1
|
Comce MH, Weersink RA, Beuers U, van Hest RM, Lantinga MA. Pharmacokinetics of ceftriaxone, gentamicin, meropenem and vancomycin in liver cirrhosis: a systematic review. J Antimicrob Chemother 2024; 79:2750-2761. [PMID: 39289819 PMCID: PMC11531807 DOI: 10.1093/jac/dkae310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVES Patients with liver cirrhosis are prone to develop severe bacterial infections. Pharmacokinetics (PK) of antibiotics in cirrhosis are potentially affected by impaired biotransformation phases 0-3 and consequences of portal hypertension such as portovenous shunting, ascites formation and/or acute kidney injury (AKI). We aimed to elucidate to what extent PK of selected antibiotics and, therefore, dosage recommendations are affected in adults with cirrhosis. METHODS We performed a systematic search in PubMed, Embase, Cochrane and CINAHL on effects of cirrhosis on PK profiles of ceftriaxone, fosfomycin, gentamicin, meropenem, nitrofurantoin, piperacillin/tazobactam and vancomycin in adults. Antibiotics were selected based on the lack of specific dosing recommendations for adults with cirrhosis. We included studies reporting on ≥1 of the following PK parameters: AUC, half-life (t½), CL, volume of distribution (Vd), peak (Cmax) or trough concentrations (Cmin). RESULTS We identified 15 studies (ceftriaxone, n = 5; gentamicin, n = 3; meropenem n = 5; vancomycin, n = 2), including 379 patients with cirrhosis, of which two were of high quality. No eligible studies were identified for fosfomycin, nitrofurantoin or piperacillin/tazobactam. Ceftriaxone unbound concentration increased in cirrhosis, but was mitigated by increased renal CL. Gentamicin levels in ascitic fluid were comparable to those in plasma. Meropenem PK parameters were not altered in cirrhosis without AKI, but in the presence of AKI a decrease in CL was observed. In contrast, vancomycin CL decreased in advanced cirrhosis. CONCLUSIONS Available data in studies of mostly moderate quality suggest that PK of ceftriaxone, meropenem and vancomycin are altered in cirrhosis. More advanced PK studies are needed to provide specific dosing recommendations.
Collapse
Affiliation(s)
- M H Comce
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - R A Weersink
- Department of Clinical Pharmacy, Deventer Hospital, Deventer, The Netherlands
| | - U Beuers
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - R M van Hest
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - M A Lantinga
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| |
Collapse
|
2
|
Wicha SG, Kinast C, Münchow M, Wittova S, Greppmair S, Kunzelmann AK, Zoller M, Paal M, Vogeser M, Habler K, Weig T, Terpolilli N, Heck S, Dimitriadis K, Scharf C, Liebchen U. Meropenem pharmacokinetics in cerebrospinal fluid: comparing intermittent and continuous infusion strategies in critically ill patients-a prospective cohort study. Antimicrob Agents Chemother 2024; 68:e0045124. [PMID: 39082803 PMCID: PMC11373225 DOI: 10.1128/aac.00451-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/08/2024] [Indexed: 09/05/2024] Open
Abstract
Meropenem penetration into the cerebrospinal fluid (CSF) is subject to high interindividual variability resulting in uncertain target attainment in CSF. Recently, several authors recommended administering meropenem as a continuous infusion (CI) to optimize CSF exposure. This study aimed to compare the concentrations and pharmacokinetics of meropenem in CSF after intermittent infusion (II) and CI. This prospective, observational study (NCT04426383) included critically ill patients with external ventricular drains who received either II or CI of meropenem. Meropenem pharmacokinetics in plasma and CSF were characterized using population pharmacokinetic modeling (NONMEM 7.5). The developed model was used to compare the concentration-time profile and probability of target attainment (PTA) between II and CI. A total of 16 patients (8 CI, 8 II; samples: nplasma = 243, nCSF = 263) were recruited, with nine patients (5 CI, 4 II) suffering from cerebral and seven patients from extracerebral infections. A one-compartment model described the plasma concentrations adequately. Meropenem penetration into the CSF (partition coefficient (KP), cCSF/cplasma) was generally low (6.0%), exhibiting substantial between-subject variability (coefficient of variation: 84.0%). There was no correlation between the infusion mode and KP, but interleukin (IL)-6 measured in CSF showed a strong positive correlation with KP (P < 0.001). Dosing simulations revealed no relevant differences in CSF concentrations and PTA in CSF between CI and II. Our study did not demonstrate increased penetration rates or higher concentrations of meropenem in the CSF with CI compared with II. CLINICAL TRIALS This study is registered with ClinicalTrials.gov as NCT04426383.
