1
|
Masalma R, Ghanim A, Jarrar M, Zidan T, Alkaiyat A, Abdalla M, M Jaber M, Qattawi I, Joudeh N, Khayyat R. Antibiotic utilization at an orthopedic inpatient department in a large governmental hospital in the north of the West Bank, Palestine; a retrospective observational study. BMC Infect Dis 2024; 24:851. [PMID: 39174925 PMCID: PMC11340046 DOI: 10.1186/s12879-024-09686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Studies evaluating the patterns of antibiotic consumption are becoming increasingly necessary as a result of the increased use of antibiotics and development of antibiotic resistance globally. This study aimed to evaluate the use of antibiotics in in terms of both quantity and quality at the largest surgical hospital in the north of the West Bank, Palestine. METHODS An observational retrospective study with a total population sampling method was conducted to collect data from the inpatients of the orthopedic departments of a large governmental hospital in the northern West Bank, Palestine. The data were collected from patients' files and evaluated using the anatomical therapeutic chemical and defined daily dose (ATC/DDD) methodology, and the drug utilization 90% (DU90%) index. The ATC/DDD methodology, designed by the World Health Organization (WHO), as a well-trusted and standardized tool that allows measuring and comparing antibiotic utilization across different contexts. Antibiotic prescriptions were classified using the World Health Organization Access, Watch and Reserve classification (WHO AWaRe). RESULTS Of the 896 patients who were admitted to the hospital in the year 2020 and included in the study, 61.9% were males, and 38.1% were females. The percentage of patients who received antibiotics was 97.0%, and the overall antibiotic usage was 107.91 DDD/100 bed days. The most commonly prescribed antibiotic was cefazolin (50.30 DDD/100 bed days), followed by gentamicin (24.15 DDD/100 bed days) and ceftriaxone (17.35 DDD/100 bed days). The DU90% segment comprised four different agents. Classification of antibiotics according to the WHO AWaRe policy revealed that 75.9% of antibiotics were prescribed from the access list. CONCLUSION This study comes as part of the efforts exerted to combat the growing problem of antibiotic resistance in Palestine. Our results showed that the consumption of antibacterial agents in the orthopedic unit at a large governmental hospital in Palestine was relatively high. The results of this study provide valuable insights for the decision-makers to create policies aimed at regulating antibiotic prescriptions. This study also aims to provide a look into the antibiotic prescription patterns, offering a clearer understanding of the current situation of antibiotic consumption in Palestine. It also emphasizes the need for antibiotic stewardship and surveillance programs.
Collapse
Affiliation(s)
- Raed Masalma
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Ahmad Ghanim
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Mahmoud Jarrar
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Thabet Zidan
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Abdulsalam Alkaiyat
- Department of Public Health, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Mazen Abdalla
- Department of Orthopedic Surgery, An-Najah National University Hospital, Nablus, 44839, Palestine
| | - Mohammad M Jaber
- Department of Orthopedic Surgery, An-Najah National University Hospital, Nablus, 44839, Palestine
| | | | - Nagham Joudeh
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Rasha Khayyat
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, New Campus, Building: 27, Office: 2140, P.O. Box 7, Nablus, 44839, Palestine.
| |
Collapse
|
2
|
Kunishima H, Ichiki K, Ohge H, Sakamoto F, Sato Y, Suzuki H, Nakamura A, Fujimura S, Matsumoto K, Mikamo H, Mizutani T, Morinaga Y, Mori M, Yamagishi Y, Yoshizawa S. Japanese Society for infection prevention and control guide to Clostridioides difficile infection prevention and control. J Infect Chemother 2024; 30:673-715. [PMID: 38714273 DOI: 10.1016/j.jiac.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 05/09/2024]
Affiliation(s)
- Hiroyuki Kunishima
- Department of Infectious Diseases. St. Marianna University School of Medicine, Japan.
