1
|
Di YP, Mou H. Airway Serous Cells: A Comparative Study of Spatial Distribution and Abundance among Species. JOURNAL OF RESPIRATORY BIOLOGY AND TRANSLATIONAL MEDICINE 2024; 1:10013. [PMID: 39220634 PMCID: PMC11361305 DOI: 10.35534/jrbtm.2024.10013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The conducting airways of the respiratory system play a crucial role in filtering, humidifying, and directing air into the lungs. Among the specialized cell types within these airways, airway serous cells are notable for their secretion of watery, protein-rich fluids and enzymes, which contribute to maintaining airway surface liquid homeostasis and defending against pathogens. However, the distribution and abundance of serous cells across different species in the conducting airways remain poorly understood. In this study, we addressed this gap by investigating the spatial distribution of the airway serous cell-specific marker BPI fold containing family A member 1 (BPIFA1) in humans, pigs, and mice. Our findings demonstrate significant variations in the distribution and abundance of serous cells among these species, potentially reflecting their different respiratory anatomy and evolutionary adaptations to diverse environmental challenges and respiratory demands. In humans and pigs, airway serous cells are predominantly found in the submucosal glands of the trachea and segmental bronchi, frequently overlapping with lysozyme-positive secretory cells. In contrast, rodents like mice exhibit a distinct pattern where serous cells are scarce in submucosal glands. Instead, rodent serous cells are primarily located at the epithelial surface from the trachea to the main bronchi, where many co-express the Club cell-specific protein SCGB1A1. The abundance of serous cells diminishes progressively in the intrapulmonary airways. Given that rodent models are widely utilized in respiratory research, understanding anatomical and cellular differences in airway serous cells is critical for interpreting experimental outcomes and translating findings to human respiratory diseases and therapeutic strategies. This comparative analysis enhances our understanding of airway biology across species and informs the selection and interpretation of animal models in respiratory studies.
Collapse
Affiliation(s)
- Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hongmei Mou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
2
|
Al-Hassinah S, Al-Daihan S, Alahmadi M, Alghamdi S, Almulhim R, Obeid D, Arabi Y, Alswaji A, Aldriwesh M, Alghoribi M. Interplay of Demographic Influences, Clinical Manifestations, and Longitudinal Profile of Laboratory Parameters in the Progression of SARS-CoV-2 Infection: Insights from the Saudi Population. Microorganisms 2024; 12:1022. [PMID: 38792852 PMCID: PMC11124088 DOI: 10.3390/microorganisms12051022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Understanding the factors driving SARS-CoV-2 infection progression and severity is complex due to the dynamic nature of human physiology. Therefore, we aimed to explore the severity risk indicators of SARS-CoV-2 through demographic data, clinical manifestations, and the profile of laboratory parameters. The study included 175 patients either hospitalized at King Abdulaziz Medical City-Riyadh or placed in quarantine at designated hotels in Riyadh, Saudi Arabia, from June 2020 to April 2021. Hospitalized patients were followed up through the first week of admission. Demographic data, clinical presentations, and laboratory results were retrieved from electronic patient records. Our results revealed that older age (OR: 1.1, CI: [1.1-1.12]; p < 0.0001), male gender (OR: 2.26, CI: [1.0-5.1]; p = 0.047), and blood urea nitrogen level (OR: 2.56, CI: [1.07-6.12]; p = 0.034) were potential predictors of severity level. In conclusion, the study showed that apart from laboratory parameters, age and gender could potentially predict the severity of SARS-CoV-2 infection in the early stages. To our knowledge, this study is the first in Saudi Arabia to explore the longitudinal profile of laboratory parameters among risk factors, shedding light on SARS-CoV-2 infection progression parameters.
Collapse
Affiliation(s)
- Sarah Al-Hassinah
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh 11426, Saudi Arabia; (S.A.-H.); (S.A.); (Y.A.); (A.A.); (M.A.)
- Biochemistry Department, College of Science, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Sooad Al-Daihan
- Biochemistry Department, College of Science, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Mashael Alahmadi
- Research Office, Saudi National Institute of Health (SNIH), Riyadh 12382, Saudi Arabia;
| | - Sara Alghamdi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh 11426, Saudi Arabia; (S.A.-H.); (S.A.); (Y.A.); (A.A.); (M.A.)
| | - Rawabi Almulhim
- Infection Prevention and Control Department, King Abdulaziz Medical City, Riyadh 14611, Saudi Arabia;
| | - Dalia Obeid
- King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia;
| | - Yaseen Arabi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh 11426, Saudi Arabia; (S.A.-H.); (S.A.); (Y.A.); (A.A.); (M.A.)