Collapse
Affiliation(s)
- Sebastian G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - Christina Kinast
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Max Münchow
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - Sandra Wittova
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - Sebastian Greppmair
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Michael Zoller
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Michael Paal
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Michael Vogeser
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Katharina Habler
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Thomas Weig
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Nicole Terpolilli
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Suzette Heck
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Christina Scharf
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Uwe Liebchen
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
3
|
Gras-Martín L, Plaza-Diaz A, Zarate-Tamames B, Vera-Artazcoz P, Torres OH, Bastida C, Soy D, Ruiz-Ramos J. Risk Factors Associated with Antibiotic Exposure Variability in Critically Ill Patients: A Systematic Review. Antibiotics (Basel) 2024; 13:801. [PMID: 39334976 PMCID: PMC11428266 DOI: 10.3390/antibiotics13090801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Background: Knowledge about the behavior of antibiotics in critically ill patients has been increasing in recent years. Some studies have concluded that a high percentage may be outside the therapeutic range. The most likely cause of this is the pharmacokinetic variability of critically ill patients, but it is not clear which factors have the greatest impact. The aim of this systematic review is to identify risk factors among critically ill patients that may exhibit significant pharmacokinetic alterations, compromising treatment efficacy and safety. (2) Methods: The search included the PubMed, Web of Science, and Embase databases. (3) Results: We identified 246 observational studies and ten clinical trials. The most studied risk factors in the literature were renal function, weight, age, sex, and renal replacement therapy. Risk factors with the greatest impact included renal function, weight, renal replacement therapy, age, protein or albumin levels, and APACHE or SAPS scores. (4) Conclusions: The review allows us to identify which critically ill patients are at a higher risk of not reaching therapeutic targets and helps us to recognize the extensive number of risk factors that have been studied, guiding their inclusion in future studies. It is essential to continue researching, especially in real clinical practice and with clinical outcomes.
Collapse
Affiliation(s)
- Laura Gras-Martín
- Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Adrián Plaza-Diaz
- Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
| | - Borja Zarate-Tamames
- Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
| | - Paula Vera-Artazcoz
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Intensive Care Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Olga H Torres
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Geriatric Unit, Internal Medicine Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Carla Bastida
- Pharmacy Department, Division of Medicines, Hospital Clinic of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutical Chemistry, Faculty of Pharmacy, Universitat de Barcelona, Campus Diagonal, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Dolors Soy
- Pharmacy Department, Division of Medicines, Hospital Clinic of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutical Chemistry, Faculty of Pharmacy, Universitat de Barcelona, Campus Diagonal, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Jesús Ruiz-Ramos
- Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
4
|
Chihara S, Ishigo T, Kazuma S, Matsumoto K, Morita K, Masuda Y. Association between Extended Meropenem Regimen and Achievement of Aggressive PK/PD in Patients Receiving Continuous Renal Replacement Therapy for Septic AKI. Antibiotics (Basel) 2024; 13:755. [PMID: 39200055 PMCID: PMC11350760 DOI: 10.3390/antibiotics13080755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Aggressive pharmacokinetic (PK)/pharmacodynamic (PD) targets have shown better microbiological eradication rates and a lower propensity to develop resistant strains than conservative targets. We investigated whether meropenem blood levels, including aggressive PK/PD, were acceptable in terms of efficacy and safety using a meropenem regimen of 1 g infusion every 8 h over 3 h in patients undergoing continuous renal replacement therapy (CRRT) for septic acute kidney injury (AKI). Aggressive PK/PD targets were defined as the percentage of time that the free concentration (%fT) > 4 × minimal inhibitory concentration (MIC), the toxicity threshold was defined as a trough concentration >45 mg/L, and the percentage of achievement at each MIC was evaluated. The 100% fT > 4 × MIC for a pathogen with an MIC of 0.5 mg/L was 89%, and that for a pathogen with an MIC of 2 mg/L was 56%. The mean steady-state trough concentration of meropenem was 11.9 ± 9.0 mg/L and the maximum steady-state trough concentration was 29.2 mg/L. Simulations using Bayesian estimation showed the probability of achieving 100% fT > 4 × MIC for up to an MIC of 2 mg/L for the administered administration via continuous infusion at 3 g/24 h. We found that an aggressive PK/PD could be achieved up to an MIC of 0.5 mg/L with a meropenem regimen of 1 g infused every 8 h over 3 h for patients receiving CRRT for septic AKI. In addition, the risk of reaching the toxicity range with this regimen is low. In addition, if the MIC was 1-2 mg/L, the simulation results indicated that aggressive PK/PD can be achieved by continuous infusion at 3 g/24 h without increasing the daily dose.
Collapse
Affiliation(s)
- Shinya Chihara
- Department of Intensive Care Medicine, Sapporo Medical University, School of Medicine, Sapporo 060-8543, Japan; (S.C.); (Y.M.)