| | - Kaoru Ichiki
- Department of Infection Control and Prevention, Hyogo Medical University Hospital, Japan
| | - Hiroki Ohge
- Department of Infectious Diseases, Hiroshima University Hospital, Japan
| | - Fumie Sakamoto
- Quality Improvement and Safety Center, Itabashi Chuo Medical Center, Japan
| | - Yuka Sato
- Department of Infection Control and Nursing, Graduate School of Nursing, Aichi Medical University, Japan
| | - Hiromichi Suzuki
- Department of Infectious Diseases, University of Tsukuba School of Medicine and Health Sciences, Japan
| | - Atsushi Nakamura
- Department of Infection Prevention and Control, Graduate School of Medical Sciences, Nagoya City University, Japan
| | - Shigeru Fujimura
- Division of Clinical Infectious Diseases and Chemotherapy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Japan
| | | | - Yoshitomo Morinaga
- Department of Microbiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Minako Mori
- Department of Infection Control, Hiroshima University Hospital, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Kochi Medical School, Kochi University, Japan
| | - Sadako Yoshizawa
- Department of Laboratory Medicine/Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University, Japan
| |
Collapse
|
3
|
Abdrabou AMM, Bischoff M, Mellmann A, von Müller L, Margardt L, Gärtner BC, Berger FK, Haase G, Häfner H, Hoffmann R, Simon V, Stappmanns H, Hischebeth GT, Büchler C, Rößler S, Hochauf-Stange K, Pfeffer K, MacKenzie C, Kunz C, Alsalameh R, Dziobaka J, le Chapot VS, Sanabria E, Hogardt M, Komp J, Imirzalioglu C, Schmiedel J, Pararas M, Sommer F, Groß U, Bohne W, Kekulé AS, Dagwadordsch U, Löffler B, Rödel J, Walker SV, Tobys D, Weikert-Asbeck S, Hauswaldt S, Kaasch AJ, Zautner AE, Joß N, Siegel E, Kehr K, Schaumburg F, Schoeler S, Hamprecht A, Hellkamp J, Hagemann JB, Kubis J, Hering S, Warnke P. Implementation of a Clostridioides difficile sentinel surveillance system in Germany: First insights for 2019–2021. Anaerobe 2022; 77:102548. [DOI: 10.1016/j.anaerobe.2022.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/01/2022]
|
4
|
Kabała M, Gofron Z, Aptekorz M, Sacha K, Harmanus C, Kuijper E, Martirosian G. Clostridioides difficile Ribotype 027 (RT027) Outbreak Investigation Due to the Emergence of Rifampicin Resistance Using Multilocus Variable-Number Tandem Repeat Analysis (MLVA). Infect Drug Resist 2021; 14:3247-3254. [PMID: 34429622 PMCID: PMC8380304 DOI: 10.2147/idr.s324745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/24/2021] [Indexed: 12/29/2022] Open
Abstract
Objective The aim of this study was Clostridioides difficile outbreak investigation due to the emergence of rifampicin resistant ribotype 027 (RT 027) fecal isolates from patients of Polish tertiary care hospital between X. 2017 and II. 2018 using multilocus variable tandem repeat analysis (MLVA). Materials and Methods Twenty-nine C. difficile fecal isolates from patients of tertiary care hospital in Southern Poland were ribotyped and analyzed by MLVA. Multiplex PCR (mPCR) for genes encoding GDH (gluD), toxins A (tcdA)/ B (tcdB), 16S rDNA and binary toxin genes (ctdA and ctdB) was performed. The antibiotic susceptibility profile was determined by E-test. Results The A, B and binary toxins encoding genes were detected in all 29 C. difficile strains which were sensitive to metronidazole, vancomycin and were resistant to erythromycin, clindamycin, and moxifloxacin; resistance to imipenem demonstrated 97%, to rifampicin – 45% isolates. C. difficile strains could be grouped by MLVA into 5 distinct clusters, and the largest cluster II contains 16 strains. The comparison of rifampicin GM MIC of cluster II (n=16 strains) with all others (n=13) showed that strains from clusters I, III, IV and V possessed significantly (p <0.005) higher GM MIC and were more resistant to rifampicin. Conclusion MLVA analysis proved transmission and recognized outbreak due to multidrug-resistant RT 027 C. difficile among patients of tertiary care hospital in Southern Poland. The reason for this is probably the widespread occurrence of spores in the hospital environment, which includes, among others, neglect of hygienic procedures and epidemic supervision. High resistance to imipenem (97%) and to rifampicin (45%) among C. difficile RT 027 Silesian isolates is threatening and requires further studies to elucidate this phenomenon.
