1
|
Toma M, Jose R, Syed F, Devine T. A Safety-Centric Study on the Use of Inflatable Abdominal Binders for Managing Orthostatic Hypotension. Clin Pract 2024; 14:1737-1743. [PMID: 39311288 PMCID: PMC11417920 DOI: 10.3390/clinpract14050138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/19/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
The study focuses on the design and evaluation of inflatable abdominal binders for managing Orthostatic Hypotension. Orthostatic hypotension is a condition characterized by a significant drop in blood pressure when a person stands up, leading to symptoms such as dizziness, lightheadedness, and even fainting. The management of orthostatic hypotension typically involves a combination of pharmacological and non-pharmacological strategies. In the context of this research, an inflatable abdominal binder was designed, leveraging components that are not only economically viable but also easily obtainable. The evaluation of this device was conducted using a medical education manikin, specifically the CAE iStan manikin. The results demonstrated a correlation between the inflation values of the belt and the resulting pressure values exerted on the body. The general recommendation for an abdominal binder is to exert a pressure of 20-40 mmHg. Contrary to this, the study found that to maintain safe external pressure on the abdomen, the binder should not be inflated over 25 mmHg. This safety threshold was used as a reference point in the study, suggesting a potential need to revisit the standard recommendations for abdominal binder pressure. Further research is needed to assess the device's effectiveness in human subjects and to potentially redefine the safe and effective pressure range for abdominal binders.
Collapse
Affiliation(s)
- Milan Toma
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA;
| | - Rejath Jose
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA;
| | - Faiz Syed
- Mather Hospital, Northwell Health, 75 N Country Rd., Port Jefferson, NY 11777, USA;
| | - Timothy Devine
- The Ferrara Center for Patient Safety and Clinical Simulation, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA;
| |
Collapse
|
2
|
Bouchant L, Godet T, Arpajou G, Aupetitgendre L, Cayot S, Guerin R, Jabaudon M, Verlhac C, Blondonnet R, Borao L, Pereira B, Constantin JM, Bazin JE, Futier E, Audard J. Physiological effects and safety of bed verticalization in patients with acute respiratory distress syndrome. Crit Care 2024; 28:262. [PMID: 39103928 PMCID: PMC11299299 DOI: 10.1186/s13054-024-05013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/29/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Trunk inclination in patients with Acute Respiratory Distress Syndrome (ARDS) in the supine position has gained scientific interest due to its effects on respiratory physiology, including mechanics, oxygenation, ventilation distribution, and efficiency. Changing from flat supine to semi-recumbent increases driving pressure due to decreased respiratory system compliance. Positional adjustments also deteriorate ventilatory efficiency for CO2 removal, particularly in COVID-19-associated ARDS (C-ARDS), indicating likely lung parenchyma overdistension. Tilting the trunk reduces chest wall compliance and, to a lesser extent, lung compliance and transpulmonary driving pressure, with significant hemodynamic and gas exchange implications. METHODS A prospective, pilot physiological study was conducted on early ARDS patients in two ICUs at CHU Clermont-Ferrand, France. The protocol involved 30-min step gradual verticalization from a 30° semi-seated position (baseline) to different levels of inclination (0°, 30°, 60°, and 90°), before returning to the baseline position. Measurements included tidal volume, positive end-expiratory pressure (PEEP), esophageal pressures, and pulmonary artery catheter data. The primary endpoint was the variation in transpulmonary driving pressure through the verticalization procedure. RESULTS From May 2020 through January 2021, 30 patients were included. Transpulmonary driving pressure increased slightly from baseline (median and interquartile range [IQR], 9 [5-11] cmH2O) to the 90° position (10 [7-14] cmH2O; P < 10-2 for the overall effect of position in mixed model). End-expiratory lung volume increased with verticalization, in parallel to decreases in alveolar strain and increased arterial oxygenation. Verticalization was associated with decreased cardiac output and stroke volume, and increased norepinephrine doses and serum lactate levels, prompting interruption of the procedure in two patients. There were no other adverse events such as falls or equipment accidental removals. CONCLUSIONS Verticalization to 90° is feasible in ARDS patients, improving EELV and oxygenation up to 30°, likely due to alveolar recruitment and blood flow redistribution. However, there is a risk of overdistension and hemodynamic instability beyond 30°, necessitating individualized bed angles based on clinical situations. Trial registration ClinicalTrials.gov registration number NCT04371016 , April 24, 2020.
Collapse
Affiliation(s)
- Louis Bouchant
- Department of Perioperative Medicine, Centre Hospitalier Universitaire (CHU) Clermont-Ferrand, 1 Place Lucie Et Raymond Aubrac, 63000, Clermont-Ferrand, France
| | - Thomas Godet
- Department of Perioperative Medicine, Centre Hospitalier Universitaire (CHU) Clermont-Ferrand, 1 Place Lucie Et Raymond Aubrac, 63000, Clermont-Ferrand, France.
- Department of Healthcare Simulation, Université Clermont Auvergne, Clermont-Ferrand, France.
| | - Gauthier Arpajou
- Department of Perioperative Medicine, Centre Hospitalier Universitaire (CHU) Clermont-Ferrand, 1 Place Lucie Et Raymond Aubrac, 63000, Clermont-Ferrand, France
| | - Lucie Aupetitgendre
- Department of Perioperative Medicine, Centre Hospitalier Universitaire (CHU) Clermont-Ferrand, 1 Place Lucie Et Raymond Aubrac, 63000, Clermont-Ferrand, France
| | - Sophie Cayot
- Department of Perioperative Medicine, Centre Hospitalier Universitaire (CHU) Clermont-Ferrand, 1 Place Lucie Et Raymond Aubrac, 63000, Clermont-Ferrand, France
| | - Renaud Guerin
- Department of Perioperative Medicine, Centre Hospitalier Universitaire (CHU) Clermont-Ferrand, 1 Place Lucie Et Raymond Aubrac, 63000, Clermont-Ferrand, France
| | - Matthieu Jabaudon
- Department of Perioperative Medicine, Centre Hospitalier Universitaire (CHU) Clermont-Ferrand, 1 Place Lucie Et Raymond Aubrac, 63000, Clermont-Ferrand, France
- Université Clermont Auvergne, iGreD, CNRS, INSERM, Clermont-Ferrand, France
| | - Camille Verlhac
- Department of Perioperative Medicine, Centre Hospitalier Universitaire (CHU) Clermont-Ferrand, 1 Place Lucie Et Raymond Aubrac, 63000, Clermont-Ferrand, France
| | - Raiko Blondonnet
- Department of Perioperative Medicine, Centre Hospitalier Universitaire (CHU) Clermont-Ferrand, 1 Place Lucie Et Raymond Aubrac, 63000, Clermont-Ferrand, France
- Université Clermont Auvergne, iGreD, CNRS, INSERM, Clermont-Ferrand, France
| | - Lucile Borao
- Department of Perioperative Medicine, Centre Hospitalier Universitaire (CHU) Clermont-Ferrand, 1 Place Lucie Et Raymond Aubrac, 63000, Clermont-Ferrand, France
| | - Bruno Pereira
- Direction de la Recherche Clinique et de l'Innovation (DRCI), Centre Hospitalier Universitaire (CHU) Clermont-Ferrand, Biostatistics Unit, Clermont-Ferrand, France
| | - Jean-Michel Constantin
- Assistance Publique-Hôpitaux de Paris (AP-HP), Département Anesthésie et Réanimation, Hôpital Pitié-Salpêtrière, DREAM, Sorbonne Université, Paris, France
| | - Jean-Etienne Bazin
- Department of Perioperative Medicine, Centre Hospitalier Universitaire (CHU) Clermont-Ferrand, 1 Place Lucie Et Raymond Aubrac, 63000, Clermont-Ferrand, France
- Department of Healthcare Simulation, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Emmanuel Futier
- Department of Perioperative Medicine, Centre Hospitalier Universitaire (CHU) Clermont-Ferrand, 1 Place Lucie Et Raymond Aubrac, 63000, Clermont-Ferrand, France
- Université Clermont Auvergne, iGreD, CNRS, INSERM, Clermont-Ferrand, France
| | - Jules Audard
- Department of Perioperative Medicine, Centre Hospitalier Universitaire (CHU) Clermont-Ferrand, 1 Place Lucie Et Raymond Aubrac, 63000, Clermont-Ferrand, France.
- Université Clermont Auvergne, iGreD, CNRS, INSERM, Clermont-Ferrand, France.
| |
Collapse
|
3
|
Pfortmueller CA, Dabrowski W, Wise R, van Regenmortel N, Malbrain MLNG. Fluid accumulation syndrome in sepsis and septic shock: pathophysiology, relevance and treatment-a comprehensive review. Ann Intensive Care 2024; 14:115. [PMID: 39033219 PMCID: PMC11264678 DOI: 10.1186/s13613-024-01336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
In this review, we aimed to comprehensively summarize current literature on pathophysiology, relevance, diagnosis and treatment of fluid accumulation in patients with sepsis/septic shock. Fluid accumulation syndrome (FAS) is defined as fluid accumulation (any degree, expressed as percentage from baseline body weight) with new onset organ-failure. Over the years, many studies have described the negative impact of FAS on clinically relevant outcomes. While the relationship between FAS and ICU outcomes is well described, uncertainty exists regarding its diagnosis, monitoring and treatment. A stepwise approach is suggested to prevent and treat FAS in patients with septic shock, including minimizing fluid intake (e.g., by limiting intravenous fluid administration and employing de-escalation whenever possible), limiting sodium and chloride administration, and maximizing fluid output (e.g., with diuretics, or renal replacement therapy). Current literature implies the need for a multi-tier, multi-modal approach to de-resuscitation, combining a restrictive fluid management regime with a standardized early active de-resuscitation, maintenance fluid reduction (avoiding fluid creep) and potentially using physical measures such as compression stockings.Trial registration: Not applicable.
Collapse
Affiliation(s)
- Carmen Andrea Pfortmueller
- Department of Intensive Care, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland.
| | - Wojciech Dabrowski
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
| | - Rob Wise
- Department of Anaesthesia and Critical Care, School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
- Faculty Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Intensive Care Department, John Radcliffe Hospital, Oxford University Trust Hospitals, Oxford, UK
| | - Niels van Regenmortel
- Department of Intensive Care Medicine, Ziekenhuis Netwerk Antwerpen Campus Stuivenberg/Cadix, Antwerp, Belgium
- Department of Intensive Care Medicine, Antwerp University Hospital, Antwerp, Belgium
| | - Manu L N G Malbrain
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
- International Fluid Academy, Lovenjoel, Belgium
- Medical Data Management, Medaman, Geel, Belgium
| |
Collapse
|
4
|
Moll V, Khanna AK, Kurz A, Huang J, Smit M, Swaminathan M, Minear S, Parr KG, Prabhakar A, Zhao M, Malbrain MLNG. Optimization of kidney function in cardiac surgery patients with intra-abdominal hypertension: expert opinion. Perioper Med (Lond) 2024; 13:72. [PMID: 38997752 PMCID: PMC11245849 DOI: 10.1186/s13741-024-00416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/09/2024] [Indexed: 07/14/2024] Open
Abstract
Cardiac surgery-associated acute kidney injury (CSA-AKI) affects up to 42% of cardiac surgery patients. CSA-AKI is multifactorial, with low abdominal perfusion pressure often overlooked. Abdominal perfusion pressure is calculated as mean arterial pressure minus intra-abdominal pressure (IAP). IAH decreases cardiac output and compresses the renal vasculature and renal parenchyma. Recent studies have highlighted the frequent occurrence of IAH in cardiac surgery patients and have linked the role of low perfusion pressure to the occurrence of AKI. This review and expert opinion illustrate current evidence on the pathophysiology, diagnosis, and therapy of IAH and ACS in the context of AKI.
Collapse
Affiliation(s)
- Vanessa Moll
- Department of Anesthesiology, Division of Critical Care Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Anesthesiology, Division of Critical Care Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Ashish K Khanna
- Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
- Perioperative Outcomes and Informatics Collaborative (POIC), Winston-Salem, NC, USA
- Outcomes Research Consortium, Cleveland, OH, USA
| | - Andrea Kurz
- Departments of General Anesthesiology and Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Anesthesiology, Emergency Medicine and Intensive Care Medicine, Medical University Graz, Graz, Austria
| | - Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY, USA
| | - Marije Smit
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Madhav Swaminathan
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Steven Minear
- Department of Anesthesiology, Cleveland Clinic Florida, Weston Hospital, Weston, FL, USA
| | - K Gage Parr
- Department of Anesthesiology and Critical Care Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Amit Prabhakar
- Department of Anesthesiology, Division of Critical Care Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Manxu Zhao
- Department of Anesthesiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Manu L N G Malbrain
- First Department of Anaesthesiology and Intensive Therapy, Medical University Lublin, Lublin, Poland.
- Medical Data Management, Medaman, Geel, Belgium.
- International Fluid Academy, Lovenjoel, Belgium.
| |
Collapse
|
5
|
Benites MH, Zapata-Canivilo M, Poblete F, Labbe F, Battiato R, Ferre A, Dreyse J, Bugedo G, Bruhn A, Costa ELV, Retamal J. Physiological and clinical effects of trunk inclination adjustment in patients with respiratory failure: a scoping review and narrative synthesis. Crit Care 2024; 28:228. [PMID: 38982466 PMCID: PMC11232125 DOI: 10.1186/s13054-024-05010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Adjusting trunk inclination from a semi-recumbent position to a supine-flat position or vice versa in patients with respiratory failure significantly affects numerous aspects of respiratory physiology including respiratory mechanics, oxygenation, end-expiratory lung volume, and ventilatory efficiency. Despite these observed effects, the current clinical evidence regarding this positioning manoeuvre is limited. This study undertakes a scoping review of patients with respiratory failure undergoing mechanical ventilation to assess the effect of trunk inclination on physiological lung parameters. METHODS The PubMed, Cochrane, and Scopus databases were systematically searched from 2003 to 2023. INTERVENTIONS Changes in trunk inclination. MEASUREMENTS Four domains were evaluated in this study: 1) respiratory mechanics, 2) ventilation distribution, 3) oxygenation, and 4) ventilatory efficiency. RESULTS After searching the three databases and removing duplicates, 220 studies were screened. Of these, 37 were assessed in detail, and 13 were included in the final analysis, comprising 274 patients. All selected studies were experimental, and assessed respiratory mechanics, ventilation distribution, oxygenation, and ventilatory efficiency, primarily within 60 min post postural change. CONCLUSION In patients with acute respiratory failure, transitioning from a supine to a semi-recumbent position leads to decreased respiratory system compliance and increased airway driving pressure. Additionally, C-ARDS patients experienced an improvement in ventilatory efficiency, which resulted in lower PaCO2 levels. Improvements in oxygenation were observed in a few patients and only in those who exhibited an increase in EELV upon moving to a semi-recumbent position. Therefore, the trunk inclination angle must be accurately reported in patients with respiratory failure under mechanical ventilation.