- Department of Clinical Engineering, Japan Health Care University Faculty of Health Sciences, Sapporo 062-0053, Japan
| | - Tomoyuki Ishigo
- Department of Pharmacy, Sapporo Medical University Hospital, Sapporo 060-8543, Japan; (T.I.)
| | - Satoshi Kazuma
- Department of Intensive Care Medicine, Sapporo Medical University, School of Medicine, Sapporo 060-8543, Japan; (S.C.); (Y.M.)
| | - Kana Matsumoto
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (K.M.); (K.M.)
| | - Kunihiko Morita
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (K.M.); (K.M.)
| | - Yoshiki Masuda
- Department of Intensive Care Medicine, Sapporo Medical University, School of Medicine, Sapporo 060-8543, Japan; (S.C.); (Y.M.)
| |
Collapse
|
5
|
Xu Z, Zhang X, Chen J, Shi Y, Ji S. Bacterial Infections in Acute-on-chronic Liver Failure: Epidemiology, Diagnosis, Pathogenesis, and Management. J Clin Transl Hepatol 2024; 12:667-676. [PMID: 38993512 PMCID: PMC11233977 DOI: 10.14218/jcth.2024.00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/05/2024] [Accepted: 05/27/2024] [Indexed: 07/13/2024] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a distinct condition characterized by the abrupt exacerbation of pre-existing chronic liver disease, often leading to multi-organ failures and significant short-term mortalities. Bacterial infection is one of the most frequent triggers for ACLF and a common complication following its onset. The impact of bacterial infections on the clinical course and outcome of ACLF underscores their critical role in the pathogenesis of systemic inflammation and organ failures. In addition, the evolving epidemiology and increasing prevalence of multidrug-resistant bacteria in cirrhosis and ACLF highlight the importance of appropriate empirical antibiotic use, as well as accurate and prompt microbiological diagnosis. This review provided an update on recent advances in the epidemiology, diagnosis, pathogenesis, and management of bacterial infections in ACLF.
Collapse
Affiliation(s)
- Zhaoyu Xu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiuding Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiyang Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shangwei Ji
- Department of Infectious Diseases, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Schmid S, Koch C, Zimmermann K, Buttenschoen J, Mehrl A, Pavel V, Schlosser-Hupf S, Fleischmann D, Krohn A, Schilling T, Müller M, Kratzer A. Interprofessional Therapeutic Drug Monitoring of Carbapenems Improves ICU Care and Guideline Adherence in Acute-on-Chronic Liver Failure. Antibiotics (Basel) 2023; 12:1730. [PMID: 38136763 PMCID: PMC10740747 DOI: 10.3390/antibiotics12121730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Acute-on-chronic liver failure (ACLF) is a severe, rapidly progressing disease in patients with liver cirrhosis. Meropenem is crucial for treating severe infections. Therapeutic drug monitoring (TDM) offers an effective means to control drug dosages, especially vital for bactericidal antibiotics like meropenem. We aimed to assess the outcomes of implementing TDM for meropenem using an innovative interprofessional approach in ACLF patients on a medical intensive care unit (ICU). (2) Methods: The retrospective study was conducted on a medical ICU. The outcomes of an interprofessional approach comprising physicians, hospital pharmacists, and staff nurses to TDM for meropenem in critically ill patients with ACLF were examined in 25 patients. Meropenem was administered continuously via an infusion pump after the application of an initial loading dose. TDM was performed weekly using high-performance liquid chromatography (HPLC). Meropenem serum levels, implementation of the recommendations of the interprofessional team, and meropenem consumption were analyzed. (3) Results: Initial TDM for meropenem showed a mean meropenem serum concentration of 20.9 ± 9.6 mg/L in the 25 analyzed patients. Of note, in the initial TDM, only 16.0% of the patients had meropenem serum concentrations within the respective target range, while 84.0% exceeded this range. Follow-up TDM showed serum concentrations of 15.2 ± 5.7 mg/L (9.0-24.6) in Week 2 and 11.9 ± 2.3 mg/L (10.2-13.5) in Week 3. In Week 2, 41.7% of the patients had meropenem serum concentrations that were within the respective target range, while 58.3% of the patients were above this range. In Week 3, 50% of the analyzed serum concentrations of meropenem were within the targeted range, and 50% were above the range. In total, 100% of the advice given by the interprofessional team regarding meropenem dosing or a change in antibiotic therapy was implemented. During the intervention period, the meropenem application density was 37.9 recommended daily doses (RDD)/100 patient days (PD), compared to 42.1 RDD/100 PD in the control period, representing a 10.0% decrease. (4) Conclusions: Our interprofessional approach to TDM significantly reduced meropenem dosing, with all the team's recommendations being implemented. This method not only improved patient safety but also considerably decreased the application density of meropenem.
