1
|
Jin Y, Tang R, Wu L, Xu K, Chen X, Zhu Y, Shi J, Li J. Cognitive Impairment in MASLD is associated with Amygdala-Related Connectivity Dysfunction in the Prefrontal and Sensory Cortex. J Integr Neurosci 2024; 23:215. [PMID: 39735969 DOI: 10.31083/j.jin2312215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common metabolism-related multisystem clinical disorder, often accompanied by a high comorbidity of mild cognitive impairment (MCI). Increasing evidence suggests that the amygdala is crucial in cognitive processing during metabolic dysfunction. Nevertheless, the role of the amygdala in the neural mechanisms of MASLD with MCI (MCI_MASLD) remains unclear. METHODS A total of 74 MASLD patients (43 with MCI_MASLD and 31 without MCI [nonMCI_MASLD]) and 62 demographic-matched healthy controls (HC) were enrolled. All participants underwent resting-state functional magnetic resonance imaging scans and psychological scale assessments. Liver fat content and blood index measurements were performed on the patients. Using the bilateral amygdala as seeds, the seed-based functional connectivity (FC) maps were calculated and one-way analysis of covariance with post hoc tests was performed to investigate the difference among the three groups. RESULTS Compared to nonMCI_MASLD patients, MCI_MASLD patients demonstrated enhanced FC between the right amygdala and the medial prefrontal cortex (mPFC), while reduced FC between the left amygdala and the left supplementary motor area (SMA). Interestingly, the FC values of the mPFC were correlated with the Montreal Cognitive Assessment Scale (MoCA) scores and liver controlled attenuation parameters, and the FC values of the SMA were also correlated with the MoCA scores. Furthermore, the FC values between the bilateral amygdala and regions within the frontal-limbic-mesencephalic circuits were higher in MASLD patients when compared to HC. CONCLUSIONS Aberrant FC of the amygdala can provide potential neuroimaging markers for MCI in MASLD, which is associated with amygdala-related connectivity disturbances in areas related to cognition and sensory processing. Moreover, visceral fat accumulation may exacerbate brain dysfunction.
Collapse
Affiliation(s)
- Yihan Jin
- School of Clinical Medicine, Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
| | - Ruoyu Tang
- School of Clinical Medicine, Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
| | - Liqiang Wu
- School of Clinical Medicine, Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
| | - Kuanghui Xu
- School of Clinical Medicine, Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
| | - Xiaofei Chen
- School of Clinical Medicine, Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
| | - Yaxin Zhu
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
| | - Junping Shi
- School of Clinical Medicine, Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
- Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
| | - Jie Li
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Shu K, Fu YC, Huang M, Cai Z, Ni GF, Huang XY, Song JW, Ye XJ, Cui SH, Zhou YJ, Han L, Wu P, Yan ZH, Liu K. Altered Brain Glymphatic Function at Diffusion-Tensor MRI in Pre-cirrhotic Metabolic Dysfunction-Associated Fatty Liver Disease. Acad Radiol 2024; 31:4946-4954. [PMID: 38955593 DOI: 10.1016/j.acra.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/26/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
RATIONALE AND OBJECTIVES To evaluate glymphatic function changes and their relationships with clinical features in patients with metabolic dysfunction-associated fatty liver disease (MAFLD), thereby facilitating early intervention before this disease progresses to cirrhosis. MATERIALS AND METHODS A cross-sectional cohort of 46 pre-cirrhotic MAFLD patients and 30 age-, sex-, and education-matched controls was enrolled, with diffusion-tensor imaging (DTI) data, laboratory and neurocognitive scores collected. The DTI analysis along the perivascular space (DTI-ALPS) index was computed for qualifying glymphatic function. Generalized linear model and partial correlation analyses were applied to evaluate relationships between the ALPS index and clinical variables. RESULTS MAFLD group exhibited a decreased ALPS index and increased diffusivity along the y-axis in the projection fiber compared to the controls. The altered ALPS index was associated with clock drawing test (CDT) score (3.931 [0.914, 6.947], P = 0.011) and was correlated with diastolic pressure level (r = -0.315, P = 0.033) in MAFLD group. The relationships of ALPS index with CDT score (6.263 [2.069, 10.458], P = 0.003) and diastolic pressure level (r = -0.518, P = 0.014) remained in the MAFLD with metabolic syndrome (MetS) group. Furthermore, the ALPS index was even associated with Auditory Verbal Learning Test-Immediate recall score (-23.853 [-45.417, -2.289], P = 0.030) in MAFLD with MetS group. CONCLUSION MAFLD patients may have a glymphatic dysfunction prior to cirrhosis, and this alteration may be related to cognition and diastolic pressure. Glymphatic dysfunction has a more severe impact on cognition when MAFLD patient is accompanied by MetS.
Collapse
Affiliation(s)
- Kun Shu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yu-Chuan Fu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Mei Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Zheng Cai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Ge-Fei Ni
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiao-Yan Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Jia-Wen Song
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xin-Jian Ye
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Shi-Han Cui
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yong-Jin Zhou
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Lu Han
- Philips Healthcare, Shanghai, China.
| | - Peng Wu
- Philips Healthcare, Shanghai, China.
| | - Zhi-Han Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Kun Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
3
|
Bhardwaj M, Mazumder PM. The gut-liver axis: emerging mechanisms and therapeutic approaches for nonalcoholic fatty liver disease and type 2 diabetes mellitus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8421-8443. [PMID: 38861011 DOI: 10.1007/s00210-024-03204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD), more appropriately known as metabolic (dysfunction) associated fatty liver disease (MAFLD), a prevalent condition in type 2 diabetes mellitus (T2DM) patients, is a complex condition involving hepatic lipid accumulation, inflammation, and liver fibrosis. The gut-liver axis is closely linked to metabolic dysfunction, insulin resistance, inflammation, and oxidative stress that are leading to the cooccurrence of MAFLD and T2DM cardiovascular diseases (CVDs). The purpose of this review is to raise awareness about the role of the gut-liver axis in the progression of MAFLD, T2DM and CVDs with a critical analysis of available treatment options for T2DM and MAFLD and their impact on cardiovascular health. This study analysed over 100 articles on this topic, using online searches and predefined keywords, to understand and summarise published research. Numerous studies have shown a strong correlation between gut dysfunction, particularly the gut microbiota and its metabolites, and the occurrence and progression of MAFLD and type 2 diabetes mellitus (T2DM). Herein, this article also examines the impact of the gut-liver axis on MAFLD, T2DM, and related complications, focusing on the role of gut microbiota dysbiosis in insulin resistance, T2DM and obesity-related cardiovascular complications. The study suggests potential treatment targets for MAFLD linked to T2DM, focusing on cardiovascular outcomes and the molecular mechanism of the gut-liver axis, as gut microbiota dysbiosis contributes to obesity-related metabolic abnormalities.