Collapse
Affiliation(s)
- Martín H Benites
- Unidad de Pacientes Críticos, Clínica Las Condes, Santiago, Chile
- Facultad de Medicina, Escuela de Medicina, Universidad Finis Terrae, Santiago, Chile
- Doctorado en Ciencias Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Fabian Poblete
- Unidad de Pacientes Críticos, Clínica Las Condes, Santiago, Chile
| | - Francisco Labbe
- Unidad de Pacientes Críticos, Clínica Las Condes, Santiago, Chile
| | - Romina Battiato
- Magíster em Bioestadística, Escuela de Salud Pública, Universidad de Chile, Santiago, Chile
| | - Andrés Ferre
- Unidad de Pacientes Críticos, Clínica Las Condes, Santiago, Chile
- Facultad de Medicina, Escuela de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Jorge Dreyse
- Unidad de Pacientes Críticos, Clínica Las Condes, Santiago, Chile
- Facultad de Medicina, Escuela de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Guillermo Bugedo
- Departamento de Medicina Intensiva, Hospital Clínico Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro Bruhn
- Departamento de Medicina Intensiva, Hospital Clínico Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo L V Costa
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Laboratório de Pneumologia LIM-09, Disciplina de Pneumologia, Heart Institute (Incor), São Paulo, Brazil
- Hospital Sírio-Libanês, Research and Education Institute, São Paulo, Brazil
| | - Jaime Retamal
- Departamento de Medicina Intensiva, Hospital Clínico Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
6
|
Ball L, Talmor D, Pelosi P. Transpulmonary pressure monitoring in critically ill patients: pros and cons. Crit Care 2024; 28:177. [PMID: 38796447 PMCID: PMC11127359 DOI: 10.1186/s13054-024-04950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024] Open
Abstract
The use of transpulmonary pressure monitoring based on measurement of esophageal pressure has contributed importantly to the personalization of mechanical ventilation based on respiratory pathophysiology in critically ill patients. However, esophageal pressure monitoring is still underused in the clinical practice. This technique allows partitioning of the respiratory mechanics between the lungs and the chest wall, provides information on lung recruitment and risk of barotrauma, and helps titrating mechanical ventilation settings in patients with respiratory failure. In assisted ventilation modes and during non-invasive respiratory support, esophageal pressure monitoring provides important information on the inspiratory effort and work of breathing. Nonetheless, several controversies persist on technical aspects, interpretation and clinical decision-making based on values derived from this monitoring technique. The aim of this review is to summarize the physiological bases of esophageal pressure monitoring, discussing the pros and cons of its clinical applications and different interpretations in critically ill patients undergoing invasive and non-invasive respiratory support.
Collapse
Affiliation(s)
- Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV 16, Genoa, Italy.
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy.
| | - Daniel Talmor
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV 16, Genoa, Italy
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| |
Collapse
|
7
|
Seybold B, Deutsch AM, Deutsch BL, Simeliunas E, Weigand MA, Fiedler-Kalenka MO, Kalenka A. Differential Effects of Intra-Abdominal Hypertension and ARDS on Respiratory Mechanics in a Porcine Model. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:843. [PMID: 38929460 PMCID: PMC11205316 DOI: 10.3390/medicina60060843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Intra-abdominal hypertension (IAH) and acute respiratory distress syndrome (ARDS) are common concerns in intensive care unit patients with acute respiratory failure (ARF). Although both conditions lead to impairment of global respiratory parameters, their underlying mechanisms differ substantially. Therefore, a separate assessment of the different respiratory compartments should reveal differences in respiratory mechanics. Materials and Methods: We prospectively investigated alterations in lung and chest wall mechanics in 18 mechanically ventilated pigs exposed to varying levels of intra-abdominal pressures (IAP) and ARDS. The animals were divided into three groups: group A (IAP 10 mmHg, no ARDS), B (IAP 20 mmHg, no ARDS), and C (IAP 10 mmHg, with ARDS). Following induction of IAP (by inflating an intra-abdominal balloon) and ARDS (by saline lung lavage and injurious ventilation), respiratory mechanics were monitored for six hours. Statistical analysis was performed using one-way ANOVA to compare the alterations within each group. Results: After six hours of ventilation, end-expiratory lung volume (EELV) decreased across all groups, while airway and thoracic pressures increased. Significant differences were noted between group (B) and (C) regarding alterations in transpulmonary pressure (TPP) (2.7 ± 0.6 vs. 11.3 ± 2.1 cmH2O, p < 0.001), elastance of the lung (EL) (8.9 ± 1.9 vs. 29.9 ± 5.9 cmH2O/mL, p = 0.003), and elastance of the chest wall (ECW) (32.8 ± 3.2 vs. 4.4 ± 1.8 cmH2O/mL, p < 0.001). However, global respiratory parameters such as EELV/kg bodyweight (-6.1 ± 1.3 vs. -11.0 ± 2.5 mL/kg), driving pressure (12.5 ± 0.9 vs. 13.2 ± 2.3 cmH2O), and compliance of the respiratory system (-21.7 ± 2.8 vs. -19.5 ± 3.4 mL/cmH2O) did not show significant differences among the groups. Conclusions: Separate measurements of lung and chest wall mechanics in pigs with IAH or ARDS reveals significant differences in TPP, EL, and ECW, whereas global respiratory parameters do not differ significantly. Therefore, assessing the compartments of the respiratory system separately could aid in identifying the underlying cause of ARF.
Collapse
Affiliation(s)
- Benjamin Seybold
- Department of Anesthesiology, Medical Faculty, Heidelberg University Hospital, University Heidelberg, 69120 Heidelberg, Germany; (A.M.D.); (B.L.D.); (E.S.); (M.A.W.); (M.O.F.-K.); (A.K.)
| | - Anna M. Deutsch
- Department of Anesthesiology, Medical Faculty, Heidelberg University Hospital, University Heidelberg, 69120 Heidelberg, Germany; (A.M.D.); (B.L.D.); (E.S.); (M.A.W.); (M.O.F.-K.); (A.K.)
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Vivantes Klinikum im Friedrichshain, 10249 Berlin, Germany
| | - Barbara Luise Deutsch
- Department of Anesthesiology, Medical Faculty, Heidelberg University Hospital, University Heidelberg, 69120 Heidelberg, Germany; (A.M.D.); (B.L.D.); (E.S.); (M.A.W.); (M.O.F.-K.); (A.K.)
- Department of Anesthesiology, Intensive Care and Emergency Medicine, Asklepios Klinik Wandsbek, 22043 Hamburg, Germany
| | - Emilis Simeliunas
- Department of Anesthesiology, Medical Faculty, Heidelberg University Hospital, University Heidelberg, 69120 Heidelberg, Germany; (A.M.D.); (B.L.D.); (E.S.); (M.A.W.); (M.O.F.-K.); (A.K.)
- Department of Anesthesiology and Intensive Care Medicine, Bürgerspital Solothurn, 4500 Solothurn, Switzerland
| | - Markus A. Weigand
- Department of Anesthesiology, Medical Faculty, Heidelberg University Hospital, University Heidelberg, 69120 Heidelberg, Germany; (A.M.D.); (B.L.D.); (E.S.); (M.A.W.); (M.O.F.-K.); (A.K.)
- German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC), 69120 Heidelberg, Germany
| | - Mascha O. Fiedler-Kalenka
- Department of Anesthesiology, Medical Faculty, Heidelberg University Hospital, University Heidelberg, 69120 Heidelberg, Germany; (A.M.D.); (B.L.D.); (E.S.); (M.A.W.); (M.O.F.-K.); (A.K.)
- German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC), 69120 Heidelberg, Germany
| | - Armin Kalenka
- Department of Anesthesiology, Medical Faculty, Heidelberg University Hospital, University Heidelberg, 69120 Heidelberg, Germany; (A.M.D.); (B.L.D.); (E.S.); (M.A.W.); (M.O.F.-K.); (A.K.)
- Hospital Bergstrasse, 64646 Heppenheim, Germany
| |
Collapse
|
8
|
Xavier TB, Coelho LV, Ferreira DAL, Cota y Raposeiras JM, Duran MS, Silva LA, da Motta-Ribeiro GC, Camilo LM, Carvalho ARS, Silva PL. Individualized positive end-expiratory pressure reduces driving pressure in obese patients during laparoscopic surgery under pneumoperitoneum: a randomized clinical trial. Front Physiol 2024; 15:1383167. [PMID: 38645690 PMCID: PMC11026699 DOI: 10.3389/fphys.2024.1383167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction During pneumoperitoneum (PNP), airway driving pressure (ΔPRS) increases due to the stiffness of the chest wall and cephalic shift of the diaphragm, which favors atelectasis. In addition, depending on the mechanical power (MP) formulas, they may lead to different interpretations. Methods Patients >18 years of age with body mass index >35 kg/m2 were included in a single-center randomized controlled trial during their admission for bariatric surgery by abdominal laparoscopy. Intra-abdominal pressure was set at 15 mmHg at the pneumoperitoneum time point (PNP). After the recruitment maneuver, the lowest respiratory system elastance (ERS) was detected during the positive end-expiratory pressure (PEEP) step-wise decrement. Patients were randomized to the 1) CTRL group: ventilated with PEEP of 5 cmH2O and 2) PEEPIND group: ventilated with PEEP value associated with ERS that is 5% higher than its lowest level. Respiratory system mechanics and mean arterial pressure (MAP) were assessed at the PNP, 5 min after randomization (T1), and at the end of the ventilation protocol (T2); arterial blood gas was assessed at PNP and T2. ΔPRS was the primary outcome. Three MP formulas were used: MPA, which computes static PEEP × volume, elastic, and resistive components; MPB, which computes only the elastic component; and MPC, which computes static PEEP × volume, elastic, and resistive components without inspiratory holds. Results Twenty-eight patients were assessed for eligibility: eight were not included and 20 patients were randomized and allocated to CTRL and PEEPIND groups (n = 10/group). The PEEPIND ventilator strategy reduced ΔPRS when compared with the CTRL group (PEEPIND, 13 ± 2 cmH2O; CTRL, 22 ± 4 cmH2O; p < 0.001). Oxygenation improved in the PEEPIND group when compared with the CTRL group (p = 0.029), whereas MAP was comparable between the PEEPIND and CTRL groups. At the end of surgery, MPA and MPB were correlated in both the CTRL (rho = 0.71, p = 0.019) and PEEPIND (rho = 0.84, p = 0.020) groups but showed different bias (CTRL, -1.9 J/min; PEEPIND, +10.0 J/min). At the end of the surgery, MPA and MPC were correlated in both the CTRL (rho = 0.71, p = 0.019) and PEEPIND (rho = 0.84, p = 0.020) groups but showed different bias (CTRL, -1.9 J/min; PEEPIND, +10.0 J/min). Conclusion Individualized PEEP was associated with a reduction in ΔPRS and an improvement in oxygenation with comparable MAP. The MP, which solely computes the elastic component, better reflected the improvement in ΔPRS observed in the individualized PEEP group. Clinical Trial Registration The protocol was registered at the Brazilian Registry of Clinical Trials (U1111-1220-7296).
Collapse
Affiliation(s)
- Tiago Batista Xavier
- Laboratório de Fisiologia da Respiração, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | - Leticia Almeida Silva
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Luciana Moisés Camilo
- Instituto de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Pedro Leme Silva
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Sun R, Lei L, Ji J, Chen Y, Tian W, Yang F, Huang Q. Designing a bi-layer multifunctional hydrogel patch based on polyvinyl alcohol, quaternized chitosan and gallic acid for abdominal wall defect repair. Int J Biol Macromol 2024; 263:130291. [PMID: 38378119 DOI: 10.1016/j.ijbiomac.2024.130291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
In abdominal wall defect repair, surgical site infection (SSI) remains the primary cause of failure, while complications like visceral adhesions present significant challenges following patch implantation. We designed a Janus multifunctional hydrogel patch (JMP) with antibacterial, anti-inflammatory, and anti-adhesive properties. The patch comprises two distinct layers: a pro-healing layer and an anti-adhesion layer. The pro-healing layer was created by a simple mixture of polyvinyl alcohol (PVA), quaternized chitosan (QCS), and gallic acid (GA), crosslinked to form PVA/QCS/GA (PQG) hydrogels through GA's self-assembly effect and hydrogen bonding. Additionally, the PVA anti-adhesive layer was constructed using a drying-assisted salting method, providing a smooth and dense physical barrier to prevent visceral adhesion while offering essential mechanical support to the abdominal wall. The hydrogel patch demonstrates widely adjustable mechanical properties, exceptional biocompatibility, and potent antimicrobial properties, along with a sustained and stable release of antioxidants. In rat models of skin and abdominal wall defects, the JMP effectively promoted tissue healing by controlling infection, inhibiting inflammation, stimulating neovascularization, and successfully preventing the formation of visceral adhesions. These compelling results highlight the JMP's potential to improve the success rate of abdominal wall defect repair and reduce surgical complications.
Collapse
Affiliation(s)
- Ran Sun
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Lei Lei
- Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Jiamin Ji
- Research Institute of General Surgery, Jinling Hospital, Southeast University, Nanjing, China
| | - Yuan Chen
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Weiliang Tian
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Fan Yang
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Qian Huang
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
10
|
Abram J, Spraider P, Wagner J, Putzer G, Ranalter M, Rinner S, Lindner AK, Glodny B, Hell T, Barnes T, Enk D, Martini J. Individualised flow-controlled ventilation reduces applied mechanical power and improves ventilation efficiency in a porcine intra-abdominal hypertension model. Intensive Care Med Exp 2024; 12:27. [PMID: 38451347 PMCID: PMC10920549 DOI: 10.1186/s40635-024-00608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Aim of this study was to evaluate feasibility and effects of individualised flow-controlled ventilation (FCV), based on compliance guided pressure settings, compared to standard of pressure-controlled ventilation (PCV) in a porcine intra-abdominal hypertension (IAH) model. The primary aim of this study was to investigate oxygenation. Secondary aims were to assess respiratory and metabolic variables and lung tissue aeration. METHODS Pigs were randomly assigned to FCV (n = 9) and PCV (n = 9). IAH was induced by insufflation of air into the abdomen to induce IAH grades ranging from 0 to 3. At each IAH grade FCV was undertaken using compliance guided pressure settings, or PCV (n = 9) was undertaken with the positive end-expiratory pressure titrated for maximum compliance and the peak pressure set to achieve a tidal volume of 7 ml/kg. Gas exchange, ventilator settings and derived formulas were recorded at two timepoints for each grade of IAH. Lung aeration was assessed by a computed tomography scan at IAH grade 3. RESULTS All 18 pigs (median weight 54 kg [IQR 51-67]) completed the observation period of 4 h. Oxygenation was comparable at each IAH grade, but a significantly lower minute volume was required to secure normocapnia in FCV at all IAH grades (7.6 vs. 14.4, MD - 6.8 (95% CI - 8.5 to - 5.2) l/min; p < 0.001). There was also a significant reduction of applied mechanical power being most evident at IAH grade 3 (25.9 vs. 57.6, MD - 31.7 (95% CI - 39.7 to - 23.7) J/min; p < 0.001). Analysis of Hounsfield unit distribution of the computed tomography scans revealed a significant reduction in non- (5 vs. 8, MD - 3 (95% CI - 6 to 0) %; p = 0.032) and poorly-aerated lung tissue (7 vs. 15, MD - 6 (95% CI - 13 to - 3) %, p = 0.002) for FCV. Concomitantly, normally-aerated lung tissue was significantly increased (84 vs. 76, MD 8 (95% CI 2 to 15) %; p = 0.011). CONCLUSIONS Individualised FCV showed similar oxygenation but required a significantly lower minute volume for CO2-removal, which led to a remarkable reduction of applied mechanical power. Additionally, there was a shift from non- and poorly-aerated lung tissue to normally-aerated lung tissue in FCV compared to PCV.