Collapse
Affiliation(s)
- Stephan Schmid
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (K.Z.); (J.B.); (A.M.); (V.P.); (S.S.-H.); (M.M.)
| | - Chiara Koch
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (K.Z.); (J.B.); (A.M.); (V.P.); (S.S.-H.); (M.M.)
| | - Katharina Zimmermann
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (K.Z.); (J.B.); (A.M.); (V.P.); (S.S.-H.); (M.M.)
| | - Jonas Buttenschoen
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (K.Z.); (J.B.); (A.M.); (V.P.); (S.S.-H.); (M.M.)
| | - Alexander Mehrl
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (K.Z.); (J.B.); (A.M.); (V.P.); (S.S.-H.); (M.M.)
| | - Vlad Pavel
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (K.Z.); (J.B.); (A.M.); (V.P.); (S.S.-H.); (M.M.)
| | - Sophie Schlosser-Hupf
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (K.Z.); (J.B.); (A.M.); (V.P.); (S.S.-H.); (M.M.)
| | - Daniel Fleischmann
- Hospital Pharmacy, University Hospital Regensburg, 93053 Regensburg, Germany; (D.F.); (A.K.)
| | - Alexander Krohn
- Department of Interdisciplinary Acute, Emergency and Intensive Care Medicine (DIANI), Klinikum Stuttgart, 70174 Stuttgart, Germany; (A.K.); (T.S.)
| | - Tobias Schilling
- Department of Interdisciplinary Acute, Emergency and Intensive Care Medicine (DIANI), Klinikum Stuttgart, 70174 Stuttgart, Germany; (A.K.); (T.S.)
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (K.Z.); (J.B.); (A.M.); (V.P.); (S.S.-H.); (M.M.)
| | - Alexander Kratzer
- Hospital Pharmacy, University Hospital Regensburg, 93053 Regensburg, Germany; (D.F.); (A.K.)
| |
Collapse
|
7
|
Tikiso T, Fuhrmann V, König C, Jarczak D, Iwersen-Bergmann S, Kluge S, Wicha SG, Grensemann J. Acute-on-chronic liver failure alters linezolid pharmacokinetics in critically ill patients with continuous hemodialysis: an observational study. Ann Intensive Care 2023; 13:83. [PMID: 37698659 PMCID: PMC10497461 DOI: 10.1186/s13613-023-01184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND In acute-on-chronic liver failure (ACLF), adequate antibiotic dosing is challenging due to changes of drug distribution and elimination. We studied the pharmacokinetics of linezolid in critically ill patients with ACLF during continuous renal replacement therapy compared to patients without concomitant liver failure (NLF). METHODS In this prospective cohort study, patients received linezolid 600 mg bid. Linezolid serum samples were analyzed by high-performance liquid chromatography. Population pharmacokinetic modelling was performed followed by Monte-Carlo simulations of 150 mg bid, 300 mg bid, 450 mg bid, 600 mg bid, and 900 mg bid to assess trough concentration target attainment of 2-7 mg/L. RESULTS Eighteen patients were included in this study with nine suffering from ACLF. Linezolid body clearance was lower in the ACLF group with mean (standard deviation) 1.54 (0.52) L/h versus 6.26 (2.43) L/h for NLF, P < 0.001. A trough concentration of 2-7 mg/L was reached with the standard dose of 600 mg bid in the NLF group in 47%, with 42% being underexposed and 11% overexposed versus 20% in the ACLF group with 77% overexposed and 3% underexposed. The highest probability of target exposure was attained with 600 mg bid in the NLF group and 150 mg bid in the ACLF group with 53%. CONCLUSION Linezolid body clearance in ACLF was markedly lower than in NLF. Given the overall high variability, therapeutic drug monitoring (TDM) with dose adjustments seems required to optimize target attainment. Until TDM results are available, a dose reduction may be considered in ACLF patients to prevent overexposure.
Collapse
Affiliation(s)
- Tjokosela Tikiso
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Bundesstraße 45, 20146, Hamburg, Germany
| | - Valentin Fuhrmann
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Department of Medicine, Hospital of the Holy Spirit, Graseggerstraße 105, 50737, Cologne, Germany
| | - Christina König
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Dominik Jarczak
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Stefanie Iwersen-Bergmann
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Sebastian G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Bundesstraße 45, 20146, Hamburg, Germany
| | - Jörn Grensemann
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
8
|
Schatz LM, Brinkmann A, Röhr A, Frey O, Greppmair S, Weinelt F, Zoller M, Scharf C, Hempel G, Liebchen U. Systematic Evaluation of Pharmacokinetic Models for Model-Informed Precision Dosing of Meropenem in Critically Ill Patients Undergoing Continuous Renal Replacement Therapy. Antimicrob Agents Chemother 2023; 67:e0010423. [PMID: 37125925 DOI: 10.1128/aac.00104-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
The altered pharmacokinetics of renally cleared drugs such as meropenem in critically ill patients receiving continuous renal replacement therapy (CRRT) might impact target attainment. Model-informed precision dosing (MIPD) is applied to individualize meropenem dosing. However, most population pharmacokinetic (PopPK) models developed to date have not yet been evaluated for MIPD. Eight PopPK models based on adult CRRT patients were identified in a systematic literature research and encoded in NONMEM 7.4. A data set of 73 CRRT patients from two different study centers was used to evaluate the predictive performance of the models using simulation and prediction-based diagnostics for i) a priori dosing based on patient characteristics only and ii) Bayesian dosing by including the first measured trough concentration. Median prediction error (MPE) for accuracy within |20%| (95% confidence intervals including zero) and median absolute prediction error (MAPE) for precision ≤ 30% were considered clinically acceptable. For a priori dosing, most models (n = 5) showed accuracy and precision MPE within |20%| and MAPE <35%. The integration of the first measured meropenem concentration improved the predictive performance of all models (median MAPE decreased from 35.4 to 25.0%; median MPE decreased from 21.8 to 4.6%). The best predictive performance for intermittent infusion was observed for the O'Jeanson model, including residual diuresis as covariate (a priori and Bayesian dosing MPE within |2%|, MAPE <30%). Our study revealed the O'Jeanson model as the best-predicting model for intermittent infusion. However, most of the selected PopPK models are suitable for MIPD in CRRT patients when one therapeutic drug monitoring sample is available.