Collapse
Affiliation(s)
- Monika Kabała
- Department of Medical Microbiology Medical University of Silesia in Katowice, Katowice, Poland
| | - Zygmunt Gofron
- Department of Medical Microbiology Medical University of Silesia in Katowice, Katowice, Poland
| | - Małgorzata Aptekorz
- Department of Medical Microbiology Medical University of Silesia in Katowice, Katowice, Poland
| | - Krzysztof Sacha
- Department of Medical Microbiology Medical University of Silesia in Katowice, Katowice, Poland
| | - Celine Harmanus
- Department of Medical Microbiology Leiden University Medical Center, Leiden, the Netherlands
| | - Ed Kuijper
- Department of Medical Microbiology Leiden University Medical Center, Leiden, the Netherlands
| | - Gayane Martirosian
- Department of Medical Microbiology Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
5
|
Molecular epidemiology and antimicrobial resistance of Clostridioides difficile in Germany, 2014-2019. Int J Med Microbiol 2021; 311:151507. [PMID: 33915347 DOI: 10.1016/j.ijmm.2021.151507] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/12/2021] [Accepted: 04/15/2021] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile is a Gram positive spore-forming rod and mainly responsible for nosocomial diarrhea in developed nations. Molecular and antimicrobial surveillance is important for monitoring the strain composition including genotypes of high epidemiological importance such as ribotype 027 (RT027) and corresponding resistance patterns. 1535 isolates obtained from samples sent between 2014 and 2019 to the German National Reference Center (NRC) for diagnostic reasons (NRC strain set), and 1143 isolates from a Tertiary Care University Center in Saarland, Germany (non-NRC strain set), were evaluated using antibiotic susceptibility testing and ribotyping. In the NRC strain set, RT027 overtook RT001, the main RT found in the preceding studies, and dominated with 36.2%, followed by RT001 (13.3%), and RT014 (8.5%). Of note, since 2016 a constant decrease of RT027 could be noticed. In the non-NRC strain set a large strain diversity was present with RT014 (18%) and RT001 (8.9%) being most prevalent. In NRC samples, resistance towards metronidazole, vancomycin, moxifloxacin, clarithromycin and rifampicin was 2.7%, 0%, 57.1%, 53.2% and 19.2%, respectively. Metronidazole resistance was almost exclusively found in RT027 isolates. Rifampicin resistance was also observed predominantly in isolates of RT027, constituting an almost four-fold increase, when compared to preceeding studies in this region. In conclusion these data demonstrate that RT027 is a driver for rifampicin and metronidazole resistance, underlining the importance of continuous surveillance efforts.