Collapse
Affiliation(s)
- Julia Abram
- Department of Anesthesiology and Intensive Care Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Patrick Spraider
- Department of Anesthesiology and Intensive Care Medicine, Medical University Innsbruck, Innsbruck, Austria.
| | - Julian Wagner
- Department of Anesthesiology and Intensive Care Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Gabriel Putzer
- Department of Anesthesiology and Intensive Care Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Manuela Ranalter
- Department of Anesthesiology and Intensive Care Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Sarah Rinner
- Department of Anesthesiology and Intensive Care Medicine, Medical University Innsbruck, Innsbruck, Austria
| | | | - Bernhard Glodny
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Tobias Hell
- Department of Mathematics, Faculty of Mathematics, Computer Science and Physics, University of Innsbruck, Innsbruck, Austria
| | - Tom Barnes
- Professor Emeritus, University of Greenwich, London, UK
| | - Dietmar Enk
- Faculty of Medicine, University of Münster, Münster, Germany
| | - Judith Martini
- Department of Anesthesiology and Intensive Care Medicine, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Iavarone IG, Al-Husinat L, Vélez-Páez JL, Robba C, Silva PL, Rocco PRM, Battaglini D. Management of Neuromuscular Blocking Agents in Critically Ill Patients with Lung Diseases. J Clin Med 2024; 13:1182. [PMID: 38398494 PMCID: PMC10889521 DOI: 10.3390/jcm13041182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The use of neuromuscular blocking agents (NMBAs) is common in the intensive care unit (ICU). NMBAs have been used in critically ill patients with lung diseases to optimize mechanical ventilation, prevent spontaneous respiratory efforts, reduce the work of breathing and oxygen consumption, and avoid patient-ventilator asynchrony. In patients with acute respiratory distress syndrome (ARDS), NMBAs reduce the risk of barotrauma and improve oxygenation. Nevertheless, current guidelines and evidence are contrasting regarding the routine use of NMBAs. In status asthmaticus and acute exacerbation of chronic obstructive pulmonary disease, NMBAs are used in specific conditions to ameliorate patient-ventilator synchronism and oxygenation, although their routine use is controversial. Indeed, the use of NMBAs has decreased over the last decade due to potential adverse effects, such as immobilization, venous thrombosis, patient awareness during paralysis, development of critical illness myopathy, autonomic interactions, ICU-acquired weakness, and residual paralysis after cessation of NMBAs use. The aim of this review is to highlight current knowledge and synthesize the evidence for the effects of NMBAs for critically ill patients with lung diseases, focusing on patient-ventilator asynchrony, ARDS, status asthmaticus, and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Ida Giorgia Iavarone
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (I.G.I.); (C.R.)
- Department of Surgical Sciences and Integrated Diagnostics, University of Genova, 16132 Genova, Italy
| | - Lou’i Al-Husinat
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| | - Jorge Luis Vélez-Páez
- Facultad de Ciencias Médicas, Universidad Central de Ecuador, Quito 170129, Ecuador;
- Unidad de Terapia Intensiva, Hospital Pablo Arturo Suárez, Centro de Investigación Clínica, Quito 170129, Ecuador
| | - Chiara Robba
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (I.G.I.); (C.R.)
- Department of Surgical Sciences and Integrated Diagnostics, University of Genova, 16132 Genova, Italy
- Facultad de Ciencias Médicas, Universidad Central de Ecuador, Quito 170129, Ecuador;
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941, Brazil; (P.L.S.); (P.R.M.R.)
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941, Brazil; (P.L.S.); (P.R.M.R.)
| | - Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (I.G.I.); (C.R.)
| |
Collapse
|
12
|
Yessenbayeva GA, Yukhnevich YA, Khamitova ZK, Kim SI, Zhumabayev MB, Berdiyarova GS, Shalekenov SB, Mukatova IY, Yaroshetskiy AI. Impact of a positive end-expiratory pressure strategy on oxygenation, respiratory compliance, and hemodynamics during laparoscopic surgery in non-obese patients: a systematic review and meta-analysis of randomized controlled trials. BMC Anesthesiol 2023; 23:371. [PMID: 37950169 PMCID: PMC10638810 DOI: 10.1186/s12871-023-02337-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Higher positive end-expiratory pressure (PEEP) during laparoscopic surgery may increase oxygenation and respiratory compliance. This meta-analysis aimed to compare the impact of different intraoperative PEEP strategies on arterial oxygenation, compliance, and hemodynamics during laparoscopic surgery in non-obese patients. METHODS We searched RCTs in PubMed, Cochrane Library, Web of Science, and Google Scholar from January 2012 to April 2022 comparing the different intraoperative PEEP (Low PEEP (LPEEP): 0-4 mbar; Moderate PEEP (MPEEP): 5-8 mbar; high PEEP (HPEEP): >8 mbar; individualized PEEP - iPEEP) on arterial oxygenation, respiratory compliance (Cdyn), mean arterial pressure (MAP), and heart rate (HR). We calculated mean differences (MD) with 95% confidence intervals (CI), and predictive intervals (PI) using random-effects models. The Cochrane Bias Risk Assessment Tool was applied. RESULTS 21 RCTs (n = 1554) met the inclusion criteria. HPEEP vs. LPEEP increased PaO2 (+ 29.38 [16.20; 42.56] mmHg, p < 0.0001) or PaO2/FiO2 (+ 36.7 [+ 2.23; +71.70] mmHg, p = 0.04). HPEEP vs. MPEEP increased PaO2 (+ 22.00 [+ 1.11; +42.88] mmHg, p = 0.04) or PaO2/FiO2 (+ 42.7 [+ 2.74; +82.67] mmHg, p = 0.04). iPEEP vs. MPEEP increased PaO2/FiO2 (+ 115.2 [+ 87.21; +143.20] mmHg, p < 0.001). MPEEP vs. LPEP, and HPEEP vs. MPEEP increased PaO2 or PaO2/FiO2 significantly with different heterogeneity. HPEEP vs. LPEEP increased Cdyn (+ 7.87 [+ 1.49; +14.25] ml/mbar, p = 0.02). MPEEP vs. LPEEP, and HPEEP vs. MPEEP did not impact Cdyn (p = 0.14 and 0.38, respectively). iPEEP vs. LPEEP decreased driving pressure (-4.13 [-2.63; -5.63] mbar, p < 0.001). No significant differences in MAP or HR were found between any subgroups. CONCLUSION HPEEP and iPEEP during PNP in non-obese patients could promote oxygenation and increase Cdyn without clinically significant changes in MAP and HR. MPEEP could be insufficient to increase respiratory compliance and improve oxygenation. LPEEP may lead to decreased respiratory compliance and worsened oxygenation. PROSPERO REGISTRATION CRD42022362379; registered October 09, 2022.
Collapse
Affiliation(s)
| | | | | | - Sergey I Kim
- Multidisciplinary hospitals named after Professor H.J.Makazhanov, Karaganda, Kazakhstan
| | - Murat B Zhumabayev
- National Research Oncology Center, Astana, Kazakhstan
- Astana Medical University, Astana, Kazakhstan
| | | | | | | | - Andrey I Yaroshetskiy
- Pulmonology Department, Sechenov First Moscow State Medical University (Sechenov University, 8/2, Trubetskaya str. 119991, Moscow, Russia.
| |
Collapse
|
13
|
Jang H, Lee N, Jeong E, Park Y, Jo Y, Kim J, Kim D. Abdominal compartment syndrome in critically ill patients. Acute Crit Care 2023; 38:399-408. [PMID: 38052507 DOI: 10.4266/acc.2023.01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
Intra-abdominal hypertension can have severe consequences, including abdominal compartment syndrome, which can contribute to multi-organ failure. An increase in intra-abdominal hypertension is influenced by factors such as diminished abdominal wall compliance, increased intraluminal content, and certain systemic conditions. Regular measurement of intra-abdominal pressure is essential, and particular attention must be paid to patient positioning. Nonsurgical treatments, such as decompression of intraluminal content using a nasogastric tube, percutaneous drainage, and fluid balance optimization, play crucial roles. Additionally, point-of-care ultrasonography aids in the diagnosis and treatment of intra-abdominal hypertension. Emphasizing the importance of regular measurements, timely decompressive laparotomy is a definitive, but complex, treatment option. Balancing the urgency of surgical intervention against potential postoperative complications is challenging.
Collapse
Affiliation(s)
- Hyunseok Jang
- Division of Trauma, Department of Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Naa Lee
- Division of Trauma, Department of Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Euisung Jeong
- Division of Trauma, Department of Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Yunchul Park
- Division of Trauma, Department of Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Younggoun Jo
- Division of Trauma, Department of Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Jungchul Kim
- Division of Trauma, Department of Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Dowan Kim
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
14
|
Benites MH, Torres D, Poblete F, Labbe F, Bachmann MC, Regueira TE, Soto L, Ferre A, Dreyse J, Retamal J. Effects of changes in trunk inclination on ventilatory efficiency in ARDS patients: quasi-experimental study. Intensive Care Med Exp 2023; 11:65. [PMID: 37755538 PMCID: PMC10533449 DOI: 10.1186/s40635-023-00550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Trunk inclination from semirecumbent head-upright to supine-flat positioning reduces driving pressure and increases respiratory system compliance in patients with acute respiratory distress syndrome (ARDS). These effects are associated with an improved ventilatory ratio and reduction in the partial pressure of carbon dioxide (PaCO2). However, these physiological effects have not been completely studied, and their mechanisms have not yet been elucidated. Therefore, this study aimed to evaluate the effects of a change in trunk inclination from semirecumbent (45°) to supine-flat (10°) on physiological dead space and ventilation distribution in different lung regions. RESULTS Twenty-two ARDS patients on pressure-controlled ventilation underwent three 60-min steps in which trunk inclination was changed from 45° (baseline) to 10° (intervention) and back to 45° (control) in the last step. Tunk inclination from a semirecumbent (45°) to a supine-flat (10°) position resulted in a higher tidal volume [371 (± 76) vs. 433 (± 84) mL (P < 0.001)] and respiratory system compliance [34 (± 10) to 41 (± 12) mL/cmH2O (P < 0.001)]. The CO2 exhaled per minute improved from 191 mL/min (± 34) to 227 mL/min (± 38) (P < 0.001). Accordingly, Bohr's dead space ratio decreased from 0.49 (± 0.07) to 0.41 (± 0.06) (p < 0.001), and PaCO2 decreased from 43 (± 5) to 36 (± 4) mmHg (p < 0.001). In addition, the impedance ratio, which divides the ventilation activity of the ventral region by the dorsal region ventilation activity in tidal images, dropped from 1.27 (0.83-1.78) to 0.86 (0.51-1.33) (p < 0.001). These results, calculated from functional EIT images, indicated further ventilation activity in the dorsal lung regions. These effects rapidly reversed once the patient was repositioned at 45°. CONCLUSIONS A change in trunk inclination from a semirecumbent (45 degrees) to a supine-flat position (10 degrees) improved Bohr's dead space ratio and reduced PaCO2 in patients with ARDS. This effect is associated with an increase in tidal volume and respiratory system compliance, along with further favourable impedance ventilation distribution toward the dorsal lung regions. This study highlights the importance of considering trunk inclination as a modifiable determinant of physiological parameters. The angle of trunk inclination is essential information that must be reported in ARDS patients.
Collapse
Affiliation(s)
- Martín H Benites
- Unidad de Pacientes Críticos, Clínica Las Condes, Estoril 450, Santiago, Chile
- Departamento de Epidemiología y Estudios en Salud, Magíster en Epidemiología, Universidad de los Andes, Monseñor Álvaro del Portillo 12455, Santiago, Chile
- Estudiante del Programa Doctorado en Ciencias Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, Chile
- Facultad de Medicina, Escuela de Medicina, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Santiago, Chile
| | - David Torres
- Departamento de Epidemiología y Estudios en Salud, Magíster en Epidemiología, Universidad de los Andes, Monseñor Álvaro del Portillo 12455, Santiago, Chile
| | - Fabian Poblete
- Unidad de Pacientes Críticos, Clínica Las Condes, Estoril 450, Santiago, Chile
| | - Francisco Labbe
- Unidad de Pacientes Críticos, Clínica Las Condes, Estoril 450, Santiago, Chile
| | - María C Bachmann
- Estudiante del Programa Doctorado en Ciencias Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, Chile
- Departamento de Medicina Intensiva, Hospital Clínico Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, Chile
| | - Tomas E Regueira
- Unidad de Pacientes Críticos, Clínica Santa María, Bellavista 415, Santiago, Chile
| | - Leonardo Soto
- Facultad de Medicina, Escuela de Medicina, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Santiago, Chile
- Unidad de Pacientes Críticos, Clínica Santa María, Bellavista 415, Santiago, Chile
| | - Andrés Ferre
- Unidad de Pacientes Críticos, Clínica Las Condes, Estoril 450, Santiago, Chile
- Facultad de Medicina, Escuela de Medicina, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Santiago, Chile
| | - Jorge Dreyse
- Unidad de Pacientes Críticos, Clínica Las Condes, Estoril 450, Santiago, Chile
| | - Jaime Retamal
- Departamento de Medicina Intensiva, Hospital Clínico Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, Chile.
| |
Collapse
|
15
|
Wise R, Rodseth R, Párraga-Ros E, Latorre R, López Albors O, Correa-Martín L, M. Sánchez-Margallo F, Eugenia Candanosa-Aranda I, Poelaert J, Castellanos G, L. N. G. Malbrain M. The pathophysiological impact of intra-abdominal hypertension in pigs. PLoS One 2023; 18:e0290451. [PMID: 37639437 PMCID: PMC10461824 DOI: 10.1371/journal.pone.0290451] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 08/08/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Intra-abdominal hypertension and abdominal compartment syndrome are common with clinically significant consequences. We investigated the pathophysiological effects of raised IAP as part of a more extensive exploratory animal study. The study design included both pneumoperitoneum and mechanical intestinal obstruction models. METHODS Forty-nine female swine were divided into six groups: a control group (Cr; n = 5), three pneumoperitoneum groups with IAPs of 20mmHg (Pn20; n = 10), 30mmHg (Pn30; n = 10), 40mmHg (Pn40; n = 10), and two mechanical intestinal occlusion groups with IAPs of 20mmHg (MIO20; n = 9) and 30mmHg (MIO30; n = 5). RESULTS There were significant changes (p<0.05) noted in all organ systems, most notably systolic blood pressure (SBP) (p<0.001), cardiac index (CI) (p = 0.003), stroke volume index (SVI) (p<0.001), mean pulmonary airway pressure (MPP) (p<0.001), compliance (p<0.001), pO2 (p = 0.003), bicarbonate (p = 0.041), hemoglobin (p = 0.012), lipase (p = 0.041), total bilirubin (p = 0.041), gastric pH (p<0.001), calculated glomerular filtration rate (GFR) (p<0.001), and urine output (p<0.001). SVV increased progressively as the IAP increased with no obvious changes in intravascular volume status. There were no significant differences between the models regarding their impact on cardiovascular, respiratory, renal and gastrointestinal systems. However, significant differences were noted between the two models at 30mmHg, with MIO30 showing worse metabolic and hematological parameters, and Pn30 and Pn40 showing a more rapid rise in creatinine. CONCLUSIONS This study identified and quantified the impact of intra-abdominal hypertension at different pressures on several organ systems and highlighted the significance of even short-lived elevations. Two models of intra-abdominal pressure were used, with a mechanical obstruction model showing more rapid changes in metabolic and haematological changes. These may represent different underlying cellular and vascular pathophysiological processes, but this remains unclear.
