1
|
Chen X, Xiong R, Zhang M, Guan C, Feng L, Yao Z, Li Y, Liu W, Ye M, Li Y, Jiang X, Tang Y, Wang H, Zheng J. Effects of sitting position on ventilation distribution determined by electrical impedance tomography in ventilated ARDS patients. Intensive Crit Care Nurs 2024; 85:103782. [PMID: 39116511 DOI: 10.1016/j.iccn.2024.103782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE The study aimed to evaluate the improvements in pulmonary ventilation following a sitting position in ventilated ARDS patients using electrical impedance tomography. METHODOLOGY A total of 17 patients with ARDS under mechanical ventilation participated in this study, including 8 with moderate ARDS and 9 with severe ARDS. Each patient was initially placed in the supine position (S1), transitioned to sitting position (SP) for 30 min, and then returned to the supine position (S2). Patients were monitored for each period, with parameters recorded. MAIN OUTCOME MEASURES The primary outcome included the spatial distribution parameters of EIT, regional of interest (ROI), end-expiratory lung impedance (ΔEELI), and parameters of respiratory mechanics. RESULTS Compared to S1, the SP significantly altered the distribution in ROI1 (11.29 ± 4.70 vs 14.88 ± 5.00 %, p = 0.003) and ROI2 (35.59 ± 8.99 vs 44.65 ± 6.97 %, p < 0.001), showing reductions, while ROI3 (39.71 ± 11.49 vs 33.06 ± 6.34 %, p = 0.009), ROI4 (13.35 ± 8.76 vs 7.24 ± 5.23 %, p < 0.001), along with peak inspiratory pressure (29.24 ± 3.96 vs 27.71 ± 4.00 cmH2O, p = 0.036), showed increases. ΔEELI decreased significantly ventrally (168.3 (40.33 - 189.5), p < 0.0001) and increased significantly dorsally (461.7 (297.5 - 683.7), p < 0.0001). The PaO2/FiO2 ratio saw significant improvement in S2 compared to S1 after 30 min in the seated position (108 (73 - 130) vs 96 (57 - 129) mmHg, p = 0.03). CONCLUSIONS The sitting position is associated with enhanced compliance, improved oxygenation, and more homogenous ventilation in patients with ventilated ARDS compared to the supine position. IMPLICATIONS FOR CLINICAL PRACTICE It is important to know the impact of postural changes on patient pulmonary ventilation in order to standardize safe practices in critically ill patients. It may be helpful in the management among ventilated patients.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Ruyang Xiong
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Ming Zhang
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Chunming Guan
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Liwei Feng
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, PR China; Department of Intensive Care Medicine, The Arong Banner People's Hospital, Hulunbuir 162750, Inner Mongolia Autonomous Region, PR China
| | - Zhipeng Yao
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Yue Li
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Wenhua Liu
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Ming Ye
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Yunlong Li
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Xuesong Jiang
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Yonglin Tang
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Hongliang Wang
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, PR China.
| | - Junbo Zheng
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, PR China.
| |
Collapse
|
2
|
Franchineau G, Jonkman AH, Piquilloud L, Yoshida T, Costa E, Rozé H, Camporota L, Piraino T, Spinelli E, Combes A, Alcala GC, Amato M, Mauri T, Frerichs I, Brochard LJ, Schmidt M. Electrical Impedance Tomography to Monitor Hypoxemic Respiratory Failure. Am J Respir Crit Care Med 2024; 209:670-682. [PMID: 38127779 DOI: 10.1164/rccm.202306-1118ci] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
Hypoxemic respiratory failure is one of the leading causes of mortality in intensive care. Frequent assessment of individual physiological characteristics and delivery of personalized mechanical ventilation (MV) settings is a constant challenge for clinicians caring for these patients. Electrical impedance tomography (EIT) is a radiation-free bedside monitoring device that is able to assess regional lung ventilation and changes in aeration. With real-time tomographic functional images of the lungs obtained through a thoracic belt, clinicians can visualize and estimate the distribution of ventilation at different ventilation settings or following procedures such as prone positioning. Several studies have evaluated the performance of EIT to monitor the effects of different MV settings in patients with acute respiratory distress syndrome, allowing more personalized MV. For instance, EIT could help clinicians find the positive end-expiratory pressure that represents a compromise between recruitment and overdistension and assess the effect of prone positioning on ventilation distribution. The clinical impact of the personalization of MV remains to be explored. Despite inherent limitations such as limited spatial resolution, EIT also offers a unique noninvasive bedside assessment of regional ventilation changes in the ICU. This technology offers the possibility of a continuous, operator-free diagnosis and real-time detection of common problems during MV. This review provides an overview of the functioning of EIT, its main indices, and its performance in monitoring patients with acute respiratory failure. Future perspectives for use in intensive care are also addressed.