Collapse
Affiliation(s)
- Monika Bhardwaj
- Department of Pharmaceutical Sciences & Technology, BIT Mesra, Ranchi, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences & Technology, BIT Mesra, Ranchi, 835215, India.
| |
Collapse
|
4
|
Zouridis S, Nasir AB, Aspichueta P, Syn WK. The Link between Metabolic Syndrome and the Brain. Digestion 2024:1-9. [PMID: 39369701 DOI: 10.1159/000541696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Metabolic syndrome (MetS) is a cluster of cardiometabolic conditions that has been linked to high risk for cardiovascular disease, liver complications, and several malignancies. More recently, MetS has been associated with cognitive dysfunction. SUMMARY Studies have shown an association with minimal cognitive impairment, progression to vascular dementia, and even Alzheimer's disease. MetS components have been individually explored, and glucose intolerance has the strongest association with impairment in several cognitive domains. Several hypotheses have been proposed regarding the pathophysiology underlying the MetS-cognitive dysfunction association, and even though insulin resistance plays a major role, more studies are needed to elucidate this topic. Moreover, several other factors contributing to this association have been identified. Liver disease and more specifically metabolic dysfunction-associated steatotic liver disease can on its own contribute to cognitive decline through systemic inflammation and higher ammonia levels. Gut dysbiosis that has also been identified in MetS can also lead to cognitive impairment through several mechanisms that result in neurotoxicity. Finally, there are several other factors that may modify the MetS-cognitive dysfunction relationship, such as lifestyle, diet, education status, and age. More recently, circadian syndrome was explored and was found to be even more strongly associated with cognitive impairment. KEY MESSAGE MetS is associated with cognitive decline. Certain cardiometabolic risk factors have a stronger association with cognitive impairment, and there are several factors that may modify this relationship. The aim of this review was to assess and summarize the existing body of evidence on the association between MetS and cognitive impairment and identify areas that necessitate further investigation.
Collapse
Affiliation(s)
- Spyridon Zouridis
- Division of Gastroenterology and Hepatology, Saint Louis University, St. Louis, Missouri, USA,
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, Leioa, Spain,
| | - Ahmad Basil Nasir
- Division of Gastroenterology and Hepatology, Saint Louis University, St. Louis, Missouri, USA
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, Leioa, Spain
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Saint Louis University, St. Louis, Missouri, USA
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, Leioa, Spain
| |
Collapse
|
5
|
Mohammadi S, Ghaderi S, Fatehi F. Iron accumulation/overload and Alzheimer's disease risk factors in the precuneus region: A comprehensive narrative review. Aging Med (Milton) 2024; 7:649-667. [PMID: 39507230 PMCID: PMC11535174 DOI: 10.1002/agm2.12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by amyloid plaques, neurofibrillary tangles, and neuronal loss. Early cerebral and body iron dysregulation and accumulation interact with AD pathology, particularly in the precuneus, a crucial functional hub in cognitive functions. Quantitative susceptibility mapping (QSM), a novel post-processing approach, provides insights into tissue iron levels and cerebral oxygen metabolism and reveals abnormal iron accumulation early in AD. Increased iron deposition in the precuneus can lead to oxidative stress, neuroinflammation, and accelerated neurodegeneration. Metabolic disorders (diabetes, non-alcoholic fatty liver disease (NAFLD), and obesity), genetic factors, and small vessel pathology contribute to abnormal iron accumulation in the precuneus. Therefore, in line with the growing body of literature in the precuneus region of patients with AD, QSM as a neuroimaging method could serve as a non-invasive biomarker to track disease progression, complement other imaging modalities, and aid in early AD diagnosis and monitoring.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Neurology DepartmentUniversity Hospitals of Leicester NHS TrustLeicesterUK
| |
Collapse
|
6
|
Pujol A, Sanchis P, Tamayo MI, Godoy S, Calvó P, Olmos A, Andrés P, Speranskaya A, Espino A, Estremera A, Rigo E, Amengual GJ, Rodríguez M, Ribes JL, Gomila I, Grases F, González-Freire M, Masmiquel L. Metabolic-Associated Fatty Liver Disease and Cognitive Performance in Type 2 Diabetes: Basal Data from the Phytate, Neurodegeneration and Diabetes (PHYND) Study. Biomedicines 2024; 12:1993. [PMID: 39335505 PMCID: PMC11428552 DOI: 10.3390/biomedicines12091993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
The effect of liver fibrosis on mild cognitive impairment (MCI) and dementia risk in type 2 diabetes mellitus (T2DM) patients is unclear. Therefore, we performed a prospective cross-sectional study on 219 patients with T2DM and older than 60 years to evaluate the association between liver fibrosis, liver steatosis, and cognitive impairment. The Montreal Cognitive Assessment (MoCA) was used to screen for MCI or dementia. Liver fibrosis was estimated using the non-invasive Fibrosis-4 (FIB-4) score, and liver steatosis was assessed with the hepatic steatosis index. The mean age was 71 ± 6 years, 47% were women and according to MoCA cut-off values, 53.88% had MCI and 16.43% had dementia. A moderate or high risk of advanced fibrosis was significantly higher in patients with MCI or dementia compared to those with normal cognition (p < 0.001). After adjusting for confounders, a FIB-4 score greater than 1.54 was associated with MCI or dementia (p = 0.039). Multivariate analysis identified age over 70.5 years, antiplatelet medication use, and a FIB-4 score above 1.54 as the most relevant risk factors. Liver fibrosis, but not liver steatosis, is associated with MCI or dementia in older T2DM patients, suggesting that FIB-4 score might be a simple biomarker for the detection of cognitive impairment.
Collapse
Affiliation(s)
- Antelm Pujol
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (A.P.); (L.M.)
| | - Pilar Sanchis
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (A.P.); (L.M.)
- Laboratory of Renal Lithiasis Research, University of Balearic Islands, Research Institute of Heath Science (IUNICS), Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn). Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María I. Tamayo
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (A.P.); (L.M.)
| | - Samantha Godoy
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (A.P.); (L.M.)
- Laboratory of Renal Lithiasis Research, University of Balearic Islands, Research Institute of Heath Science (IUNICS), Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn). Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paula Calvó
- Laboratory of Renal Lithiasis Research, University of Balearic Islands, Research Institute of Heath Science (IUNICS), Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn). Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Asier Olmos
- Neuropsychology and Cognition, Department of Psychology, Research Institute of Heath Science (IUNICS), University of Balearic Islands, Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Pilar Andrés
- Neuropsychology and Cognition, Department of Psychology, Research Institute of Heath Science (IUNICS), University of Balearic Islands, Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Aleksandra Speranskaya
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (A.P.); (L.M.)
| | - Ana Espino
- Neurology Department, Son Llàtzer University Hospital, 07198 Palma de Mallorca, Spain
| | - Ana Estremera
- Neuroradiology Department, Son Llàtzer University Hospital, 07198 Palma de Mallorca, Spain
| | - Elena Rigo
- Balearic Research Group on Genetic Cardiopathies, Sudden Death, and TTR Amyloidosis, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- Neuroopthalmology Department, Son Llàtzer University Hospital, 07198 Palma de Mallorca, Spain
| | - Guillermo J. Amengual
- Neuroradiology Department, Son Llàtzer University Hospital, 07198 Palma de Mallorca, Spain
| | - Manuel Rodríguez
- Neuroradiology Department, Son Llàtzer University Hospital, 07198 Palma de Mallorca, Spain
| | - José Luis Ribes
- Clinical Analysis Department, Son Llàtzer University Hospital, 07198 Palma de Mallorca, Spain
| | - Isabel Gomila
- Clinical Analysis Department, Son Llàtzer University Hospital, 07198 Palma de Mallorca, Spain
- Clinical Toxicology Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Félix Grases
- Laboratory of Renal Lithiasis Research, University of Balearic Islands, Research Institute of Heath Science (IUNICS), Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn). Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta González-Freire
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain;
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), 28223 Madrid, Spain
| | - Lluís Masmiquel
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (A.P.); (L.M.)