- Intensive Care Department, King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia
| | - Abdulrahman Alswaji
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh 11426, Saudi Arabia; (S.A.-H.); (S.A.); (Y.A.); (A.A.); (M.A.)
| | - Marwh Aldriwesh
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh 11426, Saudi Arabia; (S.A.-H.); (S.A.); (Y.A.); (A.A.); (M.A.)
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Majed Alghoribi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh 11426, Saudi Arabia; (S.A.-H.); (S.A.); (Y.A.); (A.A.); (M.A.)
- Department of Basic Science, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia
| |
Collapse
|
3
|
Guo K, Yombo DJK, Wang Z, Navaeiseddighi Z, Xu J, Schmit T, Ahamad N, Tripathi J, De Kumar B, Mathur R, Hur J, Sun J, Olszewski MA, Khan N. The chemokine receptor CXCR3 promotes CD8 + T cell-dependent lung pathology during influenza pathogenesis. SCIENCE ADVANCES 2024; 10:eadj1120. [PMID: 38170765 PMCID: PMC10776024 DOI: 10.1126/sciadv.adj1120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
The dual role of CD8+ T cells in influenza control and lung pathology is increasingly appreciated. To explore whether protective and pathological functions can be linked to specific subsets, we dissected CD8+ T responses in influenza-infected murine lungs. Our single-cell RNA-sequencing (scRNA-seq) analysis revealed notable diversity in CD8+ T subpopulations during peak viral load and infection-resolved state. While enrichment of a Cxcr3hi CD8+ T effector subset was associated with a more robust cytotoxic response, both CD8+ T effector and central memory exhibited equally potent effector potential. The scRNA-seq analysis identified unique regulons regulating the cytotoxic response in CD8+ T cells. The late-stage CD8+ T blockade in influenza-cleared lungs or continuous CXCR3 blockade mitigated lung injury without affecting viral clearance. Furthermore, adoptive transfer of wild-type CD8+ T cells exacerbated influenza lung pathology in Cxcr3-/- mice. Collectively, our data imply that CXCR3 interception could have a therapeutic effect in preventing influenza-linked lung injury.
Collapse
Affiliation(s)
- Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dan J. K. Yombo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Zhihan Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | | | - Jintao Xu
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48109, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Taylor Schmit
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Nassem Ahamad
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | - Jitendra Tripathi
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Bony De Kumar
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Ramkumar Mathur
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA
| | - Michal A. Olszewski
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48109, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Nadeem Khan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
4
|
Ferastraoaru D, Zein J. Does COVID-19 Cause Asthma? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:133-134. [PMID: 38185494 DOI: 10.1016/j.jaip.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 01/09/2024]
Affiliation(s)
| | - Joe Zein
- Department of Medicine, Mayo Clinic, Scottsdale, Ariz.
| |
Collapse
|
5
|
Mettelman RC, Souquette A, Van de Velde LA, Vegesana K, Allen EK, Kackos CM, Trifkovic S, DeBeauchamp J, Wilson TL, St James DG, Menon SS, Wood T, Jelley L, Webby RJ, Huang QS, Thomas PG. Baseline innate and T cell populations are correlates of protection against symptomatic influenza virus infection independent of serology. Nat Immunol 2023; 24:1511-1526. [PMID: 37592015 PMCID: PMC10566627 DOI: 10.1038/s41590-023-01590-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Evidence suggests that innate and adaptive cellular responses mediate resistance to the influenza virus and confer protection after vaccination. However, few studies have resolved the contribution of cellular responses within the context of preexisting antibody titers. Here, we measured the peripheral immune profiles of 206 vaccinated or unvaccinated adults to determine how baseline variations in the cellular and humoral immune compartments contribute independently or synergistically to the risk of developing symptomatic influenza. Protection correlated with diverse and polyfunctional CD4+ and CD8+ T, circulating T follicular helper, T helper type 17, myeloid dendritic and CD16+ natural killer (NK) cell subsets. Conversely, increased susceptibility was predominantly attributed to nonspecific inflammatory populations, including γδ T cells and activated CD16- NK cells, as well as TNFα+ single-cytokine-producing CD8+ T cells. Multivariate and predictive modeling indicated that cellular subsets (1) work synergistically with humoral immunity to confer protection, (2) improve model performance over demographic and serologic factors alone and (3) comprise the most important predictive covariates. Together, these results demonstrate that preinfection peripheral cell composition improves the prediction of symptomatic influenza susceptibility over vaccination, demographics or serology alone.