Collapse
Affiliation(s)
- Guillaume Franchineau
- Service de Medecine Intensive Reanimation, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, Poissy, France
| | - Annemijn H Jonkman
- Department of Intensive Care Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lise Piquilloud
- Adult Intensive Care Unit, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Takeshi Yoshida
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eduardo Costa
- Pulmonary Division, Cardiopulmonary Department, Heart Institute, University of São Paulo, São Paulo, Brazil
| | - Hadrien Rozé
- Department of Thoraco-Abdominal Anesthesiology and Intensive Care, Bordeaux University Hospital, University of Bordeaux, Bordeaux, France
- Réanimation Polyvalente, Centre Hospitalier Côte Basque, Bayonne, France
| | - Luigi Camporota
- Health Centre for Human and Applied Physiological Sciences, Department of Adult Critical Care, Guy's and St Thomas' National Health Service Foundation Trust, London, United Kingdom
| | - Thomas Piraino
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Ontario, Canada
- Division of Critical Care, Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alain Combes
- Sorbonne Université, Groupe de Recherche Clinique 30, Réanimation et Soins Intensifs du Patient en Insuffisance Respiratoire Aigüe, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Service de Médecine Intensive - Réanimation, Assistance Publique-Hôpitaux de Paris (APHP) Hôpital Pitié-Salpêtrière, Paris, France
| | - Glasiele C Alcala
- Pulmonary Division, Cardiopulmonary Department, Heart Institute, University of São Paulo, São Paulo, Brazil
| | - Marcelo Amato
- Pulmonary Division, Cardiopulmonary Department, Heart Institute, University of São Paulo, São Paulo, Brazil
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplants, University of Milan, Milan, Italy
| | - Inéz Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Centre of Schleswig-Holstein Campus Kiel, Kiel, Germany; and
| | - Laurent J Brochard
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, Ontario, Canada
| | - Matthieu Schmidt
- Sorbonne Université, Groupe de Recherche Clinique 30, Réanimation et Soins Intensifs du Patient en Insuffisance Respiratoire Aigüe, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Service de Médecine Intensive - Réanimation, Assistance Publique-Hôpitaux de Paris (APHP) Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
3
|
Zhou X, Luo X, Li Q, Chen G, Tong J, Deng W. Prone versus lateral position in acute hypoxemic respiratory failure patients with HFNO therapy: study protocol for a multicentre randomised controlled open-label trial. Trials 2023; 24:762. [PMID: 38012708 PMCID: PMC10683165 DOI: 10.1186/s13063-023-07761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/28/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND High-flow nasal oxygen (HFNO) therapy is a leading treatment technique for acute hypoxemic respiratory failure (AHRF), but its treatment failure rate remains high. The awake prone position (APP) has been proven to increase oxygenation and reduce the endotracheal intubation rate in patients with COVID-19-induced AHRF. However, the APP is poorly tolerated in patients, and its performance in improving prognoses is controversial. The lateral position has a similar mechanism and effect to the prone position, but it is more tolerable than the prone position. Therefore, it is worth exploring whether the lateral position is better for awake patients with AHRF. METHODS This is a protocol for a three-arm parallel-group multicentre randomised controlled open-label exploratory trial. A total of 583 patients from two hospitals in Chongqing, China, will be randomised to take the semi-recumbent position, lateral position, or prone position at a ratio of 1:1:1. Patients are all diagnosed with AHRF secondary to non-COVID-19 pneumonia or lung infection and receiving HFNO therapy. The primary outcome is ventilator-free days in 28 days. The secondary outcomes are the 28-day intubation rate, 28-day all-cause mortality, total position change time, the incidence of adverse events, number of hours using HFNO therapy, length of hospital and intensive care unit (ICU) stay, and others. We will conduct subgroup analyses on the arterial partial pressure of oxygen to the fraction of inspiration oxygen (PaO2/FiO2) ratio (> 200 mmHg or ≤ 200 mmHg), time from admission to intervention implementation (< 24 h or ≥ 24 h), position changing time, and different diagnoses. DISCUSSION This trial will explore the prognostic effects of the APP with that of the lateral position in awake patients with non-COVID-19AHRF and compare the differences between them. To provide evidence for clinical decision-making and further research on position management. TRIAL REGISTRATION This trial was registered in the Chinese Clinical Trial Registry. The registration number is ChiCTR2200055822 . Registered on January 20, 2022.