| |
Collapse
|
7
|
Zhang X, Xu J, Dong X, Tang J, Xie Y, Yang J, Zou L, Wu L, Fan J. Bifidobacterium longumBL-19 inhibits oxidative stress and inflammatory damage in the liver of mice with NAFLD by regulating the production of butyrate in the intestine. Food Sci Nutr 2024; 12:6442-6460. [PMID: 39554323 PMCID: PMC11561819 DOI: 10.1002/fsn3.4279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 11/19/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease, but there is currently no effective treatment method. Probiotics have been used as an adjunct therapy for NAFLD, but the mechanism is not clear. This study used Bifidobacterium longum BL19 (BL-19) to treat the NAFLD mice induced by a high-fat diet, and explored the treatment mechanism through gut microbiota and serum metabolomics techniques. We found that BL-19 effectively prevented rapid weight gain in NAFLD mice and reduced their overall food and energy intake, decreased liver inflammatory factors expressions, and increased the bile acid synthetase enzyme CYP7A1 and superoxide dismutase. After BL-19 treatment, the abundances of butyric acid bacteria (Oscillospira and Coprococcus) in the feces of mice increased significantly, and the concentration of butyric acid also increased significantly. We believe that BL-19 promotes the production of butyrate in the intestines, which in turn regulates the activity of CYP7A1 in the liver and bile acid synthesis, ultimately treating liver inflammation and lipid accumulation in NAFLD mice. Serum metabolomics results indicated that BL-19 affected multiple pathways related to inflammation and lipid metabolism in NAFLD mice. These findings suggest that BL-19 shows promise as an adjunct therapy for NAFLD, as it can significantly improve oxidative stress, reduce inflammation in the liver, and decrease lipid accumulation.
Collapse
Affiliation(s)
- Xiajun Zhang
- Department of Laboratory MedicineThe People's Hospital of DanyangZhenjiangJiangsuChina
| | - Jingwen Xu
- Department of Cardiology, Jurong HospitalAffiliated to Jiangsu UniversityZhenjiangJiangsuChina
| | - Xueyun Dong
- Department of Laboratory Medicine, School of MedicineJiangsu UniversityZhenjiangJiangsuChina
| | - Jiajun Tang
- Department of Laboratory Medicine, School of MedicineJiangsu UniversityZhenjiangJiangsuChina
| | - Yan Xie
- Department of Laboratory Medicine, School of MedicineJiangsu UniversityZhenjiangJiangsuChina
| | - Jie Yang
- Department of Laboratory MedicineThe People's Hospital of DanyangZhenjiangJiangsuChina
| | - Limin Zou
- Department of Laboratory MedicineThe People's Hospital of DanyangZhenjiangJiangsuChina
| | - Liang Wu
- Department of Laboratory Medicine, School of MedicineJiangsu UniversityZhenjiangJiangsuChina
| | - Jilong Fan
- Hepatobiliary SurgeryLianyungang Second People's Hospital Affiliated to Jiangsu UniversityLianyungangChina
| |
Collapse
|
8
|
Bao X, Kang L, Yin S, Engström G, Wang L, Xu W, Xu B, Zhang X, Zhang X. Association of MAFLD and MASLD with all-cause and cause-specific dementia: a prospective cohort study. Alzheimers Res Ther 2024; 16:136. [PMID: 38926784 PMCID: PMC11201326 DOI: 10.1186/s13195-024-01498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Liver disease and dementia are both highly prevalent and share common pathological mechanisms. We aimed to investigate the associations between metabolic dysfunction-associated fatty liver disease (MAFLD), metabolic dysfunction-associated steatotic liver disease (MASLD) and the risk of all-cause and cause-specific dementia. METHODS We conducted a prospective study with 403,506 participants from the UK Biobank. Outcomes included all-cause dementia, Alzheimer's disease, and vascular dementia. Multivariable Cox proportional hazards models were used for analyses. RESULTS 155,068 (38.4%) participants had MAFLD, and 111,938 (27.7%) had MASLD at baseline. During a median follow-up of 13.7 years, 5,732 participants developed dementia (2,355 Alzheimer's disease and 1,274 vascular dementia). MAFLD was associated with an increased risk of vascular dementia (HR 1.32 [95% CI 1.18-1.48]) but a reduced risk of Alzheimer's disease (0.92 [0.84-1.0]). Differing risks emerged among MAFLD subtypes, with the diabetes subtype increasing risk of all-cause dementia (1.8 [1.65-1.96]), vascular dementia (2.95 [2.53-3.45]) and Alzheimer's disease (1.46 [1.26-1.69]), the lean metabolic disorder subtype only increasing vascular dementia risk (2.01 [1.25-3.22]), whereas the overweight/obesity subtype decreasing risk of Alzheimer's disease (0.83 [0.75-0.91]) and all-cause dementia (0.9 [0.84-0.95]). MASLD was associated with an increased risk of vascular dementia (1.24 [1.1-1.39]) but not Alzheimer's disease (1.0 [0.91-1.09]). The effect of MAFLD on vascular dementia was consistent regardless of MASLD presence, whereas associations with Alzheimer's disease were only present in those without MASLD (0.78 [0.67-0.91]). CONCLUSIONS MAFLD and MASLD are associated with an increased risk of vascular dementia, with subtype-specific variations observed in dementia risks. Further research is needed to refine MAFLD and SLD subtyping and explore the underlying mechanisms contributing to dementia risk.
Collapse
Affiliation(s)
- Xue Bao
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Lina Kang
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Songjiang Yin
- Departments of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Gunnar Engström
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Lian Wang
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Wei Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Xiaowen Zhang
- Department of Endocrinology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
- Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Xinlin Zhang
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
9
|
Lo CH, O’Connor LM, Loi GWZ, Saipuljumri EN, Indajang J, Lopes KM, Shirihai OS, Grinstaff MW, Zeng J. Acidic Nanoparticles Restore Lysosomal Acidification and Rescue Metabolic Dysfunction in Pancreatic β-Cells under Lipotoxic Conditions. ACS NANO 2024; 18:15452-15467. [PMID: 38830624 PMCID: PMC11192035 DOI: 10.1021/acsnano.3c09206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
Type 2 diabetes (T2D), a prevalent metabolic disorder lacking effective treatments, is associated with lysosomal acidification dysfunction, as well as autophagic and mitochondrial impairments. Here, we report a series of biodegradable poly(butylene tetrafluorosuccinate-co-succinate) polyesters, comprising a 1,4-butanediol linker and varying ratios of tetrafluorosuccinic acid (TFSA) and succinic acid as components, to engineer lysosome-acidifying nanoparticles (NPs). The synthesized NPs are spherical with diameters of ≈100 nm and have low polydispersity and good stability. Notably, TFSA NPs, which are composed entirely of TFSA, exhibit the strongest degradation capability and superior acidifying properties. We further reveal significant downregulation of lysosomal vacuolar (H+)-ATPase subunits, which are responsible for maintaining lysosomal acidification, in human T2D pancreatic islets, INS-1 β-cells under chronic lipotoxic conditions, and pancreatic tissues of high-fat-diet (HFD) mice. Treatment with TFSA NPs restores lysosomal acidification, autophagic function, and mitochondrial activity, thereby improving the pancreatic function in INS-1 cells and HFD mice with lipid overload. Importantly, the administration of TFSA NPs to HFD mice reduces insulin resistance and improves glucose clearance. These findings highlight the therapeutic potential of lysosome-acidifying TFSA NPs for T2D.
