of cancer and the response to immunotherapy. In primary cancers, however, TILs are commonly absent, suggesting T-cell entry into the tumor microenvironment (TME) to be selectively restricted. Blood and lymph vessels are the first barriers that circulating T-cells must cross to reach the tumor parenchyma. Certainly, the crossing of the endothelial cell (EC) basement membrane (EC-BM)—an extracellular matrix underlying EC—is a limiting step in T-cell diapedesis. This review highlights new data suggesting the antioxidant enzyme superoxide dismutase-3 (SOD3) to be a regulator of EC-BM composition in the tumor vasculature. In the EC, SOD3 induces vascular normalization and endows the EC-BM with the capacity for the extravasation of effector T-cells into the TME, which it achieves via the WNT signaling pathway. However, when activated in tumor cells, this same pathway is reported to exclude TILs. SOD3 also regulates TIL density in primary human colorectal cancers (CRC), thus affecting the relapse rate and patient survival.
Collapse
Affiliation(s)
- Diego Martínez-Rey
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB/CSIC), Madrid, Spain
| | | | - María Jesús Fernández-Aceñero
- Department of Surgical Pathology, Fundación de Investigación Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Emilia Mira
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB/CSIC), Madrid, Spain
| | - Santos Mañes
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB/CSIC), Madrid, Spain
| |
Collapse
|