Collapse
Affiliation(s)
- Xixin Zhou
- The Second Clinical College, Chongqing Medical University, Chongqing, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqing Luo
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Li
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guihua Chen
- Nursing Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jin Tong
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wang Deng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Heines SJH, Becher TH, van der Horst ICC, Bergmans DCJJ. Clinical Applicability of Electrical Impedance Tomography in Patient-Tailored Ventilation: A Narrative Review. Tomography 2023; 9:1903-1932. [PMID: 37888742 PMCID: PMC10611090 DOI: 10.3390/tomography9050150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Electrical Impedance Tomography (EIT) is a non-invasive bedside imaging technique that provides real-time lung ventilation information on critically ill patients. EIT can potentially become a valuable tool for optimising mechanical ventilation, especially in patients with acute respiratory distress syndrome (ARDS). In addition, EIT has been shown to improve the understanding of ventilation distribution and lung aeration, which can help tailor ventilatory strategies according to patient needs. Evidence from critically ill patients shows that EIT can reduce the duration of mechanical ventilation and prevent lung injury due to overdistension or collapse. EIT can also identify the presence of lung collapse or recruitment during a recruitment manoeuvre, which may guide further therapy. Despite its potential benefits, EIT has not yet been widely used in clinical practice. This may, in part, be due to the challenges associated with its implementation, including the need for specialised equipment and trained personnel and further validation of its usefulness in clinical settings. Nevertheless, ongoing research focuses on improving mechanical ventilation and clinical outcomes in critically ill patients.
Collapse
Affiliation(s)
- Serge J. H. Heines
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (I.C.C.v.d.H.); (D.C.J.J.B.)
| | - Tobias H. Becher
- Department of Anesthesiology and Intensive Care Medicine, Campus Kiel, University Medical Centre Schleswig-Holstein, 24118 Kiel, Germany;
| | - Iwan C. C. van der Horst
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (I.C.C.v.d.H.); (D.C.J.J.B.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Dennis C. J. J. Bergmans
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (I.C.C.v.d.H.); (D.C.J.J.B.)
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
5
|
Caetano DS, Morais CC, Leite WS, Lins RDAC, Medeiros KJ, Cornejo RA, de Andrade AD, Campos SL, Brandão DC. Electrical Impedance Tomographic Mapping of Hypoventilated Lung Areas in Intubated Patients With COVID-19. Respir Care 2023; 68:773-776. [PMID: 37185111 PMCID: PMC10208998 DOI: 10.4187/respcare.10261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Débora S Caetano
- Physiotherapy Department, Universiade Federal de Pernambuco, Recife, Brazil
| | - Caio Ca Morais
- Physiotherapy Department, Universiade Federal de Pernambuco, Recife, Brazil
- Laboratório de Pneumologia LIM-09, Disciplina de Pneumologia, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - Wagner S Leite
- Physiotherapy Department, Universiade Federal de Pernambuco, Recife, Brazil
| | | | - Kyle J Medeiros
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Rodrigo A Cornejo
- Unidad de Pacientes Críticos, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | | | - Shirley L Campos
- Physiotherapy Department, Universiade Federal de Pernambuco, Recife, Brazil
| | - Daniella C Brandão
- Physiotherapy Department, Universiade Federal de Pernambuco, Recife, Brazil.