Collapse
Affiliation(s)
- Chih Hung Lo
- Lee
Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Lance M. O’Connor
- College
of Biological Sciences, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gavin Wen Zhao Loi
- Lee
Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | | | - Jonathan Indajang
- Meinig
School of Biomedical Engineering, Cornell
University, Ithaca, New York 14853, United States
| | - Kaitlynn M. Lopes
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Orian S. Shirihai
- Division
of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90045, United States
- Department
of Molecular and Medical Pharmacology, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Mark W. Grinstaff
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Jialiu Zeng
- Lee
Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| |
Collapse
|
10
|
Jiang L, Wang Q, Jiang Y, Peng D, Zong K, Li S, Xie W, Zhang C, Li K, Wu Z, Huang Z. Identification of diagnostic gene signatures and molecular mechanisms for non-alcoholic fatty liver disease and Alzheimer's disease through machine learning algorithms. Clin Chim Acta 2024; 557:117892. [PMID: 38537674 DOI: 10.1016/j.cca.2024.117892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) and Alzheimer's disease (AD) pose significant global health challenges. Recent studies have suggested a link between these diseases; however, the underlying mechanisms remain unclear. This study aimed to decode the shared molecular landscapes of NAFLD and AD using bioinformatic approaches. METHODS We analyzed three datasets for NAFLD and AD from the Gene Expression Omnibus (GEO). This study involved identifying differentially expressed genes (DEGs), using weighted gene co-expression network analysis (WGCNA), and using machine learning for biomarker discovery. The diagnostic biomarkers were validated using expression analysis, receiver operating characteristic (ROC) curves, and nomogram models. Furthermore, Gene Set Enrichment Analysis (GSEA) and CIBERSORT were used to investigate molecular pathways and immune cell distributions related to GADD45G and NUPR1. RESULTS This study identified 14 genes that are common to NAFLD and AD. Machine learning identified six biomarkers for NAFLD, four for AD, and two crucial shared biomarkers: GADD45G and NUPR1. Validation confirmed their expression patterns and robust predictive abilities. GSEA revealed the intricate roles of these biomarkers in disease-associated pathways. Immune cell profiling highlighted the importance of macrophages under these conditions. CONCLUSION This study highlights GADD45G and NUPR1 as key biomarkers for NAFLD and AD, and provides novel insights into their molecular connections. These findings revealed potential therapeutic targets, particularly in macrophage-mediated pathways, thus enriching our understanding of these complex diseases.
Collapse
Affiliation(s)
- Liqing Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Wang
- Department of General Practice, Chengdu Seventh People's Hospital, Chengdu, China
| | - Yingsong Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dadi Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kezhen Zong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shan Li
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Wenyuan Xie
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Cheng Zhang
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Kaili Li
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China.
| | - Zuotian Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
11
|
Lu Y, Pike JR, Hoogeveen R, Walker K, Raffield L, Selvin E, Avery C, Engel S, Mielke MM, Garcia T, Heiss G, Palta P. Nonalcoholic Fatty Liver Disease and Longitudinal Change in Imaging and Plasma Biomarkers of Alzheimer Disease and Vascular Pathology. Neurology 2024; 102:e209203. [PMID: 38471046 PMCID: PMC11033987 DOI: 10.1212/wnl.0000000000209203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/23/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Prospective measures of plasma and cerebral MRI biomarkers of Alzheimer disease (AD) and vascular neuropathology provide an opportunity to investigate possible mechanisms linking liver disease and dementia. We aimed to quantify the association of midlife nonalcoholic fatty liver disease (NAFLD) with change in plasma and brain MRI biomarkers of AD and vascular neuropathology. METHODS We included participants from the Atherosclerosis Risk in Communities Study with brain MRI measurements of white matter hyperintensity (WMH) volume and temporal-parietal lobe cortical thickness meta region of interest (ROI) at up to 2 different visits, in 2011-13 and 2016-19, and plasma biomarkers of β-amyloid (Aβ)42:40, phosphorylated tau at threonine 181, and neurofilament light (NfL) were measured up to 3 times in 1993-95, 2011-13, and 2016-19. NAFLD was categorized using the fatty liver index in 1990-92. Multivariate linear regression was performed for associations between midlife NAFLD and change in plasma and brain MRI biomarkers of AD and vascular neuropathology. The primary models adjusted for demographics, Apolipoprotein E, alcohol use, and kidney function. RESULTS Among 1,706 participants (mean age 56 years, 62% female, 28% Black), midlife NAFLD vs no NAFLD was associated with greater late-life WMH volume (difference per SD 0.19, 95% CI 0.06-0.31) and faster late-life WMH increase over 6 years (difference in annual change, SD 0.28, 95% CI 0.05-0.51), suggesting accumulating vascular pathology. Midlife NAFLD vs no NAFLD was also associated with AD biomarkers in midlife (lower Aβ42:40 [SD -0.21, 95% CI -0.39 to -0.04] measured in 1993-95) and late life (lower Aβ42:40 [SD -0.13, 95% CI -0.23 to -0.03] and lower temporal-parietal lobe cortical thickness meta ROI [SD -0.16, 95% CI -0.28 to -0.05] measured in 2011-13). Although midlife NfL was lower in individuals with vs without midlife NAFLD, those with NAFLD exhibited a faster rate of NfL increase that accelerated over time. DISCUSSION Midlife NAFLD shows associations with AD and accumulating vascular pathology, revealing potential pathways linking liver function to dementia. Plasma biomarkers of neuropathology and neuronal injury may serve as easily measurable and dynamic indicators for monitoring the impacts of impaired liver function on brain health.
Collapse
Affiliation(s)
- Yifei Lu
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - James R Pike
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Ron Hoogeveen
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Keenan Walker
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Laura Raffield
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Elizabeth Selvin
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Christy Avery
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Stephanie Engel
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Michelle M Mielke
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Tanya Garcia
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Gerardo Heiss
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Priya Palta
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
12
|
Giuffrè M, Merli N, Pugliatti M, Moretti R. The Metabolic Impact of Nonalcoholic Fatty Liver Disease on Cognitive Dysfunction: A Comprehensive Clinical and Pathophysiological Review. Int J Mol Sci 2024; 25:3337. [PMID: 38542310 PMCID: PMC10970252 DOI: 10.3390/ijms25063337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 01/03/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) exponentially affects the global healthcare burden, and it is currently gaining increasing interest in relation to its potential impact on central nervous system (CNS) diseases, especially concerning cognitive deterioration and dementias. Overall, scientific research nowadays extends to different levels, exploring NAFLD's putative proinflammatory mechanism of such dysmetabolic conditions, spreading out from the liver to a multisystemic involvement. The aim of this review is to analyze the most recent scientific literature on cognitive involvement in NAFLD, as well as understand its underlying potential background processes, i.e., neuroinflammation, the role of microbiota in the brain-liver-gut axis, hyperammonemia neurotoxicity, insulin resistance, free fatty acids, and vitamins.
Collapse
Affiliation(s)
- Mauro Giuffrè
- Department of Internal Medicine (Digestive Diseases), Yale School of Medicine, New Haven, CT 06511, USA
| | - Nicola Merli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy; (N.M.); (M.P.)
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy; (N.M.); (M.P.)