Collapse
Affiliation(s)
- Lea Marie Schatz
- Department of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Muenster, Muenster, Germany
| | - Alexander Brinkmann
- Department of Anaesthesiology and Intensive Care Medicine, General Hospital of Heidenheim, Heidenheim, Germany
| | - Anka Röhr
- Department of Pharmacy, General Hospital of Heidenheim, Heidenheim, Germany
| | - Otto Frey
- Department of Pharmacy, General Hospital of Heidenheim, Heidenheim, Germany
| | - Sebastian Greppmair
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Ferdinand Weinelt
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Michael Zoller
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Christina Scharf
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Georg Hempel
- Department of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Muenster, Muenster, Germany
| | - Uwe Liebchen
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
9
|
Li L, Sassen SDT, Ewoldt TMJ, Abdulla A, Hunfeld NGM, Muller AE, de Winter BCM, Endeman H, Koch BCP. Meropenem Model-Informed Precision Dosing in the Treatment of Critically Ill Patients: Can We Use It? Antibiotics (Basel) 2023; 12:antibiotics12020383. [PMID: 36830294 PMCID: PMC9951903 DOI: 10.3390/antibiotics12020383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The number of pharmacokinetic (PK) models of meropenem is increasing. However, the daily role of these PK models in the clinic remains unclear, especially for critically ill patients. Therefore, we evaluated the published meropenem models on real-world ICU data to assess their suitability for use in clinical practice. All models were built in NONMEM and evaluated using prediction and simulation-based diagnostics for the ability to predict the subsequent meropenem concentrations without plasma concentrations (a priori), and with plasma concentrations (a posteriori), for use in therapeutic drug monitoring (TDM). Eighteen PopPK models were included for evaluation. The a priori fit of the models, without the use of plasma concentrations, was poor, with a prediction error (PE)% of the interquartile range (IQR) exceeding the ±30% threshold. The fit improved when one to three concentrations were used to improve model predictions for TDM purposes. Two models were in the acceptable range with an IQR PE% within ±30%, when two or three concentrations were used. The role of PK models to determine the starting dose of meropenem in this population seems limited. However, certain models might be suitable for TDM-based dose adjustment using two to three plasma concentrations.
Collapse
Affiliation(s)
- Letao Li
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Sebastiaan D. T. Sassen
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
- Correspondence:
| | - Tim M. J. Ewoldt
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
- Department of Intensive Care, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Alan Abdulla
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
| | - Nicole G. M. Hunfeld
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Intensive Care, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Anouk E. Muller
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Medical Microbiology, Haaglanden Medical Centre, 2597 AX The Hague, The Netherlands
| | - Brenda C. M. de Winter
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
| | - Henrik Endeman
- Department of Intensive Care, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Birgit C. P. Koch
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
10
|
Yang N, Wang J, Xie Y, Ding J, Wu C, Liu J, Pei Q. External Evaluation of Population Pharmacokinetic Models to Inform Precision Dosing of Meropenem in Critically Ill Patients. Front Pharmacol 2022; 13:838205. [PMID: 35662716 PMCID: PMC9157771 DOI: 10.3389/fphar.2022.838205] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/10/2022] [Indexed: 11/21/2022] Open
Abstract
Routine clinical meropenem therapeutic drug monitoring data can be applied to model-informed precision dosing. The current study aimed to evaluate the adequacy and predictive capabilities of the published models with routine meropenem data and identify the dosing adaptations using a priori and Bayesian estimation. For this, 14 meropenem models for the external evaluation carried out on an independent cohort of 134 patients with 205 meropenem concentrations were encoded in NONMEM 7.3. The performance was determined using: 1) prediction-based and simulation-based diagnostics; and 2) predicted meropenem concentrations by a priori prediction using patient covariates only; and Bayesian forecasting using previous observations. The clinical implications were assessed according to the required dose adaptations using the meropenem concentrations. All assessments were stratified based on the patients with or without continuous renal replacement therapy. Although none of the models passed all tests, the model by Muro et al. showed the least bias. Bayesian forecasting could improve the predictability over an a priori approach, with a relative bias of −11.63–68.89% and −302.96%–130.37%, and a relative root mean squared error of 34.99–110.11% and 14.78–241.81%, respectively. A dosing change was required in 40.00–68.97% of the meropenem observation results after Bayesian forecasting. In summary, the published models couldn’t adequately describe the meropenem pharmacokinetics of our center. Although the selection of an initial meropenem dose with a priori prediction is challenging, the further model-based analysis combining therapeutic drug monitoring could be utilized in the clinical practice of meropenem therapy.