| |
Collapse
|
6
|
Rezoagli E, Bastia L, Brochard L, Bellani G. Physical manoeuvres in patients with ARDS and low compliance: bedside approaches to detect lung hyperinflation and optimise mechanical ventilation. Eur Respir J 2023; 61:61/5/2202169. [PMID: 37208034 DOI: 10.1183/13993003.02169-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/30/2023] [Indexed: 05/21/2023]
Affiliation(s)
- Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Co-first authors
| | - Luca Bastia
- Neurointensive Care Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Co-first authors
| | - Laurent Brochard
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada
- Co-senior authors
| | - Giacomo Bellani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Co-senior authors
| |
Collapse
|
7
|
Mlček M, Borges JB, Otáhal M, Alcala GC, Hladík D, Kuriščák E, Tejkl L, Amato M, Kittnar O. Real-time effects of lateral positioning on regional ventilation and perfusion in an experimental model of acute respiratory distress syndrome. Front Physiol 2023; 14:1113568. [PMID: 37020459 PMCID: PMC10067565 DOI: 10.3389/fphys.2023.1113568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/01/2023] [Indexed: 03/22/2023] Open
Abstract
Low-volume lung injury encompasses local concentration of stresses in the vicinity of collapsed regions in heterogeneously ventilated lungs. We aimed to study the effects on ventilation and perfusion distributions of a sequential lateral positioning (30°) strategy using electrical impedance tomography imaging in a porcine experimental model of early acute respiratory distress syndrome (ARDS). We hypothesized that such strategy, including a real-time individualization of positive end-expiratory pressure (PEEP) whenever in lateral positioning, would provide attenuation of collapse in the dependent lung regions. A two-hit injury acute respiratory distress syndrome experimental model was established by lung lavages followed by injurious mechanical ventilation. Then, all animals were studied in five body positions in a sequential order, 15 min each: Supine 1; Lateral Left; Supine 2; Lateral Right; Supine 3. The following functional images were analyzed by electrical impedance tomography: ventilation distributions and regional lung volumes, and perfusion distributions. The induction of the acute respiratory distress syndrome model resulted in a marked fall in oxygenation along with low regional ventilation and compliance of the dorsal half of the lung (gravitational-dependent in supine position). Both the regional ventilation and compliance of the dorsal half of the lung greatly increased along of the sequential lateral positioning strategy, and maximally at its end. In addition, a corresponding improvement of oxygenation occurred. In conclusion, our sequential lateral positioning strategy, with sufficient positive end-expiratory pressure to prevent collapse of the dependent lung units during lateral positioning, provided a relevant diminution of collapse in the dorsal lung in a porcine experimental model of early acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Mikuláš Mlček
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
| | - João Batista Borges
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
- *Correspondence: João Batista Borges,
| | - Michal Otáhal
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
- Department of Anaesthesiology, Resuscitation and Intensive Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Glasiele Cristina Alcala
- Pulmonology Division, Cardiopulmonary Department, Heart Institute, University of Sao Paulo, São Paulo, Brazil
| | - Dominik Hladík
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
- Department of Anaesthesiology, Resuscitation and Intensive Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Eduard Kuriščák
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
| | - Leoš Tejkl
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
| | - Marcelo Amato
- Pulmonology Division, Cardiopulmonary Department, Heart Institute, University of Sao Paulo, São Paulo, Brazil
| | - Otomar Kittnar
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
| |
Collapse
|
8
|
Zitzmann A, Pulletz S, Gonzales‐Rios P, Frenkel P, Teschendorf P, Kremeier P, Löser B, Krukewitt L, Reuter DA, Böhm SH, Müller‐Graf F. Regional ventilation in spontaneously breathing COVID-19 patients during postural maneuvers assessed by electrical impedance tomography. Acta Anaesthesiol Scand 2023; 67:185-194. [PMID: 36268561 PMCID: PMC9874544 DOI: 10.1111/aas.14161] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/26/2022] [Accepted: 10/13/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Gravity-dependent positioning therapy is an established concept in the treatment of severe acute respiratory distress syndrome and improves oxygenation in spontaneously breathing patients with hypoxemic acute respiratory failure. In patients with coronavirus disease 2019, this therapy seems to be less effective. Electrical impedance tomography as a point-of-care functional imaging modality for visualizing regional ventilation can possibly help identify patients who might benefit from positioning therapy and guide those maneuvers in real-time. Therefore, in this prospective observational study, we aimed to discover typical patterns in response to positioning maneuvers. METHODS Distribution of ventilation in 10 healthy volunteers and in 12 patients with hypoxemic respiratory failure due to coronavirus disease 2019 was measured in supine, left, and right lateral positions using electrical impedance tomography. RESULTS In this study, patients with coronavirus disease 2019 showed a variety of ventilation patterns, which were not predictable, whereas all but one healthy volunteer showed a typical and expected gravity-dependent distribution of ventilation with the body positions. CONCLUSION Distribution of ventilation and response to lateral positioning is variable and thus unpredictable in spontaneously breathing patients with coronavirus disease 2019. Electrical impedance tomography might add useful information on the immediate reaction to postural maneuvers and should be elucidated further in clinical studies. Therefore, we suggest a customized individualized positioning therapy guided by electrical impedance tomography.