Collapse
Affiliation(s)
- Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Aisha Souquette
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lee-Ann Van de Velde
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kasi Vegesana
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christina M Kackos
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sanja Trifkovic
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jennifer DeBeauchamp
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Taylor L Wilson
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Microbiology, Immunology and Biochemistry, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Deryn G St James
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Microbiology, Immunology and Biochemistry, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Smrithi S Menon
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Timothy Wood
- Institute of Environmental Science and Research Limited (ESR), Wallaceville Science Centre, Upper Hutt, New Zealand
| | - Lauren Jelley
- Institute of Environmental Science and Research Limited (ESR), Wallaceville Science Centre, Upper Hutt, New Zealand
| | - Richard J Webby
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Q Sue Huang
- Institute of Environmental Science and Research Limited (ESR), Wallaceville Science Centre, Upper Hutt, New Zealand.
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
6
|
Niu J, Meng G. Roles and Mechanisms of NLRP3 in Influenza Viral Infection. Viruses 2023; 15:1339. [PMID: 37376638 DOI: 10.3390/v15061339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Pathogenic viral infection represents a major challenge to human health. Due to the vast mucosal surface of respiratory tract exposed to the environment, host defense against influenza viruses has perpetually been a considerable challenge. Inflammasomes serve as vital components of the host innate immune system and play a crucial role in responding to viral infections. To cope with influenza viral infection, the host employs inflammasomes and symbiotic microbiota to confer effective protection at the mucosal surface in the lungs. This review article aims to summarize the current findings on the function of NACHT, LRR and PYD domains-containing protein 3 (NLRP3) in host response to influenza viral infection involving various mechanisms including the gut-lung crosstalk.
Collapse
Affiliation(s)
- Junling Niu
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, 320 Yueyang Road, Life Science Research Building B-205, Shanghai 200031, China
| | - Guangxun Meng
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, 320 Yueyang Road, Life Science Research Building B-205, Shanghai 200031, China
| |
Collapse
|
7
|
García-García J, Gracián C, Baños A, Guillamón E, Gálvez J, Rodriguez-Nogales A, Fonollá J. Beneficial Effects of Daily Consumption of Garlic and Onion Extract Concentrate on Infectious Respiratory Diseases in Elderly Resident Volunteers. Nutrients 2023; 15:nu15102308. [PMID: 37242191 DOI: 10.3390/nu15102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Aging is a biological process with high susceptibility to several infections. This risk increases in older patients in residential care facilities (RCF). Thus, there is a clear demand for developing preventive interventions with new therapeutic compounds that combine efficacy and safety. This could be the case of compounds derived from plants of the genus Allium spp. The purpose of this study was to evaluate the impact of a combination of a garlic and onion extract concentrate standardized in organosulfur compounds derived from propiin on the incidence of respiratory tract infections in elderly patients of RCF. Sixty-five volunteers were selected at random to receive a placebo or a single daily dose of the extract for thirty-six weeks. Different clinical visits were performed to evaluate the main respiratory diseases with an infectious origin, as well as the associated symptoms and their duration. The extract showed a clinical safety profile and significantly reduced the incidence of respiratory infections. Moreover, the treatment decreased the number and duration of the associated symptoms compared with the placebo group. For the first time, we demonstrated the protective effect of Alliaceae extract in respiratory infectious diseases in elderly healthy volunteers, which could be used prophylactically against the most common infectious respiratory diseases.