Collapse
Affiliation(s)
- Robert Wise
- Faculty Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Discipline of Anaesthesiology, and Critical Care, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Adult Intensive Care Unit, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, United Kingdom
| | - Reitze Rodseth
- Discipline of Anaesthesiology, and Critical Care, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Ester Párraga-Ros
- Department of Anatomy and Comparative Pathology, Veterinary Faculty, University of Murcia, Murcia, Spain
| | - Rafael Latorre
- Department of Anatomy and Comparative Pathology, Veterinary Faculty, University of Murcia, Murcia, Spain
| | - Octavio López Albors
- Department of Anatomy and Comparative Pathology, Veterinary Faculty, University of Murcia, Murcia, Spain
| | - Laura Correa-Martín
- Laparoscopy Department Jesus Uson Minimally Invasive Surgery Centre, Caceres, Spain
| | | | - Irma Eugenia Candanosa-Aranda
- Highlands Teaching and Research Farm, Faculty of Veterinary Medicine, National Autonomous University of Mexico, Queretaro. Mexico
| | - Jan Poelaert
- Faculty Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Gregorio Castellanos
- Department of General Surgery, Virgen de la Arrixaca General University Hospital, Murcia, Spain
| | - Manu L. N. G. Malbrain
- First Department of Anaesthesiology and Intensive Care Medicine, Medical University of Lublin, Lublin, Poland
- Medical Director (CMO), Medical Data Management, Medaman, Geel, Belgium
- International Fluid Academy, Lovenjoel, Belgium
| |
Collapse
|
16
|
Jena A, Singh AK, Kochhar R. Intra-abdominal hypertension and abdominal compartment syndrome in acute pancreatitis. Indian J Gastroenterol 2023; 42:455-466. [PMID: 37418050 DOI: 10.1007/s12664-023-01407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/26/2023] [Indexed: 07/08/2023]
Abstract
Intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) are underrecognized entities in patients of acute pancreatitis (AP). IAH develops in 30% to 60% and ACS in 15% to 30% of all AP patients and they are markers of severe disease with high morbidity and mortality. The detrimental effect of increased IAP has been recognized in several organ systems, including the central nervous system, cardiovascular, respiratory, renal and gastrointestinal systems. The pathophysiology of IAH/ACS development in patients with AP is multifactorial. Pathogenetic mechanisms include over-zealous fluid management, visceral edema, ileus, peripancreatic fluid collections, ascites and retroperitoneal edema. Laboratory and imaging markers are neither sensitive nor specific enough to detect IAH/ACS and intra-abdominal pressure (IAP) monitoring is vital for early diagnosis and the management of patients of AP with IAH/ACS. The treatment of IAH/ACS requires a multi-modality approach with both medical and surgical attention. Medical management consists of nasogastric/rectal decompression, prokinetics, fluid management and diuretics or hemodialysis. If conservative management is not effective, percutaneous drainage of fluid collection or ascites is necessary. Despite medical management, if IAP worsens, surgical decompression is warranted. The review discusses the relevance of IAH/ACS in patients of AP and its management.
Collapse
Affiliation(s)
- Anuraag Jena
- Department of Gastroenterology, Topiwala National Medical College and B Y L Nair Hospital, Mumbai 400 008, India
| | - Anupam Kumar Singh
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh 160 012, India
| | - Rakesh Kochhar
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh 160 012, India.
| |
Collapse
|
17
|
Tejiram S, Tranchina SP, Travis TE, Shupp JW. The First 24 Hours: Burn Shock Resuscitation and Early Complications. Surg Clin North Am 2023; 103:403-413. [PMID: 37149377 DOI: 10.1016/j.suc.2023.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Resuscitation is required for the management of patients with severe thermal injury. Some of the initial pathophysiologic events following burn injury include an exaggerated inflammatory state, injury to the endothelium, and increased capillary permeability, which all culminate in shock. Understanding these processes is critical to the effective management of patients with burn injuries. Formulas predicting fluid requirements during burn resuscitation have evolved over the past century in response to clinical experience and research efforts. Modern resuscitation features individualized fluid titration and monitoring along with colloid-based adjuncts. Despite these developments, complications from over-resuscitation still occur.
Collapse
Affiliation(s)
- Shawn Tejiram
- The Burn Center, MedStar Washington Hospital Center, 110 Irving Street, Northwest Suite 3B-55, Washington, DC 20010, USA; Department of Surgery, Georgetown University School of Medicine, 3900 Reservoir Road NW, Washington, DC 20007, USA
| | - Stephen P Tranchina
- Georgetown University School, 3900 Reservoir Road NW, Washington, DC 20007, USA
| | - Taryn E Travis
- The Burn Center, MedStar Washington Hospital Center, 110 Irving Street, Northwest Suite 3B-55, Washington, DC 20010, USA; Department of Surgery, Georgetown University School of Medicine, 3900 Reservoir Road NW, Washington, DC 20007, USA; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, 3900 Reservoir Road NW, Washington, DC 20007, USA
| | - Jeffrey W Shupp
- The Burn Center, MedStar Washington Hospital Center, 110 Irving Street, Northwest Suite 3B-55, Washington, DC 20010, USA; Department of Surgery, Georgetown University School of Medicine, 3900 Reservoir Road NW, Washington, DC 20007, USA; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, 3900 Reservoir Road NW, Washington, DC 20007, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 37th and O Street, Northwest, Washington, DC 20057, USA.
| |
Collapse
|
18
|
Depauw P, van Eijs F, Wensing C, Geuze R, van Santbrink H, Malbrain M, De Waele JJ. The spine intra-abdominal pressure (SIAP) trial. A prospective, observational, single arm, monocenter study looking at the evolutions of the IAP prior, during and after spine surgery. J Clin Neurosci 2023; 113:93-98. [PMID: 37229796 DOI: 10.1016/j.jocn.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND AIMS Both anaesthesiologists and spine surgeons consider the intra-abdominal pressure (IAP) as an important peri-operative factor affected by patient positioning. We assessed the change in IAP caused by using a thoraco pelvic support (inflatable prone support, IPS) with the subject under general anesthesia. The IAP was measured before, during and immediately after surgery. METHODS The Spine Intra-Abdominal Pressure study (SIAP trial) is a prospective, single-arm, monocenter, observational study looking at changes in IAP prior, during and after spine surgery. The objective is to assess the change in IAP, measured via an indwelling urinary catheter, using the inflatable prone support (IPS) device during prone positioning of patients in spinal surgery. RESULTS Forty (40) subjects requiring elective lumbar spine surgery in prone position were enrolled after providing informed consent. The inflation of the IPS results in a significant decrease of IAP (from a median of 9.2 mmHg to 6.46 mmHg (p < 0.001)) in patients undergoing spine surgery in prone position. This decrease in IAP was maintained throughout the procedure despite the discontinuation of muscle relaxants. No serious adverse events or unexpected adverse events occurred. CONCLUSION The use of the thoraco-pelvic support IPS device was able to significantly lower the IAP during spine surgery.
Collapse
Affiliation(s)
- Pram Depauw
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands.
| | - F van Eijs
- Department of Anaesthesiology, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| | - C Wensing
- Device Clinical Research B.V., The Netherlands
| | - R Geuze
- Department of Orthopedic Surgery, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| | - H van Santbrink
- Department of Neurosurgery, University Hospital Maastricht and Zuyderland Hospital Heerlen, The Netherlands; CAPHRI: School for Public Health and Primary Care, University Maastricht, The Netherlands
| | - M Malbrain
- First Department of Anaesthesiology and Intensive Therapy, Medical University Lublin, Lublin, Poland
| | - J J De Waele
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
Justo I, Marcacuzco A, Caso Ó, Manrique A, García-Sesma Á, Calvo J, Fernández C, Vega V, Rivas C, Jiménez-Romero C. Modified Chevrel technique for abdominal closure in critically ill patients with abdominal hypertension and limited options for closure. Hernia 2023; 27:677-685. [PMID: 37138139 DOI: 10.1007/s10029-023-02797-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Abdominal compartment syndrome is a potentially life-threatening condition seen in critically ill patients, and most often caused by acute pancreatitis, postoperative abdominal vascular thrombosis or mesenteric ischemia. A decompressive laparotomy is sometimes required, often resulting in hernias, and subsequent definitive wall closure is challenging. AIM This study aims to describe short term results after a modified Chevrel technique for midline laparotomies in patients witch abdominal hypertension. MATERIALS AND METHODS We performed a modified Chevrel as an abdominal closure technique in 9 patients between January 2016 and January 2022. All patients presented varying degrees of abdominal hypertension. RESULTS Nine patients were treated with new technique (6 male and 3 female), all of whom had conditions that precluded unfolding the contralateral side as a means for closure. The reasons for this were diverse, including presence of ileostomies, intraabdominal drainages, Kher tubes or an inverted T scar from previous transplant. The use of mesh was initially dismissed in 8 of the patients (88,9%) because they required subsequent abdominal surgeries or active infection. None of the patients developed a hernia, although two died 6 months after the procedure. Only one patient developed bulging. A decrease in intrabdominal pressure was achieved in all patients. CONCLUSION The modified Chevrel technique can be used as a closure option for midline laparotomies in cases where the entire abdominal wall cannot be used.
Collapse
Affiliation(s)
- I Justo
- Unit of HPB Surgery and Abdominal Organ Transplantation, Department of Surgery, Faculty of Medicine, Instituto de Investigación (imas12), Complutense University, Madrid, Spain.
| | - A Marcacuzco
- Unit of HPB Surgery and Abdominal Organ Transplantation, Department of Surgery, Faculty of Medicine, Instituto de Investigación (imas12), Complutense University, Madrid, Spain
| | - Ó Caso
- Unit of HPB Surgery and Abdominal Organ Transplantation, Department of Surgery, Faculty of Medicine, Instituto de Investigación (imas12), Complutense University, Madrid, Spain
| | - A Manrique
- Unit of HPB Surgery and Abdominal Organ Transplantation, Department of Surgery, Faculty of Medicine, Instituto de Investigación (imas12), Complutense University, Madrid, Spain
| | - Á García-Sesma
- Unit of HPB Surgery and Abdominal Organ Transplantation, Department of Surgery, Faculty of Medicine, Instituto de Investigación (imas12), Complutense University, Madrid, Spain
| | - J Calvo
- Unit of HPB Surgery and Abdominal Organ Transplantation, Department of Surgery, Faculty of Medicine, Instituto de Investigación (imas12), Complutense University, Madrid, Spain
| | - C Fernández
- Unit of HPB Surgery and Abdominal Organ Transplantation, Department of Surgery, Faculty of Medicine, Instituto de Investigación (imas12), Complutense University, Madrid, Spain
| | - V Vega
- Unit of HPB Surgery and Abdominal Organ Transplantation, Department of Surgery, Faculty of Medicine, Instituto de Investigación (imas12), Complutense University, Madrid, Spain
| | - C Rivas
- Service of Thoracic Surgery and Lung Transplantation, Salamanca University Hospital, Salamanca, Spain
| | - C Jiménez-Romero
- Unit of HPB Surgery and Abdominal Organ Transplantation, Department of Surgery, Faculty of Medicine, Instituto de Investigación (imas12), Complutense University, Madrid, Spain
| |
Collapse
|
20
|
Xiao Y, Xu L. Prevalence and Risk Factors of Enteral Feeding Intolerance in Critically Ill Patients and the Effectiveness of Preventive Treatments: A Prospective Study. SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES 2023; 11:135-142. [PMID: 37252021 PMCID: PMC10211412 DOI: 10.4103/sjmms.sjmms_384_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/02/2023] [Accepted: 03/12/2023] [Indexed: 05/31/2023]
Abstract
Background Feeding intolerance (FI) is a prevalent cause of enteral nutrition (EN) disruption. Factors that can prevent FI are poorly described. Objectives To determine the prevalence and risk factors associated with FI in critically ill patients and the effectiveness of preventive treatments. Patients and Methods This prospective observational study included critically ill patients admitted to the ICU of a general hospital who received EN through a nasogastric or nasointestinal tube from March 2020 to October 2021. Independent sample t-test, repeated measurement analysis of variance, and multivariate analysis were used to explore independent risk factors and the efficacy of preventive treatments. Results The study included 200 critically ill patients (mean age: 59.1 ± 17.8 years), of whom 131 were male. Most patients (58.50%) developed FI after a median EN duration of 2 days. The independent risk factors for FI were fasting for >3 days, high APACHE II score, and acute gastrointestinal injury (AGI) grade I before EN (P < 0.05). During EN, whole protein was found to be an independent preventive treatment that significantly decreased FI (P < 0.05), while before EN, early use of enema and gastric motility drugs in patients with abdominal distention/constipation significantly decreased FI (for both, P < 0.05). The preventive treatment group had significantly higher intake of the nutrient solution and significantly shorter invasive mechanical ventilation duration than the without preventive treatment group (for both, P < 0.05). Conclusion In ICU patients receiving nasogastric or nasointestinal tube feeding, FI was frequent, occurred early, and was more frequent in patients with fasting >3 days, a high APACHE II score, and an AGI grade before EN. Preventive treatments can reduce FI prevalence and result in patients consuming more nutrient solutions and having shorter invasive mechanical ventilation duration. Chinese Clinical Trial Registry Registration no ChiCTR-DOD-16008532.
Collapse
Affiliation(s)
- Yajuan Xiao
- School of Smart Healthcare Industry, Chongqing City Management College, No. 151, South 2 Road, University Town, Gao Xin District, Chongqing 401331, China
| | - Lei Xu
- Anesthesia and Operating Room, The 940 Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, No. 333 Nan Bing He Street, Qi Li He District, Lan Zhou 730000, China
| |
Collapse
|
21
|
Dabrowski W, Rola P, Malbrain MLNG. Intra-abdominal pressure monitoring in cardiac surgery: is this the canary in the coalmine for kidney injury? J Clin Monit Comput 2023; 37:351-358. [PMID: 36550345 PMCID: PMC10068659 DOI: 10.1007/s10877-022-00933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/11/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Wojciech Dabrowski
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
| | - Philippe Rola
- Intensive Care Unit, Santa Cabrini Hospital, CEMTL, Montreal, Canada
| | - Manu L N G Malbrain
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland.
- Medical Data Management, Medaman, Geel, Belgium.
- International Fluid Academy, Lovenjoel, Belgium.
| |
Collapse
|
22
|
Polyzogopoulou E, Amoiridou P, Abraham TP, Ventoulis I. Acute liver injury in COVID-19 patients hospitalized in the intensive care unit: Narrative review. World J Gastroenterol 2022; 28:6662-6688. [PMID: 36620339 PMCID: PMC9813941 DOI: 10.3748/wjg.v28.i47.6662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 12/19/2022] Open
Abstract
In recent years, humanity has been confronted with a global pandemic due to coronavirus disease 2019 (COVID-19), which has caused an unprecedented health and economic crisis worldwide. Apart from the respiratory symptoms, which are considered the principal manifestations of COVID-19, it has been recognized that COVID-19 constitutes a systemic inflammatory process affecting multiple organ systems. Across the spectrum of organ involvement in COVID-19, acute liver injury (ALI) has been gradually gaining increasing attention by the international scientific community. COVID-19 associated liver impairment can affect a considerable proportion of COVID-19 patients and seems to correlate with the severity of the disease course. Indeed, COVID-19 patients hospitalized in the intensive care unit (ICU) run a greater risk of developing ALI due to the severity of their clinical condition and in the context of multi-organ failure. The putative pathophysiological mechanisms of COVID-19 induced ALI in ICU patients remain poorly understood and appear to be multifactorial in nature. Several theories have been proposed to explain the occurrence of ALI in the ICU setting, such as hypoperfusion and ischemia due to hemodynamic instability, passive liver congestion as a result of congestive heart failure, ischemia-reperfusion injury, hypoxia due to respiratory failure, mechanical ventilation itself, sepsis and septic shock, cytokine storm, endotheliitis with concomitant coagulopathy, drug-induced liver injury, parenteral nutrition and direct cytopathic viral effect. It should be noted that no specific therapy for COVID-19 induced ALI exists. Therefore, the therapeutic approach lies in preventive measures and is exclusively supportive once ALI ensues. The aim of the current review is to scrutinize the existing evidence on COVID-19 associated ALI in ICU patients, explore its clinical implications, shed light on the underlying pathophysiological mechanisms and propose potential therapeutic approaches. Ongoing research on the particular scientific field will further elucidate the pathophysiology behind ALI and address unresolved issues, in the hope of mitigating the tremendous health consequences imposed by COVID-19 on ICU patients.