Collapse
Affiliation(s)
- Amelie Zitzmann
- Department of Anaesthesiology, Intensive Care Medicine and Pain TherapyUniversity Medical Centre RostockRostockGermany
| | - Sven Pulletz
- Department of Anaesthesiology, Intensive Care Medicine and Pain TherapyUniversity Medical Centre RostockRostockGermany
| | - Pablo Gonzales‐Rios
- Department of Anaesthesiology, Intensive Care Medicine and Pain TherapyUniversity Medical Centre RostockRostockGermany,Department of Anaesthesiology and Intensive Care MedicineKlinikum OsnabrückOsnabrückGermany
| | - Paul Frenkel
- Department of Anaesthesiology, Intensive Care Medicine and Pain TherapyUniversity Medical Centre RostockRostockGermany
| | - Peter Teschendorf
- Department of Anaesthesiology and Intensive Care MedicineKlinikum OsnabrückOsnabrückGermany
| | - Peter Kremeier
- Simulation Center for Clinical VentilationWaldbronnGermany
| | - Benjamin Löser
- Department of Anaesthesiology, Intensive Care Medicine and Pain TherapyUniversity Medical Centre RostockRostockGermany
| | - Lisa Krukewitt
- Department of Anaesthesiology, Intensive Care Medicine and Pain TherapyUniversity Medical Centre RostockRostockGermany
| | - Daniel A. Reuter
- Department of Anaesthesiology, Intensive Care Medicine and Pain TherapyUniversity Medical Centre RostockRostockGermany
| | - Stephan H. Böhm
- Department of Anaesthesiology, Intensive Care Medicine and Pain TherapyUniversity Medical Centre RostockRostockGermany
| | - Fabian Müller‐Graf
- Department of Anaesthesiology, Intensive Care Medicine and Pain TherapyUniversity Medical Centre RostockRostockGermany
| |
Collapse
|
9
|
Bajon F, Gauthier V. Management of refractory hypoxemia using recruitment maneuvers and rescue therapies: A comprehensive review. Front Vet Sci 2023; 10:1157026. [PMID: 37065238 PMCID: PMC10098094 DOI: 10.3389/fvets.2023.1157026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/14/2023] [Indexed: 04/18/2023] Open
Abstract
Refractory hypoxemia in patients with acute respiratory distress syndrome treated with mechanical ventilation is one of the most challenging conditions in human and veterinary intensive care units. When a conventional lung protective approach fails to restore adequate oxygenation to the patient, the use of recruitment maneuvers and positive end-expiratory pressure to maximize alveolar recruitment, improve gas exchange and respiratory mechanics, while reducing the risk of ventilator-induced lung injury has been suggested in people as the open lung approach. Although the proposed physiological rationale of opening and keeping open previously collapsed or obstructed airways is sound, the technique for doing so, as well as the potential benefits regarding patient outcome are highly controversial in light of recent randomized controlled trials. Moreover, a variety of alternative therapies that provide even less robust evidence have been investigated, including prone positioning, neuromuscular blockade, inhaled pulmonary vasodilators, extracorporeal membrane oxygenation, and unconventional ventilatory modes such as airway pressure release ventilation. With the exception of prone positioning, these modalities are limited by their own balance of risks and benefits, which can be significantly influenced by the practitioner's experience. This review explores the rationale, evidence, advantages and disadvantages of each of these therapies as well as available methods to identify suitable candidates for recruitment maneuvers, with a summary on their application in veterinary medicine. Undoubtedly, the heterogeneous and evolving nature of acute respiratory distress syndrome and individual lung phenotypes call for a personalized approach using new non-invasive bedside assessment tools, such as electrical impedance tomography, lung ultrasound, and the recruitment-to-inflation ratio to assess lung recruitability. Data available in human medicine provide valuable insights that could, and should, be used to improve the management of veterinary patients with severe respiratory failure with respect to their intrinsic anatomy and physiology.