Collapse
Affiliation(s)
- Nan Yang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Wang
- Department of Pharmacy, Xiamen Children's Hospital (Children's Hospital of Fudan University Xiamen Branch), Xiamen, China
| | - Yueliang Xie
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Junjie Ding
- Center for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Cuifang Wu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Liu
- Department of Intensive Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qi Pei
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Biomarkers Predicting Tissue Pharmacokinetics of Antimicrobials in Sepsis: A Review. Clin Pharmacokinet 2022; 61:593-617. [PMID: 35218003 PMCID: PMC9095522 DOI: 10.1007/s40262-021-01102-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 02/07/2023]
Abstract
The pathophysiology of sepsis alters drug pharmacokinetics, resulting in inadequate drug exposure and target-site concentration. Suboptimal exposure leads to treatment failure and the development of antimicrobial resistance. Therefore, we seek to optimize antimicrobial therapy in sepsis by selecting the right drug and the correct dosage. A prerequisite for achieving this goal is characterization and understanding of the mechanisms of pharmacokinetic alterations. However, most infections take place not in blood but in different body compartments. Since tissue pharmacokinetic assessment is not feasible in daily practice, we need to tailor antibiotic treatment according to the specific patient’s pathophysiological processes. The complex pathophysiology of sepsis and the ineffectiveness of current targeted therapies suggest that treatments guided by biomarkers predicting target-site concentration could provide a new therapeutic strategy. Inflammation, endothelial and coagulation activation markers, and blood flow parameters might be indicators of impaired tissue distribution. Moreover, hepatic and renal dysfunction biomarkers can predict not only drug metabolism and clearance but also drug distribution. Identification of the right biomarkers can direct drug dosing and provide timely feedback on its effectiveness. Therefore, this might decrease antibiotic resistance and the mortality of critically ill patients. This article fills the literature gap by characterizing patient biomarkers that might be used to predict unbound plasma-to-tissue drug distribution in critically ill patients. Although all biomarkers must be clinically evaluated with the ultimate goal of combining them in a clinically feasible scoring system, we support the concept that the appropriate biomarkers could be used to direct targeted antibiotic dosing.
Collapse
|
12
|
Combination of pharmacokinetic and pathogen susceptibility information to optimize meropenem treatment of gram-negative infections in critically ill patients. Antimicrob Agents Chemother 2021; 66:e0183121. [PMID: 34871092 DOI: 10.1128/aac.01831-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Meropenem is one of the most frequently used antibiotics to treat life-threatening infections in critically ill patients. This study aimed to develop a meropenem dosing algorithm for the treatment of gram-negative infections based on intensive care unit (ICU)-specific resistance data. Methods: Antimicrobial susceptibility testing of gram-negative bacteria obtained from critically ill patients was carried out from 2016 to 2020 at a tertiary care hospital. Based on the observed minimal inhibitory concentration (MIC) distribution, stochastic simulations (n=1000) of an evaluated pharmacokinetic meropenem model and a defined pharmacokinetic/pharmacodynamic target (100%T>4xMIC while minimum concentrations <44.5 mg/L), dosing recommendations for patients with varying renal function were derived: Pathogen-specific MIC distributions were used to calculate the cumulative fraction of response (CFR) and the overall MIC distribution was used to calculate the local pathogen-independent mean fraction of response (LPIFR) for the investigated dosing regimens. A CFR/LPIFR >90% was considered adequate. Results: The observed MIC distribution significantly differed from the EUCAST database. Based on the 6520 MIC values included, a three-level dosing algorithm was developed. If the pathogen causing the infection is unknown (level 1), known (level 2), known to be neither Pseudomonas aeruginosa nor Acinetobacter baumannii or classified as susceptible (level 3), a continuous infusion of 1.5 g daily reached sufficient target attainment independent of renal function. In all other cases dosing needs to be adjusted based on renal function. Conclusion: ICU-specific susceptibility data should be assessed regularly and integrated into dosing decisions. The presented workflow may serve as a blueprint for other antimicrobial settings. (250 words).