- Interdepartmental Research Center for Multiple Sclerosis and Other Inflammatory and Degenerative Disorders of the Nervous System, University of Ferrara, 44124 Ferrara, Italy
| | - Rita Moretti
- Department of Clinical, Medical and Surgical Sciences, University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
13
|
Kjærgaard K, Daugaard Mikkelsen AC, Landau AM, Eriksen PL, Hamilton-Dutoit S, Magnusson NE, Thomsen MB, Chen F, Vilstrup H, Mookerjee RP, Bay-Richter C, Thomsen KL. Cognitive dysfunction in early experimental metabolic dysfunction-associated steatotic liver disease is associated with systemic inflammation and neuroinflammation. JHEP Rep 2024; 6:100992. [PMID: 38415019 PMCID: PMC10897893 DOI: 10.1016/j.jhepr.2023.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/09/2023] [Accepted: 12/08/2023] [Indexed: 02/29/2024] Open
Abstract
Background & Aims Cognitive dysfunction is an increasingly recognised manifestation of metabolic dysfunction-associated steatotic liver disease (MASLD), but the mechanistic link remains unclear. The aim of this study was to investigate the hypothesis that experimental MASLD leads to cognitive dysfunction via systemic inflammation and neuroinflammation. Methods Twenty male Sprague Dawley rats were randomised to a high-fat high-cholesterol (HFHC) diet to induce MASLD, or a standard diet (n = 10/group), for 16 weeks. Assessments included: MASLD severity (histology), neurobehaviour, inflammation (liver, plasma and cerebrospinal fluid), brain microglia and astrocyte activation, and synaptic density. Results The HFHC diet induced MASLD with extensive steatosis and lobular inflammation without fibrosis. Several plasma cytokines were elevated (CXCL1, IL-6, IL-17, MIP-1α, MCP-1, IL-10; all p <0.05) and correlated with increases in hepatic chemokine gene expression. Cerebrospinal fluid concentrations of CXCL1 were elevated (p = 0.04). In the prefrontal brain cortex, we observed a 19% increase in microglial activation confirmed by Iba1 immunohistochemistry (p = 0.03) and 3H-PK11195 autoradiography (p <0.01). In parallel, synaptic density was reduced to 92%, assessed by 3H-UCB-J autoradiography (p <0.01). MASLD animals exhibited impaired memory to previously encountered objects in the novel object recognition test (p = 0.047) and showed depression-like behaviour evidenced by increased immobility time (p <0.01) and reduced swimming time (p = 0.03) in the forced swim test. Conclusions Experimental non-fibrotic MASLD, as a model to reflect the early stage of human disease, results in cognitive impairment and depression-like behaviour. This is associated with an inflammatory phenotype not only in the liver but also in the plasma and brain, which together with diminished synaptic density, provides a pathophysiological link between liver disease and cognitive dysfunction in MASLD. Impact and implications Cognitive dysfunction is an increasingly recognised comorbidity in patients with metabolic dysfunction-associated steatotic liver disease (MASLD), yet the underlying mechanisms remain unclear. This study provides evidence of impaired memory and depression-like symptoms in early experimental MASLD and indicates that hepatic inflammation may drive a systemic inflammatory response, resulting in neuroinflammation and reduced brain synaptic density. The evidence of impaired memory in MASLD and establishing its underlying pathophysiological link provides insights that could guide the development of potential new treatments for this increasingly common condition in people of working age. The study also emphasises the need to develop better tools for clinical cognitive testing, which will enable physicians to assess and manage brain dysfunction early in MASLD.
Collapse
Affiliation(s)
- Kristoffer Kjærgaard
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
- Department of Emergency Medicine, Horsens Regional Hospital, Denmark
| | | | - Anne M. Landau
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Peter Lykke Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | | | - Nils Erik Magnusson
- Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark
| | - Majken Borup Thomsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Fenghua Chen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Rajeshwar Prosad Mookerjee
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
- Institute for Liver and Digestive Health, University College London, United Kingdom
| | - Cecilie Bay-Richter
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Karen Louise Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
- Institute for Liver and Digestive Health, University College London, United Kingdom
| |
Collapse
|
14
|
Kaya E, Yılmaz Y. Association of Metabolic Dysfunction-Associated Fatty Liver Disease with Cognitive Impairment and All-Cause Dementia: A Comprehensive Review. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:76-82. [PMID: 38454238 PMCID: PMC10895887 DOI: 10.5152/tjg.2024.23629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 03/09/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a significant public health concern, affecting one-third of the global population and posing a risk for progressive liver disease. MAFLD is characterized by hepatic steatosis and impaired metabolic status, which not only impact the liver but also other systems of the human body, making it a multisystemic disorder. Emerging evidence suggests that MAFLD and its associated pathological pathways may contribute to cognitive impairment, potentially through neuroinflammation and neurodegeneration. Studies have detected cognitive impairment in patients with MAFLD using magnetic resonance imaging, which revealed decreased brain volume and cerebral perfusion, in addition to self-reported cognitive tests. While numerous studies have demonstrated an association between MAFLD and cognitive impairment, the relationship between MAFLD and all-cause dementia remains controversial. However, the shared pathological pathways between MAFLD and dementia, such as systemic inflammation, insulin resistance, gut dysbiosis, hyperammonemia, and vascular dysfunction, indicate the possibility of a common prevention strategy for both diseases. In this review, we provide a summary of the current evidence regarding the association between cognitive impairment, all-cause dementia, and MAFLD.
Collapse
Affiliation(s)
- Eda Kaya
- Division of Medicine, Department of Hepatology and Gastroenterology, Universitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany
| | - Yusuf Yılmaz
- Department of Gastroenterology, Recep Tayyip Erdogan University School of Medicine, Rize, Turkey
| |
Collapse
|
15
|
Medina-Julio D, Ramírez-Mejía MM, Cordova-Gallardo J, Peniche-Luna E, Cantú-Brito C, Mendez-Sanchez N. From Liver to Brain: How MAFLD/MASLD Impacts Cognitive Function. Med Sci Monit 2024; 30:e943417. [PMID: 38282346 PMCID: PMC10836032 DOI: 10.12659/msm.943417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease or metabolic dysfunction-associated steatotic liver disease (MAFLD/MASLD), is a common chronic liver condition affecting a substantial global population. Beyond its primary impact on liver function, MAFLD/MASLD is associated with a myriad of extrahepatic manifestations, including cognitive impairment. The scope of cognitive impairment within the realm of MAFLD/MASLD is a matter of escalating concern. Positioned as an intermediate stage between the normal aging process and the onset of dementia, cognitive impairment manifests as a substantial challenge associated with this liver condition. Insights from studies underscore the presence of compromised executive function and a global decline in cognitive capabilities among individuals identified as being at risk of progressing to liver fibrosis. Importantly, this cognitive impairment transcends mere association with metabolic factors, delving deep into the intricate pathophysiology characterizing MAFLD/MASLD. The multifaceted nature of cognitive impairment in the context of MAFLD/MASLD is underlined by a spectrum of factors, prominently featuring insulin resistance, lipotoxicity, and systemic inflammation as pivotal contributors. These factors interplay within the intricate landscape of MAFLD/MASLD, fostering a nuanced understanding of the links between hepatic health and cognitive function. By synthesizing the available evidence, exploring potential mechanisms, and assessing clinical implications, the overarching aim of this review is to contribute to a more complete understanding of the impact of MAFLD/MASLD on cognitive function.