Collapse
|
10
|
Rezoagli E, Chen L, Bellani G. Editorial: Lung monitoring in respiratory failure. Front Med (Lausanne) 2023; 10:1155898. [PMID: 36926322 PMCID: PMC10013969 DOI: 10.3389/fmed.2023.1155898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Affiliation(s)
- Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Department of Emergency and Intensive Care, Terapia intensiva e Semintensiva adulti e pediatrica, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, Monza, Italy
| | - Lu Chen
- Keenan Research Centre, St Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Giacomo Bellani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Department of Emergency and Intensive Care, Terapia intensiva e Semintensiva adulti e pediatrica, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
11
|
Reddy MP, Subramaniam A, Chua C, Ling RR, Anstey C, Ramanathan K, Slutsky AS, Shekar K. Respiratory system mechanics, gas exchange, and outcomes in mechanically ventilated patients with COVID-19-related acute respiratory distress syndrome: a systematic review and meta-analysis. THE LANCET. RESPIRATORY MEDICINE 2022; 10:1178-1188. [PMID: 36335956 PMCID: PMC9708089 DOI: 10.1016/s2213-2600(22)00393-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/28/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
The association of respiratory mechanics, particularly respiratory system static compliance (CRS), with severity of hypoxaemia in patients with COVID-19-related acute respiratory distress syndrome (ARDS) has been widely debated, with some studies reporting distinct ARDS phenotypes based on CRS. Ascertaining whether such phenotypes exist is important, because they might indicate the need for ventilation strategies that differ from those used in patients with ARDS due to other causes. In a systematic review and meta-analysis of studies published between Dec 1, 2019, and March 14, 2022, we evaluated respiratory system mechanics, ventilator parameters, gas exchange parameters, and clinical outcomes in patients with COVID-19-related ARDS. Among 11 356 patients in 37 studies, mean reported CRS, measured close to the time of endotracheal intubation, was 35·8 mL/cm H2O (95% CI 33·9-37·8; I2=96·9%, τ2=32·6). Pooled mean CRS was normally distributed. Increasing ARDS severity (assessed by PaO2/FiO2 ratio as mild, moderate, or severe) was associated with decreasing CRS. We found no evidence for distinct CRS-based clinical phenotypes in patients with COVID-19-related ARDS, and we therefore conclude that no change in conventional lung-protective ventilation strategies is warranted. Future studies should explore the personalisation of mechanical ventilation strategies according to factors including respiratory system mechanics and haemodynamic status in patients with ARDS.