Collapse
Affiliation(s)
- Effie Polyzogopoulou
- Department of Emergency Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens 12462, Greece
| | - Pinelopi Amoiridou
- Department of Intensive Care, AHEPA University Hospital, Thessaloniki 54621, Greece
| | - Theodore P Abraham
- Hypertrophic Cardiomyopathy Center of Excellence, University of California, San Francisco, CA 94117, United States
| | - Ioannis Ventoulis
- Department of Occupational Therapy, University of Western Macedonia, Ptolemaida 50200, Greece
| |
Collapse
|
23
|
Battaglini D, Pelosi P, Robba C. Ten rules for optimizing ventilatory settings and targets in post-cardiac arrest patients. Crit Care 2022; 26:390. [PMID: 36527126 PMCID: PMC9758928 DOI: 10.1186/s13054-022-04268-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Cardiac arrest (CA) is a major cause of morbidity and mortality frequently associated with neurological and systemic involvement. Supportive therapeutic strategies such as mechanical ventilation, hemodynamic settings, and temperature management have been implemented in the last decade in post-CA patients, aiming at protecting both the brain and the lungs and preventing systemic complications. A lung-protective ventilator strategy is currently the standard of care among critically ill patients since it demonstrated beneficial effects on mortality, ventilator-free days, and other clinical outcomes. The role of protective and personalized mechanical ventilation setting in patients without acute respiratory distress syndrome and after CA is becoming more evident. The individual effect of different parameters of lung-protective ventilation, including mechanical power as well as the optimal oxygen and carbon dioxide targets, on clinical outcomes is a matter of debate in post-CA patients. The management of hemodynamics and temperature in post-CA patients represents critical steps for obtaining clinical improvement. The aim of this review is to summarize and discuss current evidence on how to optimize mechanical ventilation in post-CA patients. We will provide ten tips and key insights to apply a lung-protective ventilator strategy in post-CA patients, considering the interplay between the lungs and other systems and organs, including the brain.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy.
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.
| |
Collapse
|
24
|
Linassi F, Campagnolo M, Busato E, Ortolani V, Peta M. Prolonged prone position in pregnant woman with COVID-19 pneumonia. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2022. [PMCID: PMC9004615 DOI: 10.1186/s44158-022-00044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The manuscript describes a case report of 2 prolonged prone position cycles (72 h each) of a coronavirus disease 2019 pneumonia in an intubated pregnant woman (at 22 weeks of gestational age), being successfully discharged from intensive care unit after 20 days. There were no signs of fetal sufferance at daily obstetric monitoring during prone position, and the fetus was born fully vital and without consequences. At our knowledge, this is the first case of prolonged prone position in a pregnant woman, and we feel that our manuscript could be a valuable contribution to the literature and help intensivists in providing intensive care in these patients, confirming that prone position seems to be a valid therapeutic choice, limiting maternal and fetal hypoxia, and reducing their morbidity, even if the oculate risk/benefit should be performed. Further studies are however necessary to increase the knowledge and the good management of COVID-19 in pregnancy.
Collapse
|
25
|
Selickman J, Marini JJ. Chest wall loading in the ICU: pushes, weights, and positions. Ann Intensive Care 2022; 12:103. [PMID: 36346532 PMCID: PMC9640797 DOI: 10.1186/s13613-022-01076-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
Clinicians monitor mechanical ventilatory support using airway pressures—primarily the plateau and driving pressure, which are considered by many to determine the safety of the applied tidal volume. These airway pressures are influenced not only by the ventilator prescription, but also by the mechanical properties of the respiratory system, which consists of the series-coupled lung and chest wall. Actively limiting chest wall expansion through external compression of the rib cage or abdomen is seldom performed in the ICU. Recent literature describing the respiratory mechanics of patients with late-stage, unresolving, ARDS, however, has raised awareness of the potential diagnostic (and perhaps therapeutic) value of this unfamiliar and somewhat counterintuitive practice. In these patients, interventions that reduce resting lung volume, such as loading the chest wall through application of external weights or manual pressure, or placing the torso in a more horizontal position, have unexpectedly improved tidal compliance of the lung and integrated respiratory system by reducing previously undetected end-tidal hyperinflation. In this interpretive review, we first describe underappreciated lung and chest wall interactions that are clinically relevant to both normal individuals and to the acutely ill who receive ventilatory support. We then apply these physiologic principles, in addition to published clinical observation, to illustrate the utility of chest wall modification for the purposes of detecting end-tidal hyperinflation in everyday practice.
Collapse
Affiliation(s)
- John Selickman
- grid.17635.360000000419368657Department of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis, MN USA ,grid.415858.50000 0001 0087 6510Department of Critical Care Medicine, Regions Hospital, MS 11203B, 640 Jackson St., St. Paul, MN 55101-2595 USA
| | - John J. Marini
- grid.17635.360000000419368657Department of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis, MN USA ,grid.415858.50000 0001 0087 6510Department of Critical Care Medicine, Regions Hospital, MS 11203B, 640 Jackson St., St. Paul, MN 55101-2595 USA
| |
Collapse
|
26
|
Braun G, Schäfer K. Nichtinvasive intraabdominelle Druckmessung. Med Klin Intensivmed Notfmed 2022; 117:658-666. [DOI: 10.1007/s00063-022-00958-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/06/2022]
|
27
|
Malbrain MLNG, De Keulenaer BL, Khanna AK. Continuous intra-abdominal pressure: is it ready for prime time? Intensive Care Med 2022; 48:1501-1504. [PMID: 35925322 PMCID: PMC9468118 DOI: 10.1007/s00134-022-06780-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/05/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Manu L N G Malbrain
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland.
- Medical Data Management, Medaman, Geel, Belgium.
- International Fluid Academy, Lovenjoel, Belgium.
| | - Bart L De Keulenaer
- Intensive Care, Fiona Stanley Hospital, Murdoch, WA, Australia
- School of Surgery, The University of Western Australia, Perth, WA, Australia
- Murdoch Hospital Intensive Care Unit, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Ashish K Khanna
- Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
- Outcomes Research Consortium, Cleveland, OH, USA
- Perioperative Outcomes and Informatics Collaborative (POIC), Winston-Salem, NC, USA
| |
Collapse
|
28
|
Lesão renal aguda em pacientes críticos em ventilação mecânica com pressão positiva. ACTA PAUL ENFERM 2022. [DOI: 10.37689/acta-ape/2022ao0326345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
29
|
Juneja D, Kataria S. Capillary leak syndrome: A rare cause of acute respiratory distress syndrome. World J Clin Cases 2022; 10:4324-4326. [PMID: 35665129 PMCID: PMC9131229 DOI: 10.12998/wjcc.v10.i13.4324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Capillary leak syndrome (CLS) is a rare clinical syndrome associated with significant morbidity and mortality. Intensive care and supportive therapy constitute the mainstay of the treatment, along with judicious use of crystalloids and colloids such as dextran and starch during the leak phase. The advantages of proning, steroids, and intravenous immunoglobins are worth contemplating in patients with such a presentation. Extracorporeal membrane oxygenation appears to be an excellent strategy to surmount the impediments of the leak and post leak phase of CLS, especially in patients with severe or refractory hypoxemia.
Collapse
Affiliation(s)
- Deven Juneja
- Department ofCritical Care Medicine, Max Super Speciality Hospital, Delhi 110017, India
| | - Sahil Kataria
- Department ofCritical Care Medicine, Max Super Speciality Hospital, Delhi 110017, India
| |
Collapse
|
30
|
Silva PL, Ball L, Rocco PRM, Pelosi P. Physiological and Pathophysiological Consequences of Mechanical Ventilation. Semin Respir Crit Care Med 2022; 43:321-334. [PMID: 35439832 DOI: 10.1055/s-0042-1744447] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mechanical ventilation is a life-support system used to ensure blood gas exchange and to assist the respiratory muscles in ventilating the lung during the acute phase of lung disease or following surgery. Positive-pressure mechanical ventilation differs considerably from normal physiologic breathing. This may lead to several negative physiological consequences, both on the lungs and on peripheral organs. First, hemodynamic changes can affect cardiovascular performance, cerebral perfusion pressure (CPP), and drainage of renal veins. Second, the negative effect of mechanical ventilation (compression stress) on the alveolar-capillary membrane and extracellular matrix may cause local and systemic inflammation, promoting lung and peripheral-organ injury. Third, intra-abdominal hypertension may further impair lung and peripheral-organ function during controlled and assisted ventilation. Mechanical ventilation should be optimized and personalized in each patient according to individual clinical needs. Multiple parameters must be adjusted appropriately to minimize ventilator-induced lung injury (VILI), including: inspiratory stress (the respiratory system inspiratory plateau pressure); dynamic strain (the ratio between tidal volume and the end-expiratory lung volume, or inspiratory capacity); static strain (the end-expiratory lung volume determined by positive end-expiratory pressure [PEEP]); driving pressure (the difference between the respiratory system inspiratory plateau pressure and PEEP); and mechanical power (the amount of mechanical energy imparted as a function of respiratory rate). More recently, patient self-inflicted lung injury (P-SILI) has been proposed as a potential mechanism promoting VILI. In the present chapter, we will discuss the physiological and pathophysiological consequences of mechanical ventilation and how to personalize mechanical ventilation parameters.
Collapse
Affiliation(s)
- Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.,Department of Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.,Department of Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| |
Collapse
|
31
|
Thind GS, Mireles-Cabodevila E, Chatburn RL, Duggal A. Evaluation of Esophageal Pressures in Mechanically Ventilated Obese Patients. Respir Care 2022; 67:184-190. [PMID: 34848545 PMCID: PMC9993938 DOI: 10.4187/respcare.08978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Patients who are obese are at risk for developing high pleural pressure, which leads to alveolar collapse. Esophageal pressure (Pes) can be used as a surrogate for pleural pressure and can be used to guide PEEP titration. Although recent clinical data on Pes-guided PEEP has shown no benefit, its utility in the subgroup of patients who are obese has not been studied. METHODS The Medical Information Mart for Intensive Care-III critical care database was queried to gather data on Pes in subjects on mechanical ventilation. Pes in obese and non-obese groups were compared, and a subgroup analysis was performed in subjects with class III obesity. Thereafter, empirical and Pes-guided PEEP protocols of a recently published trial were theoretically applied to the obese group and ventilator outcomes were compared. RESULTS A total of 105 subjects were included in the study. The average end-expiratory Pes in the obese group was 18.8 ± 5 cm H2O compared with 16.8 ± 4.8 cm H2O in the non-obese group (P < .05). If Pes-guided PEEP protocol was to be applied to those in the obese group, then the PEEP setting would be significantly higher than empirical PEEP setting. These findings were accentuated in the subgroup of subjects with class III obesity. CONCLUSIONS Individualization of PEEP with Pes guidance may have a role in patients who are obese.
Collapse
Affiliation(s)
- Guramrinder Singh Thind
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio.
| | | | - Robert L Chatburn
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Abhijit Duggal
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
32
|
Zhao Z, Guo Z, Yin Z, Qiu Y, Zhou B. Gut Microbiota Was Involved in the Process of Liver Injury During Intra-Abdominal Hypertension. Front Physiol 2021; 12:790182. [PMID: 34955896 PMCID: PMC8703017 DOI: 10.3389/fphys.2021.790182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/12/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Intestinal damage caused by intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) can lead to the ectopic gut microbiota, which can contribute to liver injury via portal veins. Therefore, it is speculated that gut microbiota disorder caused by IAH/ACS may result in liver injury. The relationship between gut microbiota and IAH/ACS-related liver injury was investigated in this study. Methods: A model of IAH was established in rats, and 16S rRNA sequencing was analyzed for gut microbiota in the feces of rats. The elimination of gut microbiota was completed by antibiotics gavage, and fecal microbiota transplantation (FMT) was used to change the composition of gut microbiota in rats. Results: In addition to the traditional cause of liver blood vessel compression, liver injury caused by IAH was also associated with gut microbiota dysbiosis. Gut microbiota clearance can relieve liver injury caused by IAH, while FMT from IAH-intervened rats can aggravate IAH-related liver injury. Conclusion: The gut microbiota was one of the most important factors contributing to the IAH-related liver injury, and the JNK/p38 signaling pathway was activated in this process.
Collapse
Affiliation(s)
- Zeyu Zhao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhengchang Guo
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhengliang Yin
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue Qiu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bo Zhou
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
33
|
Regli A, Ahmadi-Noorbakhsh S, Musk GC, Reese DJ, Herrmann P, Firth MJ, Pillow JJ. Computed tomographic assessment of lung aeration at different positive end-expiratory pressures in a porcine model of intra-abdominal hypertension and lung injury. Intensive Care Med Exp 2021; 9:52. [PMID: 34608559 PMCID: PMC8489364 DOI: 10.1186/s40635-021-00416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Intra-abdominal hypertension (IAH) is common in critically ill patients and is associated with increased morbidity and mortality. High positive end-expiratory pressures (PEEP) can reverse lung volume and oxygenation decline caused by IAH, but its impact on alveolar overdistension is less clear. We aimed to find a PEEP range that would be high enough to reduce atelectasis, while low enough to minimize alveolar overdistention in the presence of IAH and lung injury. METHODS Five anesthetized pigs received standardized anesthesia and mechanical ventilation. Peritoneal insufflation of air was used to generate intra-abdominal pressure of 27 cmH2O. Lung injury was created by intravenous oleic acid. PEEP levels of 5, 12, 17, 22, and 27 cmH2O were applied. We performed computed tomography and measured arterial oxygen levels, respiratory mechanics, and cardiac output 5 min after each new PEEP level. The proportion of overdistended, normally aerated, poorly aerated, and non-aerated atelectatic lung tissue was calculated based on Hounsfield units. RESULTS PEEP decreased the proportion of poorly aerated and atelectatic lung, while increasing normally aerated lung. Overdistension increased with each incremental increase in applied PEEP. "Best PEEP" (respiratory mechanics or oxygenation) was higher than the "optimal CT inflation PEEP range" (difference between lower inflection points of atelectatic and overdistended lung) in healthy and injured lungs. CONCLUSIONS Our findings in a large animal model suggest that titrating a PEEP to respiratory mechanics or oxygenation in the presence of IAH is associated with increased alveolar overdistension.