Collapse
Affiliation(s)
- Jorge García-García
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | - Carlos Gracián
- Nursing Home "Residencia de Mayores Claret", 18011 Granada, Spain
| | | | | | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Hepáticas y Digestivas (CIBER-EHD), 28029 Madrid, Spain
| | - Alba Rodriguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), 18012 Granada, Spain
| | | |
Collapse
|
8
|
Demuth L, Ohm M, Michaelsen-Preusse K, Schulze K, Riese P, Guzmán CA, Korte M, Hosseini S. Influenza vaccine is able to prevent neuroinflammation triggered by H7N7 IAV infection. Front Pharmacol 2023; 14:1142639. [PMID: 37063291 PMCID: PMC10090407 DOI: 10.3389/fphar.2023.1142639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Influenza A virus (IAV) subtypes are a major cause of illness and mortality worldwide and pose a threat to human health. Although IAV infection is considered a self-limiting respiratory syndrome, an expanded spectrum of cerebral manifestations has been reported following IAV infection. Neurotropic IAVs, such as the H7N7 subtype, are capable of invading the central nervous system (CNS) and replicating in brain cells, resulting in microglia-induced neuroinflammation. Microglial cells, the brain’s resident immune cells, are instrumental in the inflammatory response to viral infection. While activation of microglia is important to initially contain the virus, excessive activation of these cells leads to neuronal damage. Previous studies have shown that acute and even long-term IAV-induced neuroinflammation leads to CNS damage. Therefore, the search for possible preventive or therapeutic strategies is of great importance. In this study, we investigated the potential effect of vaccination against acute neuroinflammation induced by H7N7 infection and subsequent neuronal damage in the hippocampus, a particularly vulnerable brain region, comparing young and aged mice. Immunosenescence is one of the striking pathophysiological changes during mammalian aging that leads to “inflammaging” and critically limits the protection by vaccines in the elderly. The results suggest that formalin-inactivated H7N7 vaccine has a preventive effect against the inflammatory responses in the periphery and also in the CNS after H7N7 infection. Cytokine and chemokine levels, increased microglial density, and cell volume after H7N7 infection were all attenuated by vaccination. Further structural analysis of microglial cells also revealed a change in branching complexity after H7N7 infection, most likely reflecting the neuroprotective effect of the vaccination. In addition, synapse loss was prevented in vaccinated mice. Remarkably, engulfment of post-synaptic compartments by microglia can be proposed as the underlying mechanism for spine loss triggered by H7N7 infection, which was partially modulated by vaccination. Although young mice showed better protection against neuroinflammation and the resulting deleterious neuronal effects upon vaccination, a beneficial role of the vaccine was also observed in the brains of older mice. Therefore, vaccination can be proposed as an important strategy to prevent neurological sequelae of H7N7 infection.
Collapse
Affiliation(s)
- Luisa Demuth
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Melanie Ohm
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kristin Michaelsen-Preusse
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai Schulze
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, Braunschweig, Germany
| | - Peggy Riese
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, Braunschweig, Germany
| | - Carlos A. Guzmán
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, Braunschweig, Germany
| | - Martin Korte
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, Braunschweig, Germany
| | - Shirin Hosseini
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, Braunschweig, Germany
- *Correspondence: Shirin Hosseini,
| |
Collapse
|
9
|
Zhu B, Wei X, Narasimhan H, Qian W, Zhang R, Cheon IS, Wu Y, Li C, Jones RG, Kaplan MH, Vassallo RA, Braciale TJ, Somerville L, Colca JR, Pandey A, Jackson PEH, Mann BJ, Krawczyk CM, Sturek JM, Sun J. Inhibition of the mitochondrial pyruvate carrier simultaneously mitigates hyperinflammation and hyperglycemia in COVID-19. Sci Immunol 2023; 8:eadf0348. [PMID: 36821695 PMCID: PMC9972900 DOI: 10.1126/sciimmunol.adf0348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The relationship between diabetes and COVID-19 is bi-directional: while individuals with diabetes and high blood glucose (hyperglycemia) are predisposed to severe COVID-19, SARS-CoV-2 infection can also cause hyperglycemia and exacerbate underlying metabolic syndrome. Therefore, interventions capable of breaking the network of SARS-CoV-2 infection, hyperglycemia, and hyper-inflammation, all factors that drive COVID-19 pathophysiology, are urgently needed. Here, we show that genetic ablation or pharmacological inhibition of mitochondrial pyruvate carrier (MPC) attenuates severe disease following influenza or SARS-CoV-2 pneumonia. MPC inhibition using a second-generation insulin sensitizer, MSDC-0602 K (MSDC), dampened pulmonary inflammation and promoted lung recovery, while concurrently reducing blood glucose levels and hyperlipidemia following viral pneumonia in obese mice. Mechanistically, MPC inhibition enhanced mitochondrial fitness and destabilized HIF-1α, leading to dampened virus-induced inflammatory responses in both murine and human lung macrophages. We further showed that MSDC enhanced responses to nirmatrelvir (the antiviral component of Paxlovid) to provide high levels of protection against severe host disease development following SARS-CoV-2 infection and suppressed cellular inflammation in human COVID-19 lung autopsies, demonstrating its translational potential for treating severe COVID-19. Collectively, we uncover a metabolic pathway that simultaneously modulates pulmonary inflammation, tissue recovery, and host metabolic health, presenting a synergistic therapeutic strategy to treat severe COVID-19, particularly in patients with underlying metabolic disease.