Collapse
Affiliation(s)
- Mallikarjuna Ponnapa Reddy
- Department of Intensive Care Medicine, Calvary Hospital, Canberra, ACT, Australia,Department of Intensive Care Medicine, Peninsula Health, Frankston, VIC, Australia,Correspondence to: Dr Mallikarjuna Ponnapa Reddy, Department of Intensive Care Medicine, Calvary Hospital, Canberra ACT 2617, Australia
| | - Ashwin Subramaniam
- Department of Intensive Care Medicine, Peninsula Health, Frankston, VIC, Australia,Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, Monash University, Clayton, VIC, Australia,Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia,Peninsula Clinical School, Monash University, Clayton, VIC, Australia
| | - Clara Chua
- Department of Intensive Care Medicine, Peninsula Health, Frankston, VIC, Australia,Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Ryan Ruiyang Ling
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher Anstey
- Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine University of Queensland, Brisbane, QLD, Australia,School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
| | - Kollengode Ramanathan
- Department of Surgery, National University of Singapore, Singapore,Cardiothoracic Intensive Care Unit, National University Heart Centre, National University Hospital, Singapore
| | - Arthur S Slutsky
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada,Department of Medicine and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Kiran Shekar
- Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine University of Queensland, Brisbane, QLD, Australia,Department of Intensive Care Medicine, Bond University, Gold Coast, QLD, Australia,Adult Intensive Care Services and Critical Care Research Group, the Prince Charles Hospital, Brisbane, QLD, Australia,Department of Intensive Care Medicine, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Nascimento MS, do Prado C, Costa ELV, Alcala GC, Corrêa LC, Rossi FS, Amato MBP, Rebello CM. Effect of flow rate on the end-expiratory lung volume in infants with bronchiolitis using high-flow nasal cannula evaluated through electrical impedance tomography. Pediatr Pulmonol 2022; 57:2681-2687. [PMID: 35931651 DOI: 10.1002/ppul.26082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES To evaluate the effects of four flow rates on the functional residual capacity (FRC) and pulmonary ventilation distribution while using a high-flow nasal cannula (HFNC). WORKING HYPOTHESIS Our hypothesis is that flow rates below 1.5 L·kg-1 ·min-1 lead to FRC loss and respiratory distress. STUDY DESIGN A single-center, prospective clinical study. PATIENT SELECTION Infants diagnosed with acute viral bronchiolitis were given HFNC. METHODOLOGY Through a prospective clinical study, the effects of four different flow rates, 2.0, 1.5, 1.0, and 0.5 L·kg-1 ·min-1 , on FRC and the pulmonary ventilation pattern were evaluated using electrical impedance tomography. The impedance variation (delta Z), end-expiratory lung volume (EELZ), respiratory rate, heart rate, respiratory distress score, and saturation/fraction of inspired oxygen ratio (SpO2 /FI O2 ), were also evaluated at each flow rate. RESULTS Among the 11 infants included, There was a decrease in respiratory distress score at a flow rate of 1.5 L·kg-1 ·min-1 (*p = 0.021), and at a flow rate of 2.0 L·kg-1 ·min-1 (**p = 0.003) compared to 0.5 L·kg-1 ·min-1 . There was also a small but significant increase in SpO2 /FiO2 at flow rates of 1.5 (*p = 0.023), and 2.0 L·kg-1 ·min-1 (**p = 0.008) compared to 0.5 L·kg-1 ·min-1 . There were no other significant changes in the clinical parameters. In the global EELZ measurements, there was a significant increase under a flow rate of 2.0 L·kg-1 ·min-1 as compared to 0.5 L·kg-1 ·min-1 (p = 0.03). In delta Z values, there were no significant variations between the different flow rates. CONCLUSION The ∆EELZ increases at the highest flow rates were accompanied by decreased distress scores and improved oxygenation.
Collapse
Affiliation(s)
- Milena S Nascimento
- Maternal-Child Department, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Cristiane do Prado
- Maternal-Child Department, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Glasiele C Alcala
- Divisão de Pneumologia, Departamento Cardiopulmonar, Instituto do Coração (INCOR), Sao Paulo City, Sao Paulo, Brazil
| | - Letícia C Corrêa
- Divisão de Pneumologia, Departamento Cardiopulmonar, Instituto do Coração (INCOR), Sao Paulo City, Sao Paulo, Brazil
| | - Felipe S Rossi
- Maternal-Child Department, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Marcelo B P Amato
- Divisão de Pneumologia, Departamento Cardiopulmonar, Instituto do Coração (INCOR), Sao Paulo City, Sao Paulo, Brazil
| | - Celso M Rebello
- Maternal-Child Department, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
13
|