Collapse
Affiliation(s)
- Adrian Regli
- Department of Intensive Care, Fiona Stanley Hospital, Murdoch Drive, Murdoch, WA, 6150, Australia.
- Medical School, Division of Emergency Medicine, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia.
- Medical School, The University of Notre Dame Australia, 19 Mouat Street, Fremantle, 6959, Australia.
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia.
| | - Siavash Ahmadi-Noorbakhsh
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia
| | - Gabrielle Christine Musk
- Animal Care Services, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia
- School of Veterinary and Life Sciences, Murdoch University, Nyarrie Drive, Murdoch, 6150, Australia
| | - David Joseph Reese
- VetCT Consultants in Telemedicine PTY LTD, 185-187 High Street, Fremantle, 6160, Australia
| | - Peter Herrmann
- Department of Anaesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Martin Joseph Firth
- Centre for Applied Statistics, Department of Mathematics and Statistics, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia
| | - J Jane Pillow
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia
| |
Collapse
|
34
|
Pelosi P, Ball L, Barbas CSV, Bellomo R, Burns KEA, Einav S, Gattinoni L, Laffey JG, Marini JJ, Myatra SN, Schultz MJ, Teboul JL, Rocco PRM. Personalized mechanical ventilation in acute respiratory distress syndrome. Crit Care 2021; 25:250. [PMID: 34271958 PMCID: PMC8284184 DOI: 10.1186/s13054-021-03686-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 01/22/2023] Open
Abstract
A personalized mechanical ventilation approach for patients with adult respiratory distress syndrome (ARDS) based on lung physiology and morphology, ARDS etiology, lung imaging, and biological phenotypes may improve ventilation practice and outcome. However, additional research is warranted before personalized mechanical ventilation strategies can be applied at the bedside. Ventilatory parameters should be titrated based on close monitoring of targeted physiologic variables and individualized goals. Although low tidal volume (VT) is a standard of care, further individualization of VT may necessitate the evaluation of lung volume reserve (e.g., inspiratory capacity). Low driving pressures provide a target for clinicians to adjust VT and possibly to optimize positive end-expiratory pressure (PEEP), while maintaining plateau pressures below safety thresholds. Esophageal pressure monitoring allows estimation of transpulmonary pressure, but its use requires technical skill and correct physiologic interpretation for clinical application at the bedside. Mechanical power considers ventilatory parameters as a whole in the optimization of ventilation setting, but further studies are necessary to assess its clinical relevance. The identification of recruitability in patients with ARDS is essential to titrate and individualize PEEP. To define gas-exchange targets for individual patients, clinicians should consider issues related to oxygen transport and dead space. In this review, we discuss the rationale for personalized approaches to mechanical ventilation for patients with ARDS, the role of lung imaging, phenotype identification, physiologically based individualized approaches to ventilation, and a future research agenda.
Collapse
Affiliation(s)
- Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy.
- Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa, Viale Benedetto XV 16, Genoa, Italy.
| | - Lorenzo Ball
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa, Viale Benedetto XV 16, Genoa, Italy
| | - Carmen S V Barbas
- Pneumology and Intensive Care Medicine, University of São Paulo, São Paulo, Brazil
- Adult Intensive Care Unit, Albert Einstein Hospital, São Paulo, Brazil
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
- Department of Epidemiology and Preventive Medicine, Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
- Data Analytics Research and Evaluation Centre, The University of Melbourne and Austin Hospital, Melbourne, Australia
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Critical Care, The University of Melbourne, Melbourne, Australia
| | - Karen E A Burns
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Unity Health Toronto-St. Michael's Hospital, Li Ka Shing Knowledge Institute, Toronto, ON, Canada
| | - Sharon Einav
- Intensive Care Unit of the Shaare Zedek Medical Medical Centre, Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Luciano Gattinoni
- Department of Anaesthesiology, Emergency, and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - John G Laffey
- Anaesthesia and Intensive Care Medicine, University Hospital Galway, and School of Medicine, National University of Ireland, Galway, Ireland
| | - John J Marini
- University of Minnesota and Regions Hospital, St. Paul, MN, USA
| | - Sheila N Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Marcus J Schultz
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jean Louis Teboul
- Service de Médecine Intensive-Réanimation, Hôpital Bicêtre, Inserm UMR S_999, AP-HP Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Muders T, Hentze B, Kreyer S, Wodack KH, Leonhardt S, Hedenstierna G, Wrigge H, Putensen C. Measurement of Electrical Impedance Tomography-Based Regional Ventilation Delay for Individualized Titration of End-Expiratory Pressure. J Clin Med 2021; 10:jcm10132933. [PMID: 34208890 PMCID: PMC8267627 DOI: 10.3390/jcm10132933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023] Open
Abstract
RATIONALE Individualized positive end-expiratory pressure (PEEP) titration might be beneficial in preventing tidal recruitment. To detect tidal recruitment by electrical impedance tomography (EIT), the time disparity between the regional ventilation curves (regional ventilation delay inhomogeneity [RVDI]) can be measured during controlled mechanical ventilation when applying a slow inflation of 12 mL/kg of body weight (BW). However, repeated large slow inflations may result in high end-inspiratory pressure (PEI), which might limit the clinical applicability of this method. We hypothesized that PEEP levels that minimize tidal recruitment can also be derived from EIT-based RVDI through the use of reduced slow inflation volumes. METHODS Decremental PEEP trials were performed in 15 lung-injured pigs. The PEEP level that minimized tidal recruitment was estimated from EIT-based RVDI measurement during slow inflations of 12, 9, 7.5, or 6 mL/kg BW. We compared RVDI and PEI values resulting from different slow inflation volumes and estimated individualized PEEP levels. RESULTS RVDI values from slow inflations of 12 and 9 mL/kg BW showed excellent linear correlation (R2 = 0.87, p < 0.001). Correlations decreased for RVDI values from inflations of 7.5 (R2 = 0.68, p < 0.001) and 6 (R2 = 0.42, p < 0.001) mL/kg BW. Individualized PEEP levels estimated from 12 and 9 mL/kg BW were comparable (bias -0.3 cm H2O ± 1.2 cm H2O). Bias and scatter increased with further reduction in slow inflation volumes (for 7.5 mL/kg BW, bias 0 ± 3.2 cm H2O; for 6 mL/kg BW, bias 1.2 ± 4.0 cm H2O). PEI resulting from 9 mL/kg BW inflations were comparable with PEI during regular tidal volumes. CONCLUSIONS PEEP titration to minimize tidal recruitment can be individualized according to EIT-based measurement of the time disparity of regional ventilation courses during slow inflations with low inflation volumes. This sufficiently decreases PEI and may reduce potential clinical risks.
Collapse
Affiliation(s)
- Thomas Muders
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127 Bonn, Germany; (B.H.); (S.K.); (K.H.W.); (C.P.)
- Correspondence:
| | - Benjamin Hentze
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127 Bonn, Germany; (B.H.); (S.K.); (K.H.W.); (C.P.)
| | - Stefan Kreyer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127 Bonn, Germany; (B.H.); (S.K.); (K.H.W.); (C.P.)
| | - Karin Henriette Wodack
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127 Bonn, Germany; (B.H.); (S.K.); (K.H.W.); (C.P.)
| | - Steffen Leonhardt
- Chair for Medical Information Technology, RWTH Aachen University, 52074 Aachen, Germany;
| | - Göran Hedenstierna
- Department of Medical Sciences, Clinical Physiology, Uppsala University, 75185 Uppsala, Sweden;
| | - Hermann Wrigge
- Department of Anesthesiology, Intensive Care and Emergency Medicine, Pain Therapy, Bergmannstrost Hospital Halle, 06112 Halle, Germany;
| | - Christian Putensen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127 Bonn, Germany; (B.H.); (S.K.); (K.H.W.); (C.P.)
| |
Collapse
|
36
|
Strong B, Spoors C, Richardson N, Martin N, Barnes D, El-Muttardi N, Shelley O. Abdominal compartment syndrome in burns patients: Introduction of an evidence-based management guideline and algorithm. J Trauma Acute Care Surg 2021; 90:e146-e154. [PMID: 34016932 DOI: 10.1097/ta.0000000000003131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT Abdominal compartment syndrome is a serious potential complication of burn injury, and carries high morbidity and mortality. Although there are generalised published guidelines on managing the condition, to date no management algorithm has yet been published tailored specifically to the burn injury patient. We set out to examine the literature on the subject in order to produce an evidence based management guideline, with the aim of improving outcomes for these patients. The guideline covers early detection and assessment of the condition as well as optimum medical, surgical and postoperative management. We believe that this guideline provides a much needed benchmark for managing burns patients with raised intra-abdominal pressure, as well as providing a template for further research and improvements in care.
Collapse
Affiliation(s)
- Ben Strong
- From the St Andrews Centre for Plastic Surgery and Burns (B.S., C.S., N.M., D.B., N.E.-M., O.S.), Broomfield Hospital; and Department of Surgery (N.R.), Broomfield Hospital, Chelmsford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
37
|
Leon M, Chavez L, Surani S. Abdominal compartment syndrome among surgical patients. World J Gastrointest Surg 2021; 13:330-339. [PMID: 33968300 PMCID: PMC8069070 DOI: 10.4240/wjgs.v13.i4.330] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/25/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Abdominal compartment syndrome (ACS) develops when organ failure arises secondary to an increase in intraabdominal pressure. The abdominal pressure is determined by multiple factors such as blood pressure, abdominal compliance, and other factors that exert a constant pressure within the abdominal cavity. Several conditions in the critically ill may increase abdominal pressure compromising organ perfusion that may lead to renal and respiratory dysfunction. Among surgical and trauma patients, aggressive fluid resuscitation is the most commonly reported risk factor to develop ACS. Other conditions that have also been identified as risk factors are ascites, hemoperitoneum, bowel distention, and large tumors. All patients with abdominal trauma possess a higher risk of developing intra-abdominal hypertension (IAH). Certain surgical interventions are reported to have a higher risk to develop IAH such as damage control surgery, abdominal aortic aneurysm repair, and liver transplantation among others. Close monitoring of organ function and intra-abdominal pressure (IAP) allows clinicians to diagnose ACS rapidly and intervene with target-specific management to reduce IAP. Surgical decompression followed by temporary abdominal closure should be considered in all patients with signs of organ dysfunction. There is still a great need for more studies to determine the adequate timing for interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Monica Leon
- Department of Medicine, Centro Medico ABC, Ciudad de Mexico 01120, Mexico
| | - Luis Chavez
- Department of Medicine, University of Texas, El Paso, TX 79905, United States
| | - Salim Surani
- Department of Medicine, Texas A&M University, Corpus Christi, TX 78405, United States
| |
Collapse
|
38
|
Intra-abdominal hypertension and abdominal compartment syndrome: a current review. Curr Opin Crit Care 2021; 27:164-168. [PMID: 33480617 DOI: 10.1097/mcc.0000000000000797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Intra-abdominal hypertension (IAH) and its deleterious effects are present in at least one-third of ICU patients. Increased recognition of IAH has led to significant reduction in the incidence of abdominal compartment syndrome (ACS). Many questions remain regarding what therapeutic interventions truly reduce morbidity and mortality associated with IAH/ACS. Recent research sheds new light on the effects of IAH in individual organ systems and unique disease states. This paper will review recent research in IAH/ACS recognition, treatment, and management. RECENT FINDINGS Recent research on IAH/ACS includes an improved understanding of the prevalence of IAH/ACS and confirmation of its independent association with organ failure. Specifically, new research adds clarity to the effects of IAH/ACS on individual organ systems and specific disease states. These results combine to improve the clinical ability to diagnose, monitor, and treat IAH/ACS. SUMMARY There is significant research on the broad impact of IAH/ACS in the ICU setting. Focus on IAH/ACS has gone beyond the purview of intensivists and surgeons to include outstanding work by specialists in multiple sub-specialties. These advances have generated improvements in current treatment algorithms. We review recent IAH/ACS literature and have categorized the most pertinent results into organ system-specific contributions.
Collapse
|
39
|
Regli A, Reintam Blaser A, De Keulenaer B, Starkopf J, Kimball E, Malbrain MLNG, Van Heerden PV, Davis WA, Palermo A, Dabrowski W, Siwicka-Gieroba D, Barud M, Grigoras I, Ristescu AI, Blejusca A, Tamme K, Maddison L, Kirsimägi Ü, Litvin A, Kazlova A, Filatau A, Pracca F, Sosa G, Santos MD, Kirov M, Smetkin A, Ilyina Y, Gilsdorf D, Ordoñez CA, Caicedo Y, Greiffenstein P, Morgan MM, Bodnar Z, Tidrenczel E, Oliveira G, Albuquerque A, Pereira BM. Intra-abdominal hypertension and hypoxic respiratory failure together predict adverse outcome - A sub-analysis of a prospective cohort. J Crit Care 2021; 64:165-172. [PMID: 33906106 DOI: 10.1016/j.jcrc.2021.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE To assess whether the combination of intra-abdominal hypertension (IAH, intra-abdominal pressure ≥ 12 mmHg) and hypoxic respiratory failure (HRF, PaO2/FiO2 ratio < 300 mmHg) in patients receiving invasive ventilation is an independent risk factor for 90- and 28-day mortality as well as ICU- and ventilation-free days. METHODS Mechanically ventilated patients who had blood gas analyses performed and intra-abdominal pressure measured, were included from a prospective cohort. Subgroups were defined by the absence (Group 1) or the presence of either IAH (Group 2) or HRF (Group 3) or both (Group 4). Mixed-effects regression analysis was performed. RESULTS Ninety-day mortality increased from 16% (Group 1, n = 50) to 30% (Group 2, n = 20) and 27% (Group 3, n = 100) to 49% (Group 4, n = 142), log-rank test p < 0.001. The combination of IAH and HRF was associated with increased 90- and 28-day mortality as well as with fewer ICU- and ventilation-free days. The association with 90-day mortality was no longer present after adjustment for independent variables. However, the association with 28-day mortality, ICU- and ventilation-free days persisted after adjusting for independent variables. CONCLUSIONS In our sub-analysis, the combination of IAH and HRF was not independently associated with 90-day mortality but independently increased the odds of 28-day mortality, and reduced the number of ICU- and ventilation-free days.