Collapse
|
6
|
Molecular epidemiology and antimicrobial resistance of Clostridioides difficile detected in chicken, soil and human samples from Zimbabwe. Int J Infect Dis 2020; 96:82-87. [DOI: 10.1016/j.ijid.2020.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 01/05/2023] Open
|
7
|
Berger FK, Mellmann A, von Müller L, Bischoff M, Gärtner BC. Quality assurance for genotyping and resistance testing of Clostridium (Clostridioides) difficile isolates - Experiences from the first inter-laboratory ring trial in four German speaking countries. Anaerobe 2019; 61:102093. [PMID: 31494260 DOI: 10.1016/j.anaerobe.2019.102093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 01/05/2023]
Abstract
Clostridium (Clostridioides) difficile is a major cause of nosocomial diarrhoea. A first inter-laboratory ring trial was performed in four European countries to evaluate the genotyping and antibiotic susceptibility testing (AST) accuracy. Six C. difficile isolates representing the epidemiologic important ribotypes (RT), RT001, RT002, RT010, RT014, RT027, and RT078 were blinded and send to 21 participating laboratories. Participants tested the samples with their genotyping and AST methods in use for concordance with reference. A total of 21 genotyping- and 14 antimicrobial susceptibility data sets were obtained. Ribotyping (11 participants) correctly identified most RTs (median 91% concordance rate) except for RT002, which was misidentified in 4/11 reports. However, this isolate was correctly asserted to RT002 after an update of a publicly available ribotyping database. Multilocus sequence typing, surface layer sequence typing, DNA microarray based genotyping, and whole genome sequencing, which were used by 1-3 participants, identified all six isolates correctly. AST was done by epsilometry by the participants and compared to agar dilution data determined by the coordinating reference centre. Susceptibilities against metronidazole, moxifloxacin, and vancomycin were correctly identified in 235 of 237 cases and in accordance to agar dilution as the gold standard. Genotyping of the C. difficile test strains revealed a remarkable high concordance on the level of ribotypes with a wide variety of methods. Epsilometry appears to be a reliable method for AST of C. difficile isolates in routine clinical microbiology laboratories.
Collapse
Affiliation(s)
- Fabian K Berger
- German National Reference Center for Clostridioides (Clostridium) difficile, Germany; Institute of Medical Microbiology and Hygiene, University of Saarland, Kirrberger Straße, Building 43, 66424, Homburg/Saar, Germany.
| | - Alexander Mellmann
- German National Reference Center for Clostridioides (Clostridium) difficile, Germany; Institute of Hygiene, University Hospital Münster, Robert-Koch-Straße 41, 48149, Münster, Germany
| | - Lutz von Müller
- German National Reference Center for Clostridioides (Clostridium) difficile, Germany; Institute of Medical Microbiology and Hygiene, University of Saarland, Kirrberger Straße, Building 43, 66424, Homburg/Saar, Germany; Institute for Laboratory Medicine, Microbiology and Hygiene, Christophorus Kliniken, Südwall 22, 48653, Coesfeld, Germany
| | - Markus Bischoff
- German National Reference Center for Clostridioides (Clostridium) difficile, Germany; Institute of Medical Microbiology and Hygiene, University of Saarland, Kirrberger Straße, Building 43, 66424, Homburg/Saar, Germany
| | - Barbara C Gärtner
- German National Reference Center for Clostridioides (Clostridium) difficile, Germany; Institute of Medical Microbiology and Hygiene, University of Saarland, Kirrberger Straße, Building 43, 66424, Homburg/Saar, Germany
| | | |
Collapse
|
8
|
Bassetti M, Peghin M, Castaldo N, Giacobbe DR. The safety of treatment options for acute bacterial skin and skin structure infections. Expert Opin Drug Saf 2019; 18:635-650. [PMID: 31106600 DOI: 10.1080/14740338.2019.1621288] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Acute bacterial skin and skin-structure infections (ABSSSI) may develop in both in-patients and out-patients, possibly with a severe clinical presentation. Since most phase 3 randomized clinical trials have shown non-inferiority in efficacy across different agents, considerations regarding their different safety profiles inevitably play a crucial role in the everyday choice about which of them should be employed for the treatment of ABSSSI. AREAS COVERED In this review, the authors discuss the safety profile of different treatment options for ABSSSI. EXPERT OPINION The spread of methicillin-resistant Staphylococcus aureus (MRSA) in the last decades has inevitably influenced the therapeutic approach to ABSSSI. Adequate knowledge of the peculiar toxicity profile of each drug active against MRSA is essential for guiding, monitoring and managing adverse events, in turn reducing any unfavorable impact of toxicity on patients' outcomes. In the next five years, potential toxicity will play a critical role in establishing the best available therapy for each specific patient, together with consideration regarding the possibility of avoiding hospitalization or allowing a switch from intravenous to oral therapy and early discharge.