Collapse
Affiliation(s)
- David Medina-Julio
- Department of Internal Medicine, General Hospital "Dr. Manuel Gea González", Mexico City, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Mariana M Ramírez-Mejía
- Liver Unit, Medica Sur Clinic and Foundation, Mexico City, Mexico
- Plan of Combined Studies in Medicine (PECEM-MD/PhD), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Jacqueline Cordova-Gallardo
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Department of Hepatology, Service of Surgery and Obesity Clinic, General Hospital "Dr. Manuel Gea González", Mexico City, Mexico
| | - Emilio Peniche-Luna
- High Academic Performance Program (PAEA), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Carlos Cantú-Brito
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Departament of Neurology, National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City, Mexico
| | - Nahum Mendez-Sanchez
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Liver Unit, Medica Sur Clinic and Foundation, Mexico City, Mexico
| |
Collapse
|
16
|
Weinstein G, O'Donnell A, Frenzel S, Xiao T, Yaqub A, Yilmaz P, de Knegt RJ, Maestre GE, Melo van Lent D, Long M, Gireud‐Goss M, Ittermann T, Frost F, Bülow R, Vasan RS, Grabe HJ, Ikram MA, Beiser AS, Seshadri S. Nonalcoholic fatty liver disease, liver fibrosis, and structural brain imaging: The Cross-Cohort Collaboration. Eur J Neurol 2024; 31:e16048. [PMID: 37641505 PMCID: PMC10840827 DOI: 10.1111/ene.16048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND AND PURPOSE Prior studies reported conflicting findings regarding the association of nonalcoholic fatty liver disease (NAFLD) and liver fibrosis with measures of brain health. We examined whether NAFLD and liver fibrosis are associated with structural brain imaging measures in middle- and old-age adults. METHODS In this cross-sectional study among dementia- and stroke-free individuals, data were pooled from the Offspring and Third Generation cohorts of the Framingham Heart Study (FHS), the Rotterdam Study (RS), and the Study of Health in Pomerania. NAFLD was assessed through abdominal imaging. Transient hepatic elastography (FibroScan) was used to assess liver fibrosis in FHS and RS. Linear regression models were used to explore the relation of NAFLD and liver fibrosis with brain volumes, including total brain, gray matter, hippocampus, and white matter hyperintensities, adjusting for potential confounders. Results were combined using fixed effects meta-analysis. RESULTS In total, 5660 and 3022 individuals were included for NAFLD and liver fibrosis analyses, respectively. NAFLD was associated with smaller volumes of total brain (β = -3.5, 95% confidence interval [CI] = -5.4 to -1.7), total gray matter (β = -1.9, 95% CI = -3.4 to -0.3), and total cortical gray matter (β = -1.9, 95% CI = -3.7 to -0.01). In addition, liver fibrosis (defined as liver stiffness measure ≥8.2 kPa) was related to smaller total brain volumes (β = -7.3, 95% CI = -11.1 to -3.5). Heterogeneity between studies was low. CONCLUSIONS NAFLD and liver fibrosis may be directly related to brain aging. Larger and prospective studies are warranted to validate these findings and identify liver-related preventive strategies for neurodegeneration.
Collapse
Affiliation(s)
| | - Adrienne O'Donnell
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- Framingham StudyFraminghamMassachusettsUSA
| | - Stefan Frenzel
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
| | - Tian Xiao
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Amber Yaqub
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Pinar Yilmaz
- Department of Radiology & Nuclear MedicineErasmus University Medical CenterRotterdamthe Netherlands
| | - Robert J. de Knegt
- Department of Gastroenterology and HepatologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Gladys E. Maestre
- Neurosciences Laboratory, Biological Research Institute and Research Institute of Cardiovascular Diseases, Faculty of MedicineUniversidad del Zulia Maracaibo VenezuelaMaracaiboVenezuela
- Division of Neurosciences, Department of Biomedical SciencesUniversity of Texas Rio Grande Valley School of MedicineEdinburgTexasUSA
| | - Debora Melo van Lent
- Framingham StudyFraminghamMassachusettsUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTexasUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Michelle Long
- Section of Gastroenterology, Boston Medical CenterBoston University School of MedicineBostonMassachusettsUSA
| | - Monica Gireud‐Goss
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTexasUSA
| | - Till Ittermann
- Institute for Community MedicineUniversity Medicine GreifswaldGreifswaldGermany
| | - Fabian Frost
- Department of Medicine AUniversity Medicine GreifswaldGreifswaldGermany
| | - Robin Bülow
- Institute for Diagnostic Radiology and NeuroradiologyUniversity Medicine GreifswaldGreifswaldGermany
| | - Ramachandran S. Vasan
- Framingham StudyFraminghamMassachusettsUSA
- Section of Preventive Medicine and Epidemiology, Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
| | - Hans J. Grabe
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
- German Center for Neurodegenerative Disease, partner site Rostock/GreifswaldRostockGermany
| | - M. Arfan Ikram
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
- Department of Radiology & Nuclear MedicineErasmus University Medical CenterRotterdamthe Netherlands
| | - Alexa S. Beiser
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- Framingham StudyFraminghamMassachusettsUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
| | - Sudha Seshadri
- Framingham StudyFraminghamMassachusettsUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTexasUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
17
|
Currais A, Raschke W, Maher P. CMS121, a Novel Drug Candidate for the Treatment of Alzheimer's Disease and Age-Related Dementia. J Alzheimers Dis 2024; 101:S179-S192. [PMID: 39422940 DOI: 10.3233/jad-231062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Old age is the major risk factor for sporadic Alzheimer's disease (AD). However, old age-related changes in brain physiology have generally not been taken into consideration in developing drug candidates for the treatment of AD. This is at least partly because the role of these age-related processes in the development and progression of AD are still not well understood. Nevertheless, we and others have described an association between the oxytosis/ferroptosis non-apoptotic regulated cell death pathway and aging. Based on this association, we incorporated protection against this pathway as part of a cell-based phenotypic screening approach to identify novel drug candidates for the treatment of AD. Using this approach, we identified the fisetin derivative CMS121 as a potent neuroprotective molecule that is able to maintain cognitive function in multiple pre-clinical models of AD. Furthermore, we identified a key target of CMS121 as fatty acid synthase, a protein which had not been previously considered in the context of AD. Herein, we provide a comprehensive description of the development of CMS121, its preclinical activities, and the results of the toxicology testing that led to its IND approval.
Collapse
Affiliation(s)
| | | | - Pamela Maher
- Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
18
|
Tan S, Chen W, Kong G, Wei L, Xie Y. Peripheral inflammation and neurocognitive impairment: correlations, underlying mechanisms, and therapeutic implications. Front Aging Neurosci 2023; 15:1305790. [PMID: 38094503 PMCID: PMC10716308 DOI: 10.3389/fnagi.2023.1305790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/10/2023] [Indexed: 08/22/2024] Open
Abstract
Cognitive impairments, such as learning and memory deficits, may occur in susceptible populations including the elderly and patients who are chronically ill or have experienced stressful events, including surgery, infection, and trauma. Accumulating lines of evidence suggested that peripheral inflammation featured by the recruitment of peripheral immune cells and the release of pro-inflammatory cytokines may be activated during aging and these conditions, participating in peripheral immune system-brain communication. Lots of progress has been achieved in deciphering the core bridging mechanism connecting peripheral inflammation and cognitive impairments, which may be helpful in developing early diagnosis, prognosis evaluation, and prevention methods based on peripheral blood circulation system sampling and intervention. In this review, we summarized the evolving evidence on the prevalence of peripheral inflammation-associated neurocognitive impairments and discussed the research advances in the underlying mechanisms. We also highlighted the prevention and treatment strategies against peripheral inflammation-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Siyou Tan
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Wenyan Chen
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Gaoyin Kong
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Lai Wei
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
19
|
Zhang H, Fareeduddin Mohammed Farooqui H, Zhu W, Niu T, Zhang Z, Zhang H. Impact of insulin resistance on mild cognitive impairment in type 2 diabetes mellitus patients with non-alcoholic fatty liver disease. Diabetol Metab Syndr 2023; 15:229. [PMID: 37950317 PMCID: PMC10636824 DOI: 10.1186/s13098-023-01211-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
AIMS Insulin resistance (IR) is a pivotal factor in the pathogenesis of type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD). Nevertheless, the impact of IR on cognitive dysfunction in T2DM patients with NAFLD remains inadequately understood. We aim to investigate the effect of IR on mild cognitive impairment (MCI) in T2DM individuals with NAFLD. MATERIALS AND METHODS 143 T2DM individuals were categorized into Non-MCI and MCI groups, as well as Non-NAFLD and NAFLD groups. Clinical parameters and cognitive preference test outcomes were compared. Correlation and regression analyses were executed to explore the interconnections between IR and cognitive details across all T2DM patients, as well as within the subgroup of individuals with NAFLD. RESULTS In comparison to the Non-MCI group, the MCI group displayed elevated HOMA-IR levels. Similarly, the NAFLD group exhibited higher HOMA-IR levels compared to the Non-NAFLD group. Additionally, a higher prevalence of MCI was observed in the NAFLD group as opposed to the Non-NAFLD group. Notably, HOMA-IR levels were correlated with Verbal Fluency Test (VFT) and Trail Making Test-B (TMTB) scores, both related to executive functions. Elevated HOMA-IR emerged as a risk factor for MCI in the all patients. Intriguingly, increased HOMA-IR not only correlated with TMTB scores but also demonstrated an influence on TMTA scores, reflecting information processing speed function in patients with NAFLD. CONCLUSION IR emerges as a contributory factor to cognitive dysfunction in T2DM patients. Furthermore, it appears to underlie impaired executive function and information processing speed function in T2DM individuals with NAFLD.