Collapse
|
13
|
Voriconazole Pharmacokinetics Are Not Altered in Critically Ill Patients with Acute-on-Chronic Liver Failure and Continuous Renal Replacement Therapy: An Observational Study. Microorganisms 2021; 9:microorganisms9102087. [PMID: 34683408 PMCID: PMC8538714 DOI: 10.3390/microorganisms9102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022] Open
Abstract
Infection and sepsis are a main cause of acute-on-chronic liver failure (ACLF). Besides bacteria, molds play a role. Voriconazole (VRC) is recommended but its pharmacokinetics (PK) may be altered by ACLF. Because ACLF patients often suffer from concomitant acute renal failure, we studied the PK of VRC in patients receiving continuous renal replacement therapy (RRT) with ACLF and compared it to PK of VRC in critically ill patients with RRT without concomitant liver failure (NLF). In this prospective cohort study, patients received weight-based VRC. Pre- and post-dialysis membrane, and dialysate samples obtained at different time points were analyzed by high-performance liquid chromatography. An integrated dialysis pharmacometric model was used to model the available PK data. The recommended, 50% lower, and 50% higher doses were analyzed by Monte-Carlo simulation (MCS) for day 1 and at steady-state with a target trough concentration (TC) of 0.5–3mg/L. Fifteen patients were included in this study. Of these, 6 patients suffered from ACLF. A two-compartment model with linear clearance described VRC PK. No difference for central (V1) or peripheral (V2) volumes of distribution or clearance could be demonstrated between the groups. V1 was 80.6L (95% confidence interval: 62.6–104) and V2 106L (65–166) with a body clearance of 4.7L/h (2.87–7.81) and RRT clearance of 1.46L/h (1.29–1.64). MCS showed TC below/within/above target of 10/74/16% on day 1 and 9/39/52% at steady-state for the recommended dose. A 50% lower dose resulted in 26/72/1% (day 1) and 17/64/19% at steady-state and 7/57/37% and 7/27/67% for a 50% higher dose. VRC pharmacokinetics are not significantly influenced by ACLF in critically ill patients who receive RRT. Maintenance dose should be adjusted in both groups. Due to the high interindividual variability, therapeutic drug monitoring seems inevitable.
Collapse
|
14
|
König C, Kluge S, Fuhrmann V, Jarczak D. Pharmacokinetics of meropenem during advanced organ support (ADVOS ®) and continuous renal replacement therapy. Int J Artif Organs 2021; 44:783-786. [PMID: 34144656 DOI: 10.1177/03913988211021101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The advanced organ support (ADVOS) system allows to eliminate water-soluble as well as protein-bound molecules. Despite its clinical features, to date nothing is known about the elimination of clinically relevant drugs such as antiinfectives. Therefore, we report a case treated with ADVOS, continuous renal replacement therapy (CRRT), and meropenem (1 g 8-hourly) for empiric sepsis therapy monitored by meropenem drug levels. ADVOS showed more efficient elimination of meropenem compared to CRRT which has to be considered when evaluating dosing regimens.
Collapse
Affiliation(s)
- Christina König
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Valentin Fuhrmann
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Medicine, Evangelisches Klinikum Niederrhein, Duisburg, Germany
| | - Dominik Jarczak
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Cefiderocol in Critically Ill Patients with Multi-Drug Resistant Pathogens: Real-Life Data on Pharmacokinetics and Microbiological Surveillance. Antibiotics (Basel) 2021; 10:antibiotics10060649. [PMID: 34071700 PMCID: PMC8226704 DOI: 10.3390/antibiotics10060649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Cefiderocol is a new siderophore-cephalosporin for the treatment of multi-drug resistant Gram-negative pathogens. As a reserve agent, it will and should be used primarily in critically ill patients in the upcoming years. Due to the novelty of the substance little data on the pharmacokinetics in critically ill patients with septic shock and renal failure (including continuous renal replacement therapy and cytokine adsorber therapy) is available. We performed therapeutic drug monitoring in a cohort of five patients treated with cefiderocol, to improve the knowledge on pharmacokinetics in this vulnerable patient population. As expected for a cephalosporin with predominantly renal elimination the maintenance dose could be reduced in patients with renal impairment or on continuous renal replacement therapy. The manufacturer’s dosing instructions were sufficient to achieve a drug level well above the MIC. However, the addition of a cytokine adsorber might reduce serum levels substantially, so that in this context therapeutic drug monitoring and dose adjustment are recommended.
Collapse
|
16
|
Bastida C, Hernández-Tejero M, Aziz F, Espinosa C, Sanz M, Brunet M, López E, Fernández J, Soy D. Meropenem population pharmacokinetics in patients with decompensated cirrhosis and severe infections. J Antimicrob Chemother 2020; 75:3619-3624. [PMID: 32887993 DOI: 10.1093/jac/dkaa362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/25/2020] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVES Meropenem pharmacokinetics (PK) may be altered in patients with cirrhosis, hampering target attainment. We aimed to describe meropenem PK in patients with decompensated cirrhosis and severe bacterial infections, identify the sources of PK variability and assess the performance of different dosing regimens to optimize the PK/pharmacodynamic (PD) target. METHODS Serum concentrations and covariates were obtained from patients with severe infections under meropenem treatment. A population PK analysis was performed using non-linear mixed-effects modelling and the final model was used to simulate meropenem exposure to assess the PTA. RESULTS Fifty-four patients were enrolled in the study. Data were best described by a one-compartment linear model. The estimated typical mean value for clearance (CL) was 8.35 L/h and the estimated volume of distribution (V) was 28.2 L. Creatinine clearance (CLCR) and MELD score significantly influenced meropenem CL, and acute-on-chronic liver failure (ACLF) significantly affected V. Monte Carlo simulations showed that a lower meropenem dose would be needed as CLCR decreases and as the MELD score increases. Patients with ACLF would have lower peak meropenem concentrations but similar steady-state concentrations compared with patients with no ACLF. CONCLUSIONS Our study identified two new covariates that influence meropenem PK in patients with decompensated cirrhosis in addition to CLCR: MELD score and ACLF. Dosing regimens are recommended to reach several PK/PD targets considering these clinical variables and any MIC within the susceptibility range.