Collapse
Affiliation(s)
- Bibo Zhu
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA.,Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaoqin Wei
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA.,Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Harish Narasimhan
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA.,Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Wei Qian
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA.,Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Ruixuan Zhang
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA.,Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - In Su Cheon
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA.,Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Yue Wu
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA.,Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Chaofan Li
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA.,Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University of School of Medicine, Indianapolis, IN 46202, USA
| | - Robert A Vassallo
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Thomas J Braciale
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA.,Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Lindsay Somerville
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Patrick E H Jackson
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Barbara J Mann
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Connie M Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jeffrey M Sturek
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA.,Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
10
|
Connors J, Joyner D, Mege NJ, Cusimano GM, Bell MR, Marcy J, Taramangalam B, Kim KM, Lin PJC, Tam YK, Weissman D, Kutzler MA, Alameh MG, Haddad EK. Lipid nanoparticles (LNP) induce activation and maturation of antigen presenting cells in young and aged individuals. Commun Biol 2023; 6:188. [PMID: 36805684 PMCID: PMC9936473 DOI: 10.1038/s42003-023-04555-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Herein, we studied the impact of empty LNP (eLNP), component of mRNA-based vaccine, on anti-viral pathways and immune function of cells from young and aged individuals. eLNP induced maturation of monocyte derived dendritic cells (MDDCs). We further show that eLNP upregulated CD40 and induced cytokine production in multiple DC subsets and monocytes. This coincided with phosphorylation of TANK binding kinase 1 (pTBK1) and interferon response factor 7 (pIRF7). In response to eLNP, healthy older adults (>65 yrs) have decreased CD40 expression, and IFN-γ output compared to young adults (<65 yrs). Additionally, cells from older adults have a dysregulated anti-viral signaling response to eLNP stimulation, measured by the defect in type I IFN production, and phagocytosis. Overall, our data show function of eLNP in eliciting DC maturation and innate immune signaling pathways that is impaired in older adults resulting in lower immune responses to SARS-CoV-2 mRNA-based vaccines.
Collapse
Affiliation(s)
- Jennifer Connors
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, USA
- Drexel University College of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - David Joyner
- Drexel University College of Medicine, Department of Medicine, Philadelphia, PA, USA
- Drexel University College of Medicine, Department of Molecular and Cellular Biology, Philadelphia, PA, USA
| | | | - Gina M Cusimano
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, USA
- Drexel University College of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Matthew R Bell
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, USA
- Drexel University College of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Jennifer Marcy
- Drexel University College of Medicine, Department of Molecular and Cellular Biology, Philadelphia, PA, USA
| | - Bhavani Taramangalam
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, USA
- Drexel University College of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Kenneth M Kim
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, USA
| | | | | | - Drew Weissman
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- University of Pennsylvania, Penn Institute for RNA Innovation, Philadelphia, PA, USA
| | - Michele A Kutzler
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, USA
- Drexel University College of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Mohamad-Gabriel Alameh
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
- University of Pennsylvania, Penn Institute for RNA Innovation, Philadelphia, PA, USA.
| | - Elias K Haddad
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, USA.
- Drexel University College of Medicine, Department of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Chuchalin AG. Pulmonary fibrosis in patients with COVID-19: A review. TERAPEVT ARKH 2022; 94:1333-1339. [PMID: 37167174 DOI: 10.26442/00403660.2022.11.201943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/27/2022]
Abstract
The viral infectious disease pandemic caused by SARS-CoV-2 has affected over 500 million people and killed over 6 million. This is the official data provided by the WHO as of the end of May 2022. Among people who have recovered from COVID-19, post-COVID syndrome is quite common. Scattered epidemiological studies on post-COVID syndrome, however, indicate its high relevance. One of the manifestations of post-COVID syndrome is the development of pulmonary fibrosis (PF). This article is devoted to the analysis of literature data on epidemiology, immunomorphology, as well as X-ray morphological and functional characteristics of PF in patients with post-COVID syndrome. Attention is drawn to the various phenotypes of the post-COVID syndrome and the incidence of PF, which, as clinical practice shows, is most common in people who have had severe COVID-19. This article discusses in detail the molecular biological and immunological mechanisms of PF development. The fibrotic process of the lung parenchyma is not an early manifestation of the disease; as a rule, radiomorphological signs of this pathological process develop after four weeks from the onset of acute manifestations of a viral infection. The characteristic signs of PF include those that indicate the process of remodulation of the lung tissue: volumetric decrease in the lungs, cellular degeneration of the lung parenchyma, bronchiectasis and traction bronchiolectasis. The process of remodulating the lung tissue, in the process of fibrosis, is accompanied by a violation of the lung function; a particularly sensitive test of functional disorders is a decrease in the diffusion capacity of the lung tissue. Therefore, in the process of monitoring patients with post-COVID syndrome, a dynamic study of the ventilation function of the lungs is recommended. The main clinical manifestation of PF is dyspnea that occurs with minimal exertion. Shortness of breath also reflects another important aspect of fibrous remodulation of the lung parenchyma oxygen dissociation is disturbed, which reflects a violation of the gas exchange function of the lungs. There are no generally accepted treatments for PF in post-COVID syndrome. The literature considers such approaches as the possibility of prescribing antifibrotic therapy, hyaluronidase, and medical gases: thermal helium, nitric oxide, and atomic hydrogen. The article draws attention to the unresolved issues of post-covid PF in people who have had COVID-19.