Collapse
Affiliation(s)
- Adrian Regli
- Department of Intensive Care, Fiona Stanley Hospital, Perth, WA, Australia; Medical School, The Notre Dame University, Fremantle, WA, Australia; Medical School, The University of Western Australia, Perth, WA, Australia.
| | - Annika Reintam Blaser
- Department of Anaesthesiology and Intensive Care, University of Tartu, Tartu, Estonia; Department of Intensive Care Medicine, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | - Bart De Keulenaer
- Department of Intensive Care, Fiona Stanley Hospital, Perth, WA, Australia; School of Surgery, The University of Western Australia, Perth, WA, Australia
| | - Joel Starkopf
- Department of Anaesthesiology and Intensive Care, University of Tartu, Tartu, Estonia; Department of Anaesthesiology and Intensive Care, Tartu University Hospital, Tartu, Estonia
| | - Edward Kimball
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Manu L N G Malbrain
- Faculty of Engineering, Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Brussels, Belgium; International Fluid Academy, Lovenjoel, Belgium
| | | | - Wendy A Davis
- Medical School, The University of Western Australia, Perth, WA, Australia
| | | | - Annamaria Palermo
- Department of Intensive Care, Fiona Stanley Hospital, Perth, WA, Australia
| | - Wojciech Dabrowski
- First Department of Anaesthesiology and Intensive Care, Medical University of Lublin, Lublin, Poland
| | - Dorota Siwicka-Gieroba
- First Department of Anaesthesiology and Intensive Care, Medical University of Lublin, Lublin, Poland
| | - Malgorzata Barud
- First Department of Anaesthesiology and Intensive Care, Medical University of Lublin, Lublin, Poland
| | - Ioana Grigoras
- Grigore T. Popa, University of Medicine and Pharmacy, Iasi, Romania; Regional Institute of Oncology, Iasi, Romania
| | - Anca Irina Ristescu
- Grigore T. Popa, University of Medicine and Pharmacy, Iasi, Romania; Regional Institute of Oncology, Iasi, Romania
| | | | - Kadri Tamme
- Department of Anaesthesiology and Intensive Care, University of Tartu, Tartu, Estonia; Department of Anaesthesiology and Intensive Care, Tartu University Hospital, Tartu, Estonia
| | - Liivi Maddison
- Department of Anaesthesiology and Intensive Care, Tartu University Hospital, Tartu, Estonia
| | - Ülle Kirsimägi
- Department of Surgery, Tartu University Hospital, Tartu, Estonia
| | - Andrey Litvin
- Department of Surgical Disciplines, Immanuel Kant Baltic Federal University, Regional Clinical Hospital, Kaliningrad, Russia
| | - Anastasiya Kazlova
- Department of Intensive Care Medicine, Regional Clinical Hospital, Gomel, Belarus
| | - Aliaksandr Filatau
- Department of Intensive Care Medicine, Regional Clinical Hospital, Gomel, Belarus
| | - Francisco Pracca
- Department of Intensive Care Unit, Clinics University Hospital, UDELAR, Montevideo, Uruguay
| | - Gustavo Sosa
- Department of Intensive Care Unit, Clinics University Hospital, UDELAR, Montevideo, Uruguay
| | - Maicol Dos Santos
- Department of Intensive Care Unit, Clinics University Hospital, UDELAR, Montevideo, Uruguay
| | - Mikhail Kirov
- Department of Anesthesiology and Intensive Care Medicine, Northern State Medical University, Arkhangelsk, Russia
| | - Alexey Smetkin
- Department of Anesthesiology and Intensive Care Medicine, Northern State Medical University, Arkhangelsk, Russia
| | - Yana Ilyina
- Department of Anesthesiology and Intensive Care Medicine, Northern State Medical University, Arkhangelsk, Russia
| | - Daniel Gilsdorf
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Carlos A Ordoñez
- Division of Trauma and Acute Care Surgery, Department of Surgery, Fundación Valle del Lili - Universidad del Valle, Cali, Colombia
| | - Yaset Caicedo
- Centro de Investigaciones Clínicas (CIC), Fundacion Valle del Lili, Cali, Colombia
| | | | - Margaret M Morgan
- Louisiana State University Health Sciences Center, New Orleans, United States; UC Health Memorial Hospital Central, Colorado Springs, California, United States
| | - Zsolt Bodnar
- University Hospital of Torrevieja, Torrevieja, Spain; Letterkenny University Hospital, Letterkenny, Ireland
| | - Edit Tidrenczel
- University Hospital of Torrevieja, Torrevieja, Spain; Killybegs Family Health Centre, Killybegs, Ireland
| | - Gina Oliveira
- Polyvalent Intensive Care Unit, Hospitalar Center Tondela-Viseu, Tondela-Viseu, Portugal
| | - Ana Albuquerque
- Polyvalent Intensive Care Unit, Hospitalar Center Tondela-Viseu, Tondela-Viseu, Portugal
| | - Bruno M Pereira
- Postgraduate and Research Division, Masters Program in Health Applied Sciences, Vassouras University, Vassouras, RJ, Brazil; Grupo Surgical, Campinas, SP, Brazil; Terzius Institute of Education, Campinas, SP, Brazil
| |
Collapse
|
40
|
Samimian S, Ashrafi S, Khaleghdoost Mohammadi T, Yeganeh MR, Ashraf A, Hakimi H, Dehghani M. The Correlation between Head of Bed Angle and Intra-Abdominal Pressure of Intubated Patients; a Pre-Post Clinical Trial. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2021; 9:e23. [PMID: 33870210 PMCID: PMC8035694 DOI: 10.22037/aaem.v9i1.1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
INTRODUCTION The recommended position for measuring Intra-Abdominal Pressure (IAP) is the supine position. However, patients put in this position are prone to Ventilator-associated pneumonia. This study was done to evaluate the relationship between bed head angle and IAP measurements of intubated patients in the intensive care unit. METHODS In this clinical trial, seventy-six critically ill patients under mechanical ventilation were enrolled. IAP measurement was performed every 8 hours for 24 hours using the KORN method in three different degrees of the head of bed (HOB) elevation (0 ° , 15 ° , and 30 ° ). Bland-Altman analysis was performed to identify the bias and limits of agreement among the three HOBs. According to World Society of the Abdominal Compartment Syndrome (WSACS), we can consider two IAP techniques equivalent if a bias of <1 mmHg and limits of agreement of - 4 to +4 were found between them. Data were analyzed using SPSS statistical software (v. 19), and the significance level was considered as 0.05. RESULTS The prevalence of intra-abdominal hypertension was 18.42%. Mean ± standard deviation (SD) of IAP were 8.44 ± 4.02 mmHg for HOB angle 0°, 9.58 ± 4.52 for HOB angle 15 ° , and 11.10 ± 4.73 for HOB angle 30o (p = 0.0001). The IAP measurement bias between HOB angle 0°and HOB angle 15° was 1.13 mmHg. This bias was 2.66 mmHg between HOB angle 0° and HOB angle 30°. CONCLUSION Elevation of HOB angle from 0 to 30 degree significantly increases IAP. It seems that the measurement of IAP at HOB angle 15° was more reliable than 30°.
Collapse
Affiliation(s)
- Sedigheh Samimian
- Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Sadra Ashrafi
- Student Research Committee, Chronic Kidney Disease Research Center(CKDRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Khaleghdoost Mohammadi
- Department of Medical-Surgical Nursing, Shahid Beheshti Faculty of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran.,Corresponding author: Tahereh Khaleghdoost Mohammadi; 2nd Floor, Daneshjoo Street, Nursing Department, Shahid Beheshti Faculty of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran, Postal code: 41469 – 39841. , Tel: +98 - 1333555056-8, Mobile Phone Number: +98 – 9111351245, Fax: +98 – 1333550097
| | - Mohammad Reza Yeganeh
- Department of Medical-Surgical Nursing, Shahid Beheshti Faculty of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Ashraf
- Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamideh Hakimi
- Department of Nursing, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Maryam Dehghani
- Nahavand School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
41
|
Kallet RH, Lipnick MS, Burns GD. The Nature of Recruitment and De-Recruitment and Its Implications for Management of ARDS. Respir Care 2021; 66:510-530. [PMID: 33051254 PMCID: PMC9994058 DOI: 10.4187/respcare.08280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recruitment maneuvers in ARDS are used to improve oxygenation and lung mechanics by applying high airway pressures to reopen collapsed or obstructed peripheral airways and alveoli. In the early 1990s, recruitment maneuvers became a central feature of a variant form of lung-protective ventilation known as open-lung ventilation. This strategy is based on the belief that repetitive opening and closing of distal airspaces induces shear injury and therefore contributes both to ventilator-induced lung injury and ARDS-associated mortality. However, the largest multi-center randomized controlled trial of open-lung ventilation in moderate to severe ARDS reported that recruitment maneuver plateau pressures of 50-60 cm H2O were associated with significantly higher mortality compared to traditional lung-protective ventilation. Despite being based on well conducted preclinical and clinical recruitment maneuver studies, the higher mortality associated with the open-lung ventilation strategy requires re-examining the assumptions and conclusions drawn from those previous studies. This narrative review examines the evidence used to design recruitment maneuver strategies. We also review the radiologic, rheologic, and histopathologic evidence regarding the nature of lung injury and the phenomena of recruitment and de-recruitment as it informs our perceptions of recruitment potential in ARDS. Major lung-protective ventilation clinical trial data and other clinical data are also examined to assess the practical necessity of recruitment maneuvers in ARDS and whether a subset of cases might benefit from pursuing recruitment maneuver therapy. Finally, a less a radical approach to recruitment maneuvers is offered that might achieve the goals of recruitment maneuvers with less risk of harm.
Collapse
Affiliation(s)
- Richard H Kallet
- Respiratory Care Division, Department of Anesthesia and Perioperative Care, University of California San Francisco at San Francisco General Hospital, San Francisco, California.
| | - Michael S Lipnick
- Critical Care Division, Department of Anesthesia and Perioperative Care, University of California San Francisco at San Francisco General Hospital, San Francisco, California
| | - Gregory D Burns
- Respiratory Care Division, Department of Anesthesia and Perioperative Care, University of California San Francisco at San Francisco General Hospital, San Francisco, California
| |
Collapse
|
42
|
Fiedler MO, Simeliunas E, Deutsch BL, Diktanaite D, Harms A, Brune M, Dietrich M, Uhle F, Weigand MA, Kalenka A. Impact of Different Positive End-Expiratory Pressures on Lung Mechanics in the Setting of Moderately Elevated Intra-Abdominal Pressure and Acute Lung Injury in a Porcine Model. J Clin Med 2021; 10:306. [PMID: 33467666 PMCID: PMC7830768 DOI: 10.3390/jcm10020306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/27/2022] Open
Abstract
The effects of a moderately elevated intra-abdominal pressure (IAP) on lung mechanics in acute respiratory distress syndrome (ARDS) have still not been fully analyzed. Moreover, the optimal positive end-expiratory pressure (PEEP) in elevated IAP and ARDS is unclear. In this paper, 18 pigs under general anesthesia received a double hit lung injury. After saline lung lavage and 2 h of injurious mechanical ventilation to induce an acute lung injury (ALI), an intra-abdominal balloon was filled until an IAP of 10 mmHg was generated. Animals were randomly assigned to one of three groups (group A = PEEP 5, B = PEEP 10 and C = PEEP 15 cmH2O) and ventilated for 6 h. We measured end-expiratory lung volume (EELV) per kg bodyweight, driving pressure (ΔP), transpulmonary pressure (ΔPL), static lung compliance (Cstat), oxygenation (P/F ratio) and cardiac index (CI). In group A, we found increases in ΔP (22 ± 1 vs. 28 ± 2 cmH2O; p = 0.006) and ΔPL (16 ± 1 vs. 22 ± 2 cmH2O; p = 0.007), with no change in EELV/kg (15 ± 1 vs. 14 ± 1 mL/kg) when comparing hours 0 and 6. In group B, there was no change in ΔP (26 ± 2 vs. 25 ± 2 cmH2O), ΔPL (19 ± 2 vs. 18 ± 2 cmH2O), Cstat (21 ± 3 vs. 21 ± 2 cmH2O/mL) or EELV/kg (12 ± 2 vs. 13 ± 3 mL/kg). ΔP and ΔPL were significantly lower after 6 h when comparing between group C and A (21 ± 1 vs. 28 ± 2 cmH2O; p = 0.020) and (14 ± 1 vs. 22 ± 2 cmH2O; p = 0.013)). The EELV/kg increased over time in group C (13 ± 1 vs. 19 ± 2 mL/kg; p = 0.034). The P/F ratio increased in all groups over time. CI decreased in groups B and C. The global lung injury score did not significantly differ between groups (A: 0.25 ± 0.05, B: 0.21 ± 0.02, C: 0.22 ± 0.03). In this model of ALI, elevated IAP, ΔP and ΔPL increased further over time in the group with a PEEP of 5 cmH2O applied over 6 h. This was not the case in the groups with a PEEP of 10 and 15 cmH2O. Although ΔP and ΔPL were significantly lower after 6 hours in group C compared to group A, we could not show significant differences in histological lung injury score.
Collapse
Affiliation(s)
- Mascha O. Fiedler
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (E.S.); (D.D.); (M.D.); (F.U.); (M.A.W.)
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany;
| | - Emilis Simeliunas
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (E.S.); (D.D.); (M.D.); (F.U.); (M.A.W.)
- Department of Anesthesiology, Kantonsspital Lucerne, 6004 Lucerne, Switzerland
| | - B. Luise Deutsch
- Faculty of Medicine, Justus Liebig University, 35392 Giessen, Germany;
| | - Dovile Diktanaite
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (E.S.); (D.D.); (M.D.); (F.U.); (M.A.W.)
- Department of Anesthesiology, Kantonsspital Lucerne, 6004 Lucerne, Switzerland
| | - Alexander Harms
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Maik Brune
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Maximilian Dietrich
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (E.S.); (D.D.); (M.D.); (F.U.); (M.A.W.)
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (E.S.); (D.D.); (M.D.); (F.U.); (M.A.W.)
| | - Markus A. Weigand
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (E.S.); (D.D.); (M.D.); (F.U.); (M.A.W.)
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany;
| | - Armin Kalenka
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany;
- Department of Anesthesiology and Intensive Care Medicine, Hospital Bergstrasse, 64646 Heppenheim, Germany
- Faculty of Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
43
|
Mazzinari G, Diaz-Cambronero O, Serpa Neto A, Martínez AC, Rovira L, Argente Navarro MP, Malbrain MLNG, Pelosi P, Gama de Abreu M, Hollmann MW, Schultz MJ. Modeling intra-abdominal volume and respiratory driving pressure during pneumoperitoneum insufflation-a patient-level data meta-analysis. J Appl Physiol (1985) 2020; 130:721-728. [PMID: 33357006 DOI: 10.1152/japplphysiol.00814.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During pneumoperitoneum, intra-abdominal pressure (IAP) is usually kept at 12-14 mmHg. There is no clinical benefit in IAP increments if they do not increase intra-abdominal volume IAV. We aimed to estimate IAV (ΔIAV) and respiratory driving pressure changes (ΔPRS) in relation to changes in IAP (ΔIAP). We carried out a patient-level meta-analysis of 204 adult patients with available data on IAV and ΔPRS during pneumoperitoneum from three trials assessing the effect of IAP on postoperative recovery and airway pressure during laparoscopic surgery under general anesthesia. The primary endpoint was ΔIAV, and the secondary endpoint was ΔPRS. The endpoints' response to ΔIAP was modeled using mixed multivariable Bayesian regression to estimate which mathematical function best fitted it. IAP values on the pressure-volume (PV) curve where the endpoint rate of change according to IAP decreased were identified. Abdomino-thoracic transmission (ATT) rate, that is, the rate ΔPRS change to ΔIAP was also estimated. The best-fitting function was sigmoid logistic and linear for IAV and ΔPRS response, respectively. Increments in IAV reached a plateau at 6.0 [95%CI 5.9-6.2] L. ΔIAV for each ΔIAP decreased at IAP ranging from 9.8 [95%CI 9.7-9.9] to 12.2 [12.0-12.3] mmHg. ATT rate was 0.65 [95%CI 0.62-0.68]. One mmHg of IAP raised ΔPRS 0.88 cmH2O. During pneumoperitoneum, IAP has a nonlinear relationship with IAV and a linear one with ΔPRS. IAP should be set below the point where IAV gains diminish.NEW & NOTEWORTHY We found that intra-abdominal volume changes related to intra-abdominal pressure increase reached a plateau with diminishing gains in commonly used pneumoperitoneum pressure ranges. We also found a linear relationship between intra-abdominal pressure and respiratory driving pressure, a known marker of postoperative pulmonary complications.