Collapse
Affiliation(s)
- Matteo Bassetti
- a Infectious Diseases Clinic, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine , Udine , Italy.,b Department of Health Sciences, University of Genoa , Genoa , Italy
| | - Maddalena Peghin
- a Infectious Diseases Clinic, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine , Udine , Italy
| | - Nadia Castaldo
- a Infectious Diseases Clinic, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine , Udine , Italy
| | | |
Collapse
|
9
|
Berger FK, Gfrörer S, Becker SL, Baldan R, Cirillo DM, Frentrup M, Steglich M, Engling P, Nübel U, Mellmann A, Bischoff M, Gärtner B, von Müller L. Hospital outbreak due to Clostridium difficile ribotype 018 (RT018) in Southern Germany. Int J Med Microbiol 2019; 309:189-193. [PMID: 30879971 DOI: 10.1016/j.ijmm.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/18/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
Clostridium (Clostridioides) difficile is the main cause of nosocomial diarrhoea. Ribotype 018 (RT018) has been recognized as the predominant strain responsible for C. difficile infection (CDI) in Italy, whereas in most other European countries only sporadic RT018 cases occur. Between August and October 2015, a suspected C. difficile outbreak at two associated hospitals in Southern Germany was investigated by comprehensive molecular typing. Surprisingly, RT018 was detected in 9/82 CDI patients, which has never been described before in a German outbreak. Phenotypic analysis revealed fluoroquinolone and macrolide resistance. Genetic subtyping using multiple-locus variable-number tandem-repeat analysis (MLVA) and whole genome sequencing (WGS) was performed and outbreak isolates were directly compared to sporadic German RT018 isolates and to epidemic ones from Milan, Northern Italy. Molecular typing confirmed a hospital outbreak with closely related RT018 isolates. Both, MLVA and WGS revealed high similarity of outbreak strains with epidemic isolates from Italy, but low similarity to other German isolates. Comparison between both typing strategies showed that ribotyping in combination with MLVA was appropriate to identify related isolates and clonal complexes, whereas WGS provided a better discrimination with more detailed information about the phylogenetic relationship of isolates. This is the first hospital outbreak in Germany presumably caused by cross-national transmission of an Italian epidemic RT018 strain.
Collapse
Affiliation(s)
- Fabian K Berger
- Institute of Medical Microbiology and Hygiene, National Reference Centre for Clostridium difficile, Saarland University, Kirrberger Straße, Building 43, 66421 Homburg, Saar, Germany.