Collapse
Affiliation(s)
- Hui Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology,, Luoyang, China
| | | | - Wenwen Zhu
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Tong Niu
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Zhen Zhang
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haoqiang Zhang
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
20
|
Jiang S, Zhang J, Liu Y, Zhang T, Zheng H, Sang X, Lu X, Xu Y. Unravelling the liver-brain connection: A two-sample Mendelian randomization study investigating the causal relationship between NAFLD and cortical structure. Diabetes Res Clin Pract 2023; 204:110927. [PMID: 37778665 DOI: 10.1016/j.diabres.2023.110927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/17/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) has been linked to cognitive decline and neuropsychiatric conditions, implying a potential connection between NAFLD and brain health. However, the causal association between NAFLD and cortical changes remains uncertain. This study aimed to examine the causal impact of NAFLD on cortical structures using a two-sample Mendelian randomization (MR) approach. METHODS Summary data from genome-wide association studies (GWAS) for NAFLD were gathered from large-scale cohorts. Surface area (SA) and cortical thickness (TH) measurements were derived from Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consortium magnetic resonance imaging (MRI) data of 33,992 participants. Inverse-variance weighted (IVW) served as the primary method. Additional sensitivity analyses, including MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO), MR-Egger, and weighted median procedures, were conducted to detect heterogeneity and pleiotropy. RESULTS Our MR analysis revealed that NAFLD led to notable alterations in cortical structures, particularly in the pars orbitalis gyrus. Specifically, genetically predicted NAFLD was linked to a decrease in TH (β = -0.008 mm, 95 % CI: -0.013 mm to -0.004 mm, P = 3.00 × 10-4) within this region. No significant heterogeneity and pleiotropy were identified. CONCLUSION The two-sample MR study supports the existence of a liver-brain axis by demonstrating a causal association between NAFLD and changes in cortical structures. These findings emphasize the potential association between NAFLD and brain health, which could have implications for preventing and treating cognitive deficits and neuropsychiatric conditions in patients with NAFLD.
Collapse
Affiliation(s)
- Shitao Jiang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junwei Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaoge Liu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han Zheng
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinting Sang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Lu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yiyao Xu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
21
|
Khandelwal M, Krishna G, Ying Z, Gomez-Pinilla F. Liver acts as a metabolic gate for the traumatic brain injury pathology: Protective action of thyroid hormone. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166728. [PMID: 37137432 PMCID: PMC10601893 DOI: 10.1016/j.bbadis.2023.166728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Clinical evidence indicates that injury to the brain elicits systemic metabolic disturbances that contributes to the brain pathology. Since dietary fructose is metabolized in the liver, we explored mechanisms by which traumatic brain injury (TBI) and dietary fructose influence liver function and their possible repercussions to brain. Consumption of fructose contributed to the detrimental effects of TBI on liver operation, in terms of glucose and lipid metabolism, de novo lipogenesis, lipid peroxidation. Thyroid hormone (T4) is metabolized in the liver and found that T4 supply improved lipid metabolism by reducing de novo lipogenesis, lipid accumulation, lipogenic enzymes (ACC, AceCS1, FAS), lipid peroxidation in liver in response to fructose and fructose-TBI. T4 supply also helped to normalize glucose metabolism and improve insulin sensitivity. Furthermore, T4 counteracted elevations of the pro-inflammatory cytokines, Tnfα and Mcp-1 after TBI and/or fructose intake in liver and circulation. T4 also exerted an effect on isolated primary hepatocytes by potentiating phosphorylation of AMPKα and AKT substrate, AS160, leading to increased glucose uptake. In addition, T4 restored the metabolism of DHA in the liver disrupted by TBI and fructose, adding important information to optimize the action of DHA in therapeutics. The overall evidence seems to indicate that the liver works as a gate for the regulation of the effects of brain injury and foods on brain pathologies.
Collapse
Affiliation(s)
- Mayuri Khandelwal
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Gokul Krishna
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Chen YX, Yang H, Wang DS, Yao YT, Chen TT, Tao L, Chen Y, Shen XC. Gastrodin relieves cognitive impairment by regulating autophagy via PI3K/AKT signaling pathway in vascular dementia. Biochem Biophys Res Commun 2023; 671:246-254. [PMID: 37307708 DOI: 10.1016/j.bbrc.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023]
Abstract
Vascular dementia (VaD), the second most common type of dementia, is attributed to lower cerebral blood flow. To date, there is still no available clinical treatment for VaD. The phenolic glucoside gastrodin (GAS) is known for its neuroprotective effects, but the role and mechanisms of action on VD remains unclear. In this study, we aim to investigate the neuroprotective role and underlying mechanisms of GAS on chronic cerebral hypoperfusion (CCH)-mediated VaD rats and hypoxia-induced injury of HT22 cells. The study showed that GAS relieved learning and memory deficits, ameliorated hippocampus histological lesions in VaD rats. Additionally, GAS down-regulated LC3II/I, Beclin-1 levels and up-regulated P62 level in VaD rats and hypoxia-injured HT22 cells. Notably, GAS rescued the phosphorylation of PI3K/AKT pathway-related proteins expression, which regulates autophagy. Mechanistic studies verify that YP-740, a PI3K agonist, significantly resulted in inhibition of excessive autophagy and apoptosis with no significant differences were observed in the YP-740 and GAS co-treatment. Meantime, we found that LY294002, a PI3K inhibitor, substantially abolished GAS-mediated neuroprotection. These results revealed that the effects of GAS on VaD are related to stimulating PI3K/AKT pathway-mediated autophagy, suggesting a potentially beneficial therapeutic strategy for VaD.