Collapse
|
12
|
Connors J, Joyner D, Mege N, Cusimano G, Bell M, Marcy J, Taramangalam B, Lin P, Tam Y, Lin P, Weissman D, Kutzler M, Alameh MG, Haddad E. Lipid nanoparticles (LNP) induce activation and maturation of antigen presenting cells in young and aged individuals. RESEARCH SQUARE 2022:rs.3.rs-2199652. [PMID: 36380763 PMCID: PMC9665340 DOI: 10.21203/rs.3.rs-2199652/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite the overwhelming success of mRNA-based vaccine in protecting against SARS-CoV-2 infection and reducing disease severity and hospitalization, little is known about the role lipid nanoparticles (LNP) play in initiating immune response. In this report we studied the adjuvantive impact of empty LNP with no mRNA cargo (eLNP) on anti-viral pathways and immune function of cells from young and aged individuals. We found that eLNP induced maturation of monocyte derived dendritic cells by measuring the expression of CD40, CD80, HLA-DR and production of cytokines including IFN-α,IL-6, IFN-γ, IL-12, and IL-21. Flow cytometry analysis of specific dendritic cell subsets showed that eLNP can induce CD40 expression and cytokine production in cDC1, cDC2 and monocytes. Empty LNP (eLNP) effects on dendritic cells and monocytes coincided with induction pIRF7 and pTBK1, which are both important in mitigating innate immune signaling. Interestingly our data show that in response to eLNP stimulus at 6 and 24 hrs, aged individuals have decreased CD40 expression and reduced IFN- γ output compared to young adults. Furthermore, we show that cDC1, cDC2, and CD14 dim CD16 + monocytes from healthy aged individuals have dysregulated anti-viral signaling response to eLNP stimulation as measured by the defect in type I IFN production, phosphorylation of IRF7, TBK-1, and immune function like phagocytosis. These data showed a novel function of eLNP in eliciting DC maturation and innate immune signaling pathways and that some of these functions are impaired in older individuals providing some suggestion of why older individuals (> 65 yrs of age) respond display lower immune responses and adverse events to SARS-CoV-2 mRNA-based vaccines.
Collapse
|
13
|
Rossi E, Mutti L, Morrione A, Giordano A. Neuro-Immune Interactions in Severe COVID-19 Infection. Pathogens 2022; 11:1256. [PMID: 36365007 PMCID: PMC9699641 DOI: 10.3390/pathogens11111256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 is a new coronavirus that has affected the world since 2019. Interstitial pneumonia is the most common clinical presentation, but additional symptoms have been reported, including neurological manifestations. Severe forms of infection, especially in elderly patients, present as an excessive inflammatory response called "cytokine storm", which can lead to acute respiratory distress syndrome (ARDS), multiorgan failure and death. Little is known about the relationship between symptoms and clinical outcomes or the characteristics of virus-host interactions. The aim of this narrative review is to highlight possible links between neurological involvement and respiratory damage mediated by pathological inflammatory pathways in SARS-CoV-2 infection. We will focus on neuro-immune interactions and age-related immunity decline and discuss some pathological mechanisms that contribute to negative outcomes in COVID-19 patients. Furthermore, we will describe available therapeutic strategies and their effects on COVID-19 neurological symptoms.
Collapse
Affiliation(s)
- Elena Rossi
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Italian Group for Research and Therapy for Mesothelioma (GIMe), 27058 Voghera, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Antonio Giordano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
14
|
Connors J, Taramangalam B, Cusimano G, Bell MR, Matt SM, Runner K, Gaskill PJ, DeFilippis V, Nikolich-Žugich J, Kutzler MA, Haddad EK. Aging alters antiviral signaling pathways resulting in functional impairment in innate immunity in response to pattern recognition receptor agonists. GeroScience 2022; 44:2555-2572. [PMID: 35849213 PMCID: PMC9289086 DOI: 10.1007/s11357-022-00612-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 01/06/2023] Open
Abstract
The progressive impairment of immunity to pathogens and vaccines with aging is a significant public health problem as the world population shifts to an increased percentage of older adults (> 65). We have previously demonstrated that cells obtained from older volunteers have delayed and defective induction of type I interferons and T cell and B cell helper cytokines in response to TLR ligands when compared to those from adult subjects. However, the underlying intracellular mechanisms are not well described. Herein, we studied two critical pathways important in the production of type I interferon (IFN), the interferon response factor 7 (pIRF7), and TANK-binding kinase (pTBK-1). We show a decrease in pIRF7 and pTBK-1 in cross-priming dendritic cells (cDC1s), CD4+ T cell priming DCs (cDC2s), and CD14dimCD16+ vascular patrolling monocytes from older adults (n = 11) following stimulation with pathway-specific agonists in comparison with young individuals (n = 11). The decrease in these key antiviral pathway proteins correlates with decreased phagocytosis, suggesting impaired function in Overall, our findings describe molecular mechanisms which explain the innate functional impairment in older adults and thus could inform us of novel approaches to restore these defects.