Collapse
Affiliation(s)
- Guido Mazzinari
- Research Group in Perioperative Medicine, Hospital Universitario y Politécnico la Fe, Valencia, Spain.,Department of Anaesthesiology, Hospital Universitario y Politécnico la Fe, Valencia, Spain
| | - Oscar Diaz-Cambronero
- Research Group in Perioperative Medicine, Hospital Universitario y Politécnico la Fe, Valencia, Spain.,Department of Anaesthesiology, Hospital Universitario y Politécnico la Fe, Valencia, Spain.,Spanish Clinical Research Network (SCReN), SCReN-IIS La Fe, Madrid, Spain
| | - Ary Serpa Neto
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam University Medical Center, location "AMC." Amsterdam, The Netherlands.,Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil.,Pulmonary Division, Cardio-Pulmonary Department, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Antonio Cañada Martínez
- Data Science, Biostatistics and Bioinformatics Unit, Instituto de Investigacion Sanitaria la Fe, Valencia, Spain
| | - Lucas Rovira
- Department of Anaesthesiology, Consorcio Hospital General Universitario, Valencia, Spain
| | - María Pilar Argente Navarro
- Research Group in Perioperative Medicine, Hospital Universitario y Politécnico la Fe, Valencia, Spain.,Department of Anaesthesiology, Hospital Universitario y Politécnico la Fe, Valencia, Spain
| | - Manu L N G Malbrain
- Department of Intensive Care Medicine, University Hospital Brussels (UZB), Brussels, Belgium.,Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,International Fluid Academy, Lovenjoel, Belgium
| | - Paolo Pelosi
- San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Marcelo Gama de Abreu
- Department of Anesthesiology and Intensive Care Therapy, Pulmonary Engineering Group, Technische Universität Dresden, Dresden, Germany.,Outcomes Research Consortium, Cleveland, Ohio
| | - Markus W Hollmann
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam University Medical Center, location "AMC." Amsterdam, The Netherlands.,Department of Anaesthesiology, Amsterdam University Medical Center, location "AMC," Amsterdam, The Netherlands
| | - Marcus J Schultz
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam University Medical Center, location "AMC." Amsterdam, The Netherlands.,Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand.,Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
44
|
Kirkpatrick AW, Hamilton DR, McKee JL, MacDonald B, Pelosi P, Ball CG, Roberts D, McBeth PB, Cocolini F, Ansaloni L, Peireira B, Sugrue M, Campbell MR, Kimball EJ, Malbrain MLNG, Roberts D. Do we have the guts to go? The abdominal compartment, intra-abdominal hypertension, the human microbiome and exploration class space missions. Can J Surg 2020. [PMID: 33278908 DOI: 10.1503/cjs.019219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Humans are destined to explore space, yet critical illness and injury may be catastrophically limiting for extraterrestrial travel. Humans are superorganisms living in symbiosis with their microbiomes, whose genetic diversity dwarfs that of humans. Symbiosis is critical and imbalances are associated with disease, occurring within hours of serious illness and injury. There are many characteristics of space flight that negatively influence the microbiome, especially deep space itself, with its increased radiation and absence of gravity. Prolonged weightlessness causes many physiologic changes that are detrimental; some resemble aging and will adversely affect the ability to tolerate critical illness or injury and subsequent treatment. Critical illness-induced intra-abdominal hypertension (IAH) may induce malperfusion of both the viscera and microbiome, with potentially catastrophic effects. Evidence from animal models confirms profound IAH effects on the gut, namely ischemia and disruption of barrier function, mechanistically linking IAH to resultant organ dysfunction. Therefore, a pathologic dysbiome, space-induced immune dysfunction and a diminished cardiorespiratory reserve with exacerbated susceptibility to IAH, imply that a space-deconditioned astronaut will be vulnerable to IAH-induced gut malperfusion. This sets the stage for severe gut ischemia and massive biomediator generation in an astronaut with reduced cardiorespiratory/immunological capacity. Fortunately, experiments in weightless analogue environments suggest that IAH may be ameliorated by conformational abdominal wall changes and a resetting of thoracoabdominal mechanics. Thus, review of the interactions of physiologic changes with prolonged weightlessness and IAH is required to identify appropriate questions for planning exploration class space surgical care.
Collapse
Affiliation(s)
- Andrew W Kirkpatrick
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Douglas R Hamilton
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Jessica L McKee
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Braedon MacDonald
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Paolo Pelosi
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Chad G Ball
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Derek Roberts
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Paul B McBeth
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Federico Cocolini
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Luca Ansaloni
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Bruno Peireira
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Michael Sugrue
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Mark R Campbell
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Edward J Kimball
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Manu L N G Malbrain
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Derek Roberts
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| |
Collapse
|
45
|
Kirkpatrick AW, Hamilton DR, McKee JL, MacDonald B, Pelosi P, Ball CG, Roberts D, McBeth PB, Cocolini F, Ansaloni L, Peireira B, Sugrue M, Campbell MR, Kimball EJ, Malbrain MLNG, Roberts D. Do we have the guts to go? The abdominal compartment, intra-abdominal hypertension, the human microbiome and exploration class space missions. Can J Surg 2020; 63:E581-E593. [PMID: 33278908 PMCID: PMC7747844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2020] [Indexed: 11/11/2023] Open
Abstract
Humans are destined to explore space, yet critical illness and injury may be catastrophically limiting for extraterrestrial travel. Humans are superorganisms living in symbiosis with their microbiomes, whose genetic diversity dwarfs that of humans. Symbiosis is critical and imbalances are associated with disease, occurring within hours of serious illness and injury. There are many characteristics of space flight that negatively influence the microbiome, especially deep space itself, with its increased radiation and absence of gravity. Prolonged weightlessness causes many physiologic changes that are detrimental; some resemble aging and will adversely affect the ability to tolerate critical illness or injury and subsequent treatment. Critical illness-induced intra-abdominal hypertension (IAH) may induce malperfusion of both the viscera and microbiome, with potentially catastrophic effects. Evidence from animal models confirms profound IAH effects on the gut, namely ischemia and disruption of barrier function, mechanistically linking IAH to resultant organ dysfunction. Therefore, a pathologic dysbiome, space-induced immune dysfunction and a diminished cardiorespiratory reserve with exacerbated susceptibility to IAH, imply that a space-deconditioned astronaut will be vulnerable to IAH-induced gut malperfusion. This sets the stage for severe gut ischemia and massive biomediator generation in an astronaut with reduced cardiorespiratory/immunological capacity. Fortunately, experiments in weightless analogue environments suggest that IAH may be ameliorated by conformational abdominal wall changes and a resetting of thoracoabdominal mechanics. Thus, review of the interactions of physiologic changes with prolonged weightlessness and IAH is required to identify appropriate questions for planning exploration class space surgical care.
Collapse
Affiliation(s)
- Andrew W Kirkpatrick
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Douglas R Hamilton
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Jessica L McKee
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Braedon MacDonald
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Paolo Pelosi
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Chad G Ball
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Derek Roberts
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Paul B McBeth
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Federico Cocolini
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Luca Ansaloni
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Bruno Peireira
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Michael Sugrue
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Mark R Campbell
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Edward J Kimball
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Manu L N G Malbrain
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Derek Roberts
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| |
Collapse
|
46
|
Braun G, Messmann H. [Abdominal Emergencies in The View of an Intensivist - Intra-abdominal Hypertension and Abdominal Compartment Syndrome]. Dtsch Med Wochenschr 2020; 145:1552-1557. [PMID: 33080642 DOI: 10.1055/a-1007-4304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In critically ill patients an intra-abdominal hypertension is a common phenomenon. An IAH is defined as an IAP persistent ≥ 12 mmHg, an abdominal compartment syndrome is defined as an IAP persistent ≥ 20 mmHg in combination with new organ failure. The bladder pressure serves as a surrogate parameter for the IAP. The bladder pressure should be measured in a standardized manner. The therapy of IAH should be individualized.
Collapse
|
47
|
Kundra S, Bansal H, Gupta V, Gupta R, Kaushal S, Grewal A, Chaudhary AK. A Comparative Evaluation of the Effect of Prone Positioning Methods on Blood Loss and Intra-Abdominal Pressure in Obese Patients Undergoing Spinal Surgery. JOURNAL OF NEUROANAESTHESIOLOGY AND CRITICAL CARE 2020. [DOI: 10.1055/s-0040-1715709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Abstract
Background Improper prone positioning of obese patients for spine surgery can increase the intra-abdominal pressure (IAP), resulting in increased bleeding from epidural venous plexus. The choice of prone positioning frame can be an important determinant of the IAP.
Materials and Methods This prospective, randomized study was performed on obese patients (body mass index ≥ 30) scheduled for lumbar laminectomy. After administration of general anesthesia, patients were positioned prone either on Wilson’s frame (group W), or on horizontal bolsters (group H). IAP was recorded at three intervals: (1) in supine position, (2) 10 minutes after prone positioning, and (3) in prone position at the end of surgery. Intraoperative blood loss was measured quantitatively and assessed subjectively by the surgeon.
Results A total of 60 patients were enrolled with 30 patients in each group. IAP in supine position was similar in both groups. However, IAP 10 minutes after prone positioning was significantly higher at 11.44 ± 1.61 mm Hg in group W as compared to 9.56 ± 1.92 mm Hg in group H (p = 0.001). Similarly, IAP of 12.24 ± 1.45 mm Hg in group W, measured on completion of surgery was significantly higher than 9.96 ± 2.35 mm Hg in group H (p = 0.001). Mean total blood loss of 440.40 ± 176.98 mL in group W was significantly higher than 317.20 ± 91.04 mL in group H (p = 0.003).
Conclusion Obese patients positioned prone on Wilson’s frame had significantly higher IAP and blood loss compared to patients positioned on horizontal bolsters.
Collapse
Affiliation(s)
- Sandeep Kundra
- Department of Anesthesia, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Hanish Bansal
- Department of Neurosurgery, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Vishnu Gupta
- Department of Neurosurgery, Fortis Hospital, Ludhiana, Ludhiana, Punjab, India
| | - Rekha Gupta
- Department of Anesthesia, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sandeep Kaushal
- Department of Pharmacology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Anju Grewal
- Department of Anesthesia, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Ashwani K. Chaudhary
- Department of Neurosurgery, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| |
Collapse
|
48
|
Prospective Observational Study to Evaluate the Effect of Different Levels of Positive End-Expiratory Pressure on Lung Mechanics in Patients with and without Acute Respiratory Distress Syndrome. J Clin Med 2020; 9:jcm9082446. [PMID: 32751791 PMCID: PMC7463691 DOI: 10.3390/jcm9082446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background: The optimal level of positive end-expiratory pressure is still under debate. There are scare data examining the association of PEEP with transpulmonary pressure (TPP), end-expiratory lung volume (EELV) and intraabdominal pressure in ventilated patients with and without ARDS. Methods: We analyzed lung mechanics in 3 patient groups: group A, patients with ARDS; group B, obese patients (body mass index (BMI) > 30 kg/m2) and group C, a control group. Three levels of PEEP (5, 10, 15 cm H2O) were used to investigate the consequences for lung mechanics. Results: Fifty patients were included, 22 in group A, 18 in group B (BMI 38 ± 2 kg/m2) and 10 in group C. At baseline, oxygenation showed no differences between the groups. Driving pressure (ΔP) and transpulmonary pressure (ΔPL) was higher in group B than in groups A and C at a PEEP of 5 cm H2O (ΔP A: 15 ± 1, B: 18 ± 1, C: 14 ± 1 cm H2O; ΔPL A: 10 ± 1, B: 13 ± 1, C: 9 ± 0 cm H2O). Peak inspiratory pressure (Pinsp) rose in all groups as PEEP increased, but the resulting driving pressure and transpulmonary pressure were reduced, whereas EELV increased. Conclusion: Measuring EELV or TPP allows a personalized approach to lung-protective ventilation.
Collapse
|
49
|
Su Y, Hou JY, Ma GG, Hao GW, Luo JC, Yu SJ, Liu K, Zheng JL, Xue Y, Luo Z, Tu GW. Comparison of the proximal and distal approaches for axillary vein catheterization under ultrasound guidance (PANDA) in cardiac surgery patients susceptible to bleeding: a randomized controlled trial. Ann Intensive Care 2020; 10:90. [PMID: 32643012 PMCID: PMC7343682 DOI: 10.1186/s13613-020-00703-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The present study aimed at comparing the success rate and safety of proximal versus distal approach for ultrasound (US)-guided axillary vein catheterization (AVC) in cardiac surgery patients susceptible to bleeding. METHODS In this single-center randomized controlled trial, cardiac surgery patients susceptible to bleeding and requiring AVC were randomized to either the proximal or distal approach group for US-guided AVC. Patients susceptible to bleeding were defined as those who received oral antiplatelet drugs or anticoagulants for at least 3 days. Success rate, catheterization time, number of attempts, and mechanical complications within 24 h were recorded for each procedure. RESULTS A total of 198 patients underwent randomization: 99 patients each to the proximal and distal groups. The proximal group had the higher first puncture success rate (75.8% vs. 51.5%, p < 0.001) and site success rate (93.9% vs. 83.8%, p = 0.04) than the distal group. However, the overall success rates between the two groups were similar (99.0% vs. 99.0%; p = 1.00). Moreover, the proximal group had fewer average number of attempts (p < 0.01), less access time (p < 0.001), and less successful cannulation time (p < 0.001). There was no significant difference in complications between the two groups, such as major bleeding, minor bleeding, arterial puncture, pneumothorax, nerve injuries, and catheter misplacements. CONCLUSIONS For cardiac surgery patients susceptible to bleeding, both proximal and distal approaches for US-guided AVC can be considered as feasible and safe methods of central venous cannulation. In terms of the first puncture success rate and cannulation time, the proximal approach is superior to the distal approach. Trial registration Clinicaltrials.gov, NCT03395691. Registered January 10, 2018, https://clinicaltrials.gov/ct2/show/NCT03395691?cond=NCT03395691&draw=1&rank=1 .
Collapse
Affiliation(s)
- Ying Su
- grid.8547.e0000 0001 0125 2443Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032 China
| | - Jun-yi Hou
- grid.8547.e0000 0001 0125 2443Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032 China
| | - Guo-guang Ma
- grid.8547.e0000 0001 0125 2443Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032 China
| | - Guang-wei Hao
- grid.8547.e0000 0001 0125 2443Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032 China
| | - Jing-chao Luo
- grid.8547.e0000 0001 0125 2443Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032 China
| | - Shen-ji Yu
- grid.8547.e0000 0001 0125 2443Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032 China
| | - Kai Liu
- grid.8547.e0000 0001 0125 2443Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032 China
| | - Ji-li Zheng
- grid.413087.90000 0004 1755 3939Department of Nursing, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032 China
| | - Yan Xue
- grid.413087.90000 0004 1755 3939Department of Nursing, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032 China
| | - Zhe Luo
- grid.8547.e0000 0001 0125 2443Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032 China
- grid.8547.e0000 0001 0125 2443Department of Critical Care Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, No. 668 Jinghu Road, Huli District, Xiamen, 361015 China
| | - Guo-wei Tu
- grid.8547.e0000 0001 0125 2443Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032 China
| |
Collapse
|
50
|
Tonetti T, Cavalli I, Ranieri VM, Mascia L. Respiratory consequences of intra-abdominal hypertension. Minerva Anestesiol 2020; 86:877-883. [DOI: 10.23736/s0375-9393.20.14325-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|