Collapse
Affiliation(s)
- Yong-Xin Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China
| | - Hong Yang
- The Maternal and Child Health Care Hospital of Guizhou Medical University, Guiyang, 550003, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China
| | - Da-Song Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China
| | - Yu-Ting Yao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China
| | - Ting-Ting Chen
- The Maternal and Child Health Care Hospital of Guizhou Medical University, Guiyang, 550003, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China
| | - Yan Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China.
| | - Xiang-Chun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China.
| |
Collapse
|
23
|
Small Intestinal Bacterial Overgrowth and Non-Alcoholic Fatty Liver Disease: What Do We Know in 2023? Nutrients 2023; 15:nu15061323. [PMID: 36986052 PMCID: PMC10052062 DOI: 10.3390/nu15061323] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with the pathological accumulation of lipids inside hepatocytes. Untreated NAFL can progress to non-alcoholic hepatitis (NASH), followed by fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The common denominator of the above-mentioned metabolic disorders seems to be insulin resistance, which occurs in NAFLD patients. Obesity is the greatest risk factor for lipid accumulation inside hepatocytes, but a part of the NAFLD patient population has a normal body weight according to the BMI index. Obese people with or without NAFLD have a higher incidence of small intestinal bacterial overgrowth (SIBO), and those suffering from NAFLD show increased intestinal permeability, including a more frequent presence of bacterial overgrowth in the small intestine (SIBO). The health consequences of SIBO are primarily malabsorption disorders (vitamin B12, iron, choline, fats, carbohydrates and proteins) and bile salt deconjugation. Undetected and untreated SIBO may lead to nutrient and/or energy malnutrition, thus directly impairing liver function (e.g., folic acid and choline deficiency). However, whether SIBO contributes to liver dysfunction, decreased intestinal barrier integrity, increased inflammation, endotoxemia and bacterial translocation is not yet clear. In this review, we focus on gut–liver axis and discuss critical points, novel insights and the role of nutrition, lifestyle, pre- and probiotics, medication and supplements in the therapy and prevention of both SIBO and NAFLD.
Collapse
|
24
|
Hnilicova P, Kantorova E, Sutovsky S, Grofik M, Zelenak K, Kurca E, Zilka N, Parvanovova P, Kolisek M. Imaging Methods Applicable in the Diagnostics of Alzheimer's Disease, Considering the Involvement of Insulin Resistance. Int J Mol Sci 2023; 24:3325. [PMID: 36834741 PMCID: PMC9958721 DOI: 10.3390/ijms24043325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease and the most frequently diagnosed type of dementia, characterized by (1) perturbed cerebral perfusion, vasculature, and cortical metabolism; (2) induced proinflammatory processes; and (3) the aggregation of amyloid beta and hyperphosphorylated Tau proteins. Subclinical AD changes are commonly detectable by using radiological and nuclear neuroimaging methods such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and single-photon emission computed tomography (SPECT). Furthermore, other valuable modalities exist (in particular, structural volumetric, diffusion, perfusion, functional, and metabolic magnetic resonance methods) that can advance the diagnostic algorithm of AD and our understanding of its pathogenesis. Recently, new insights into AD pathoetiology revealed that deranged insulin homeostasis in the brain may play a role in the onset and progression of the disease. AD-related brain insulin resistance is closely linked to systemic insulin homeostasis disorders caused by pancreas and/or liver dysfunction. Indeed, in recent studies, linkages between the development and onset of AD and the liver and/or pancreas have been established. Aside from standard radiological and nuclear neuroimaging methods and clinically fewer common methods of magnetic resonance, this article also discusses the use of new suggestive non-neuronal imaging modalities to assess AD-associated structural changes in the liver and pancreas. Studying these changes might be of great clinical importance because of their possible involvement in AD pathogenesis during the prodromal phase of the disease.
Collapse
Affiliation(s)
- Petra Hnilicova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Ema Kantorova
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Stanislav Sutovsky
- 1st Department of Neurology, Faculty of Medicine, Comenius University in Bratislava and University Hospital, 813 67 Bratislava, Slovakia
| | - Milan Grofik
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Kamil Zelenak
- Clinic of Radiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Egon Kurca
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Petra Parvanovova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Martin Kolisek
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
25
|
Zhu SJ, Li X, Wei YW, Luo YF, Tang GH, Tang ZS. Acupoint catgut embedding improves learning and memory impairment in vascular dementia rats. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:108. [PMID: 36819587 PMCID: PMC9929827 DOI: 10.21037/atm-22-6402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023]
Abstract
Background Vascular dementia (VD) is a disease that affects brain function through cerebrovascular disease. Due to its complex pathogenesis, there is no effective drug treatment for VD. The present study aimed to evaluate the role of acupoint catgut embedding in the treatment of rats with VD and its possible molecular mechanism. Methods A modified 4 vessel occlusion (4-VO) method was used to establish a VD model rat, and spatial learning and memory ability was assessed using the Morris water maze (MWM) test. The protein expression levels were detected by Western blot. Hematoxylin and eosin (HE) staining was used for histological analysis and enzyme-linked immunosorbent assay (ELISA) was applied for analysis of serum inflammatory factors. Results We successfully constructed VD model rats with spatial learning and memory impairment, hippocampus injury, and high inflammatory response. Treatment of VD rats with acupoint catgut embedding significantly reduced escape latency and increased the time in the target quadrant and platform crossing times. VD-mediated hippocampal tissue damage and inflammatory reaction [down-regulating interleukin-1β (IL-1β), interleukin-6 (IL-6)] were significantly alleviated by acupoint catgut embedding treatment. In addition, further mechanism exploration found that acupoint catgut embedding treatment could improve the activity of the toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway. In summary, acupoint catgut embedding treatment improved spatial learning and memory loss, alleviated pathological damage of the hippocampus, and inhibited inflammation response in VD rats, which was probably related to the inhibition of the TLR4/MyD88/NF-κB signaling pathway. Conclusions Acupoint catgut embedding may warrant further study as an adjuvant therapy for the treatment of VD.
Collapse
Affiliation(s)
- Shi-Jie Zhu
- Anatomy Teaching and Research Office of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xia Li
- Intelligent Elderly Care Teaching and Research Office of Guiyang Health Care Vocational University, Guiyang, China
| | - Yu-Wei Wei
- First Department of Gerontology, The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine (Hanan Branch), Harbin, China
| | - Ya-Fei Luo
- Anatomy Teaching and Research Office of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Gui-Hua Tang
- Department of Neurology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhong-Sheng Tang
- Anatomy Teaching and Research Office of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
26
|
Gangopadhyay A, Ibrahim R, Theberge K, May M, Houseknecht KL. Non-alcoholic fatty liver disease (NAFLD) and mental illness: Mechanisms linking mood, metabolism and medicines. Front Neurosci 2022; 16:1042442. [PMID: 36458039 PMCID: PMC9707801 DOI: 10.3389/fnins.2022.1042442] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 09/26/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the world and one of the leading indications for liver transplantation. It is one of the many manifestations of insulin resistance and metabolic syndrome as well as an independent risk factor for cardiovascular disease. There is growing evidence linking the incidence of NAFLD with psychiatric illnesses such as schizophrenia, bipolar disorder and depression mechanistically via genetic, metabolic, inflammatory and environmental factors including smoking and psychiatric medications. Indeed, patients prescribed antipsychotic medications, regardless of diagnosis, have higher incidence of NAFLD than population norms. The mechanistic pharmacology of antipsychotic-associated NAFLD is beginning to emerge. In this review, we aim to discuss the pathophysiology of NAFLD including its risk factors, insulin resistance and systemic inflammation as well as its intersection with psychiatric illnesses.
Collapse
Affiliation(s)
| | | | | | | | - Karen L. Houseknecht
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| |
Collapse
|
27
|
Dementia and non-alcoholic fatty liver disease – An unprecedented relationship. Ann Med Surg (Lond) 2022; 81:104359. [PMID: 36147178 PMCID: PMC9486664 DOI: 10.1016/j.amsu.2022.104359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
|