Collapse
Affiliation(s)
- Jennifer Connors
- grid.166341.70000 0001 2181 3113Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, PA USA ,grid.166341.70000 0001 2181 3113Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA USA
| | - Bhavani Taramangalam
- grid.166341.70000 0001 2181 3113Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, PA USA ,grid.166341.70000 0001 2181 3113Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA USA
| | - Gina Cusimano
- grid.166341.70000 0001 2181 3113Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, PA USA ,grid.166341.70000 0001 2181 3113Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA USA
| | - Matthew R. Bell
- grid.166341.70000 0001 2181 3113Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, PA USA ,grid.166341.70000 0001 2181 3113Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA USA
| | - Stephanie M. Matt
- grid.166341.70000 0001 2181 3113Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA USA
| | - Kaitlyn Runner
- grid.166341.70000 0001 2181 3113Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA USA
| | - Peter J. Gaskill
- grid.166341.70000 0001 2181 3113Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA USA
| | - Victor DeFilippis
- grid.5288.70000 0000 9758 5690Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR USA
| | - Janko Nikolich-Žugich
- grid.134563.60000 0001 2168 186XDepartment of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ USA ,grid.134563.60000 0001 2168 186XArizona Center On Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ USA
| | - Michele A. Kutzler
- grid.166341.70000 0001 2181 3113Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, PA USA ,grid.166341.70000 0001 2181 3113Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA USA
| | - Elias K. Haddad
- grid.166341.70000 0001 2181 3113Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, PA USA ,grid.166341.70000 0001 2181 3113Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA USA
| |
Collapse
|
15
|
Narasimhan H, Wu Y, Goplen NP, Sun J. Immune determinants of chronic sequelae after respiratory viral infection. Sci Immunol 2022; 7:eabm7996. [DOI: 10.1126/sciimmunol.abm7996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The acute effects of various respiratory viral infections have been well studied, with extensive characterization of the clinical presentation as well as viral pathogenesis and host responses. However, over the course of the recent COVID-19 pandemic, the incidence and prevalence of chronic sequelae after acute viral infections have become increasingly appreciated as a serious health concern. Post-acute sequelae of COVID-19, alternatively described as “long COVID-19,” are characterized by symptoms that persist for longer than 28 days after recovery from acute illness. Although there exists substantial heterogeneity in the nature of the observed sequelae, this phenomenon has also been observed in the context of other respiratory viral infections including influenza virus, respiratory syncytial virus, rhinovirus, severe acute respiratory syndrome coronavirus, and Middle Eastern respiratory syndrome coronavirus. In this Review, we discuss the various sequelae observed following important human respiratory viral pathogens and our current understanding of the immunological mechanisms underlying the failure of restoration of homeostasis in the lung.
Collapse
Affiliation(s)
- Harish Narasimhan
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yue Wu
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nick P. Goplen
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, MN 55905, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
16
|
Mettelman RC, Allen EK, Thomas PG. Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity 2022; 55:749-780. [PMID: 35545027 PMCID: PMC9087965 DOI: 10.1016/j.immuni.2022.04.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/25/2023]
Abstract
The lungs are constantly exposed to inhaled debris, allergens, pollutants, commensal or pathogenic microorganisms, and respiratory viruses. As a result, innate and adaptive immune responses in the respiratory tract are tightly regulated and are in continual flux between states of enhanced pathogen clearance, immune-modulation, and tissue repair. New single-cell-sequencing techniques are expanding our knowledge of airway cellular complexity and the nuanced connections between structural and immune cell compartments. Understanding these varied interactions is critical in treatment of human pulmonary disease and infections and in next-generation vaccine design. Here, we review the innate and adaptive immune responses in the lung and airways following infection and vaccination, with particular focus on influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The ongoing SARS-CoV-2 pandemic has put pulmonary research firmly into the global spotlight, challenging previously held notions of respiratory immunity and helping identify new populations at high risk for respiratory distress.