Bastia L, Rozé H, Brochard L. Asymmetrical Lung Injury: Management and Outcome. Semin Respir Crit Care Med 2022; 43:369-378. [PMID: 35785812 DOI: 10.1055/s-0042-1744303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Among mechanically ventilated patients, asymmetrical lung injury is probably extremely frequent in the intensive care unit but the lack of standardized measurements does not allow to describe any prevalence among mechanically ventilated patients. Many past studies have focused only on unilateral injury and have mostly described the effect of lateral positioning. The good lung put downward might receive more perfusion while the sick lung placed upward receive more ventilation than supine. This usually results in better oxygenation but can also promote atelectasis in the healthy lung and no consensus has emerged on the clinical indication of this posture. Recently, electrical impedance tomography (EIT) has allowed for the first time to precisely describe the distribution of ventilation in each lung and to better study asymmetrical lung injury. At low positive-end-expiratory pressure (PEEP), a very heterogeneous ventilation exists between the two lungs and the initial increase in PEEP first helps to recruit the sick lung and protect the healthier lung. However, further increasing PEEP distends the less injured lung and must be avoided. The right level can be found using EIT and transpulmonary pressure. In addition, EIT can show that in the two lungs, airway closure is present but with very different airway opening pressures (AOPs) which cannot be identified on a global assessment. This may suggest a very different PEEP level than on a global assessment. Lastly, epidemiological studies suggest that in hypoxemic patients, the number of quadrants involved has a strong prognostic value. The number of quadrants is more important than the location of the unilateral or bilateral nature of the involvement for the prognosis, and hypoxemic patients with unilateral lung injury should probably be considered as requiring lung protective ventilation as classical acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Luca Bastia
- Neurointensive Care Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Hadrien Rozé
- Thoracic Surgery and Lung Transplant Unit, Department of Anesthesiology and Critical Care, Bordeaux University Hospital, Haut Leveque Hospital, Pessac, France.,Centre de Recherche Cardio Thoracique INSERM 1045, Pessac, France
| | - Laurent Brochard
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Unity Health Toronto, Toronto, Canada
| |
Collapse
|
14
|
Rezoagli E, Laffey JG, Bellani G. Monitoring Lung Injury Severity and Ventilation Intensity during Mechanical Ventilation. Semin Respir Crit Care Med 2022; 43:346-368. [PMID: 35896391 DOI: 10.1055/s-0042-1748917] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe form of respiratory failure burden by high hospital mortality. No specific pharmacologic treatment is currently available and its ventilatory management is a key strategy to allow reparative and regenerative lung tissue processes. Unfortunately, a poor management of mechanical ventilation can induce ventilation induced lung injury (VILI) caused by physical and biological forces which are at play. Different parameters have been described over the years to assess lung injury severity and facilitate optimization of mechanical ventilation. Indices of lung injury severity include variables related to gas exchange abnormalities, ventilatory setting and respiratory mechanics, ventilation intensity, and the presence of lung hyperinflation versus derecruitment. Recently, specific indexes have been proposed to quantify the stress and the strain released over time using more comprehensive algorithms of calculation such as the mechanical power, and the interaction between driving pressure (DP) and respiratory rate (RR) in the novel DP multiplied by four plus RR [(4 × DP) + RR] index. These new parameters introduce the concept of ventilation intensity as contributing factor of VILI. Ventilation intensity should be taken into account to optimize protective mechanical ventilation strategies, with the aim to reduce intensity to the lowest level required to maintain gas exchange to reduce the potential for VILI. This is further gaining relevance in the current era of phenotyping and enrichment strategies in ARDS.
Collapse
Affiliation(s)
- Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Department of Emergency and Intensive Care, San Gerardo University Hospital, Monza, Italy
| | - John G Laffey
- School of Medicine, National University of Ireland, Galway, Ireland.,Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Hospital Group, Galway, Ireland.,Lung Biology Group, Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Giacomo Bellani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Department of Emergency and Intensive Care, San Gerardo University Hospital, Monza, Italy
| |
Collapse
|
15
|
Lucchini A, Bambi S, Manici M. Monitoring patient's vital signs: A new and old issue for intensive care nurses. Intensive Crit Care Nurs 2022; 71:103254. [PMID: 35396102 DOI: 10.1016/j.iccn.2022.103254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Alberto Lucchini
- General Intensive Care Unit, Emergency Department, ASST Monza, San Gerardo Hospital, University of Milano-Bicocca, Via Pergolesi 33, Monza (MB), Italy.
| | - Stefano Bambi
- Department of Health Sciences, University of Florence, Italy.
| | - Matteo Manici
- Anaesthesia and Post Operative Intensive Care Unit, University Hospital of Parma, Parma, Italy
| |
Collapse
|