Collapse
Affiliation(s)
- Carla Bastida
- Pharmacy Department, Division of Medicines, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - María Hernández-Tejero
- Liver Unit, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Fátima Aziz
- Liver Unit, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Cristina Espinosa
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Centre, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Miquel Sanz
- Liver Unit, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Centre, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Ester López
- Pharmacy Department, Division of Medicines, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Javier Fernández
- Liver Unit, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain.,European Foundation for the Study of Chronic Liver Failure (EF-Clif), EASL-CLIF Consortium and Grifols Chair, Barcelona, Spain
| | - Dolors Soy
- Pharmacy Department, Division of Medicines, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Garzón V, Bustos RH, G. Pinacho D. Personalized Medicine for Antibiotics: The Role of Nanobiosensors in Therapeutic Drug Monitoring. J Pers Med 2020; 10:E147. [PMID: 32993004 PMCID: PMC7712907 DOI: 10.3390/jpm10040147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Due to the high bacterial resistance to antibiotics (AB), it has become necessary to adjust the dose aimed at personalized medicine by means of therapeutic drug monitoring (TDM). TDM is a fundamental tool for measuring the concentration of drugs that have a limited or highly toxic dose in different body fluids, such as blood, plasma, serum, and urine, among others. Using different techniques that allow for the pharmacokinetic (PK) and pharmacodynamic (PD) analysis of the drug, TDM can reduce the risks inherent in treatment. Among these techniques, nanotechnology focused on biosensors, which are relevant due to their versatility, sensitivity, specificity, and low cost. They provide results in real time, using an element for biological recognition coupled to a signal transducer. This review describes recent advances in the quantification of AB using biosensors with a focus on TDM as a fundamental aspect of personalized medicine.
Collapse
Affiliation(s)
- Vivian Garzón
- PhD Biosciences Program, Universidad de La Sabana, Chía 140013, Colombia;
| | - Rosa-Helena Bustos
- Therapeutical Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia;
| | - Daniel G. Pinacho
- Therapeutical Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia;
| |
Collapse
|
18
|
Li L, Li X, Xia Y, Chu Y, Zhong H, Li J, Liang P, Bu Y, Zhao R, Liao Y, Yang P, Lu X, Jiang S. Recommendation of Antimicrobial Dosing Optimization During Continuous Renal Replacement Therapy. Front Pharmacol 2020; 11:786. [PMID: 32547394 PMCID: PMC7273837 DOI: 10.3389/fphar.2020.00786] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Continuous Renal Replacement Therapy (CRRT) is more and more widely used in patients for various indications recent years. It is still intricate for clinicians to decide a suitable empiric antimicrobial dosing for patients receiving CRRT. Inappropriate doses of antimicrobial agents may lead to treatment failure or drug resistance of pathogens. CRRT factors, patient individual conditions and drug pharmacokinetics/pharmacodynamics are the main elements effecting the antimicrobial dosing adjustment. With the development of CRRT techniques, some antimicrobial dosing recommendations in earlier studies were no longer appropriate for clinical use now. Here, we reviewed the literatures involving in new progresses of antimicrobial dosages, and complied the updated empirical dosing strategies based on CRRT modalities and effluent flow rates. The following antimicrobial agents were included for review: flucloxacillin, piperacillin/tazobactam, ceftriaxone, ceftazidime/avibactam, cefepime, ceftolozane/tazobactam, sulbactam, meropenem, imipenem, panipenem, biapenem, ertapenem, doripenem, amikacin, ciprofloxacin, levofloxacin, moxifloxacin, clindamycin, azithromycin, tigecycline, polymyxin B, colistin, vancomycin, teicoplanin, linezolid, daptomycin, sulfamethoxazole/trimethoprim, fluconazole, voriconazole, posaconzole, caspofungin, micafungin, amphotericin B, acyclovir, ganciclovir, oseltamivir, and peramivir.
Collapse
Affiliation(s)
- Lu Li
- Department of Pharmacy, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xin Li
- Department of Pharmacy, Second Hospital of Jilin University, Changchun, China
| | - Yanzhe Xia
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanqi Chu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Haili Zhong
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jia Li
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pei Liang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, China
| | - Yishan Bu
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin, China
| | - Rui Zhao
- School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yun Liao
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Yang
- Department of Pharmacy, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiaoyang Lu
- Department of Pharmacy, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Saiping Jiang
- Department of Pharmacy, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|