Collapse
Affiliation(s)
- Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
17
|
Schiffers C, Reynaert NL, Wouters EFM, van der Vliet A. Redox Dysregulation in Aging and COPD: Role of NOX Enzymes and Implications for Antioxidant Strategies. Antioxidants (Basel) 2021; 10:antiox10111799. [PMID: 34829671 PMCID: PMC8615131 DOI: 10.3390/antiox10111799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/23/2022] Open
Abstract
With a rapidly growing elderly human population, the incidence of age-related lung diseases such as chronic obstructive pulmonary disease (COPD) continues to rise. It is widely believed that reactive oxygen species (ROS) play an important role in ageing and in age-related disease, and approaches of antioxidant supplementation have been touted as useful strategies to mitigate age-related disease progression, although success of such strategies has been very limited to date. Involvement of ROS in ageing is largely attributed to mitochondrial dysfunction and impaired adaptive antioxidant responses. NADPH oxidase (NOX) enzymes represent an important enzyme family that generates ROS in a regulated fashion for purposes of oxidative host defense and redox-based signalling, however, the associations of NOX enzymes with lung ageing or age-related lung disease have to date only been minimally addressed. The present review will focus on our current understanding of the impact of ageing on NOX biology and its consequences for age-related lung disease, particularly COPD, and will also discuss the implications of altered NOX biology for current and future antioxidant-based strategies aimed at treating these diseases.
Collapse
Affiliation(s)
- Caspar Schiffers
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, USA; (C.S.); (E.F.M.W.)
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6211 LK Maastricht, The Netherlands;
| | - Niki L. Reynaert
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6211 LK Maastricht, The Netherlands;
| | - Emiel F. M. Wouters
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, USA; (C.S.); (E.F.M.W.)
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6211 LK Maastricht, The Netherlands;
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, USA; (C.S.); (E.F.M.W.)
- Correspondence:
| |
Collapse
|
18
|
Duah M, Li L, Shen J, Lan Q, Pan B, Xu K. Thymus Degeneration and Regeneration. Front Immunol 2021; 12:706244. [PMID: 34539637 PMCID: PMC8442952 DOI: 10.3389/fimmu.2021.706244] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023] Open
Abstract
The immune system’s ability to resist the invasion of foreign pathogens and the tolerance to self-antigens are primarily centered on the efficient functions of the various subsets of T lymphocytes. As the primary organ of thymopoiesis, the thymus performs a crucial role in generating a self-tolerant but diverse repertoire of T cell receptors and peripheral T cell pool, with the capacity to recognize a wide variety of antigens and for the surveillance of malignancies. However, cells in the thymus are fragile and sensitive to changes in the external environment and acute insults such as infections, chemo- and radiation-therapy, resulting in thymic injury and degeneration. Though the thymus has the capacity to self-regenerate, it is often insufficient to reconstitute an intact thymic function. Thymic dysfunction leads to an increased risk of opportunistic infections, tumor relapse, autoimmunity, and adverse clinical outcome. Thus, exploiting the mechanism of thymic regeneration would provide new therapeutic options for these settings. This review summarizes the thymus’s development, factors causing thymic injury, and the strategies for improving thymus regeneration.
Collapse
Affiliation(s)
- Maxwell Duah
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Lingling Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Jingyi Shen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Qiu Lan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Bin Pan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
19
|
Son YM, Sun J. Co-Ordination of Mucosal B Cell and CD8 T Cell Memory by Tissue-Resident CD4 Helper T Cells. Cells 2021; 10:cells10092355. [PMID: 34572004 PMCID: PMC8471972 DOI: 10.3390/cells10092355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/25/2022] Open
Abstract
Adaptive cellular immunity plays a major role in clearing microbial invasion of mucosal tissues in mammals. Following the clearance of primary pathogens, memory lymphocytes are established both systemically and locally at pathogen entry sites. Recently, resident memory CD8 T and B cells (TRM and BRM respectively), which are parked mainly in non-lymphoid mucosal tissues, were characterized and demonstrated to be essential for protection against secondary microbial invasion. Here we reviewed the current understanding of the cellular and molecular cues regulating CD8 TRM and BRM development, maintenance and function. We focused particularly on elucidating the role of a novel tissue-resident helper T (TRH) cell population in assisting TRM and BRM responses in the respiratory mucosa following viral infection. Finally, we argue that the promotion of TRH responses by future mucosal vaccines would be key to the development of successful universal influenza or coronavirus vaccines, providing long-lasting immunity against a broad spectrum of viral strains.
Collapse
Affiliation(s)
- Young Min Son
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jie Sun
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence: or
| |
Collapse
|