| | - Sabine Gfrörer
- Regionale Kliniken Holding RKH GmbH, Ludwigsburg, Germany
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, National Reference Centre for Clostridium difficile, Saarland University, Kirrberger Straße, Building 43, 66421 Homburg, Saar, Germany; Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland; University of Basel, P.O. Box, CH-4003 Basel, Switzerland
| | - Rossella Baldan
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Via Olgettina Milano 60, 20132 Italy
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Via Olgettina Milano 60, 20132 Italy
| | | | - Matthias Steglich
- Leibniz Institute DSMZ, Inhoffenstraße 7B, 38124 Braunschweig, Germany; German Centre for Infection Research (DZIF), Partner site Braunschweig-Hannover, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Pit Engling
- Leibniz Institute DSMZ, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Ulrich Nübel
- Leibniz Institute DSMZ, Inhoffenstraße 7B, 38124 Braunschweig, Germany; German Centre for Infection Research (DZIF), Partner site Braunschweig-Hannover, Inhoffenstraße 7, 38124 Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Technical University Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Alexander Mellmann
- Institute of Hygiene, University Hospital Münster, National Reference Centre for Clostridium difficile, Robert-Koch-Straße 41, 48149 Münster, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, National Reference Centre for Clostridium difficile, Saarland University, Kirrberger Straße, Building 43, 66421 Homburg, Saar, Germany
| | - Barbara Gärtner
- Institute of Medical Microbiology and Hygiene, National Reference Centre for Clostridium difficile, Saarland University, Kirrberger Straße, Building 43, 66421 Homburg, Saar, Germany
| | - Lutz von Müller
- Institute of Medical Microbiology and Hygiene, National Reference Centre for Clostridium difficile, Saarland University, Kirrberger Straße, Building 43, 66421 Homburg, Saar, Germany; Institute for Laboratory Medicine, Microbiology and Hygiene, National Reference Centre for Clostridium difficile, Christophorus Kliniken, Südwall 22, 48653 Coesfeld, Germany
| |
Collapse
|
10
|
Cho JA, Chinnapen DJF. Targeting friend and foe: Emerging therapeutics in the age of gut microbiome and disease. J Microbiol 2018; 56:183-188. [PMID: 29492875 DOI: 10.1007/s12275-018-8037-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/09/2018] [Accepted: 02/11/2018] [Indexed: 12/31/2022]
Abstract
Mucosal surfaces that line our gastrointestinal tract are continuously exposed to trillions of bacteria that form a symbiotic relationship and impact host health and disease. It is only beginning to be understood that the cross-talk between the host and microbiome involve dynamic changes in commensal bacterial population, secretion, and absorption of metabolites between the host and microbiome. As emerging evidence implicates dysbiosis of gut microbiota in the pathology and progression of various diseases such as inflammatory bowel disease, obesity, and allergy, conventional treatments that either overlook the microbiome in the mechanism of action, or eliminate vast populations of microbes via wide-spectrum antibiotics need to be reconsidered. It is also becoming clear the microbiome can influence the body's response to therapeutic treatments for cancers. As such, targeting the microbiome as treatment has garnered much recent attention and excitement from numerous research labs and biotechnology companies. Treatments range from fecal microbial transplantation to precision-guided molecular approaches. Here, we survey recent progress in the development of innovative therapeutics that target the microbiome to treat disease, and highlight key findings in the interplay between host microbes and therapy.
Collapse
Affiliation(s)
- Jin Ah Cho
- Department of Food and Nutrition, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Daniel J F Chinnapen
- Division of Gastroenterology, Boston Children's Hospital, Boston, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, 02115, USA.
- Harvard Digestive Diseases Center, Boston, 02115, USA.
| |
Collapse
|
11
|
Berger FK, Rasheed SS, Araj GF, Mahfouz R, Rimmani HH, Karaoui WR, Sharara AI, Dbaibo G, Becker SL, von Müller L, Bischoff M, Matar GM, Gärtner B. Molecular characterization, toxin detection and resistance testing of human clinical Clostridium difficile isolates from Lebanon. Int J Med Microbiol 2018; 308:358-363. [PMID: 29478838 DOI: 10.1016/j.ijmm.2018.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/09/2018] [Accepted: 01/19/2018] [Indexed: 01/05/2023] Open
Abstract
Clostridium (Clostridioides) difficile is the main cause for nosocomial diarrhoea in industrialised nations. Epidemiologic data on the pathogen's occurrence in other world regions are still scarce. In this context we characterized with phenotypic and molecular genetic methods C. difficile isolates stemming from hospitalised patients with diarrhoea in Lebanon. From 129 stool samples of symptomatic patients at a tertiary care University hospital in Lebanon, a total of 107 C. difficile strains were cultivated and underwent ribotyping, toxin gene detection and antibiotic resistance testing. Ribotype 014 (RT014, 16.8%) predominated, followed by RT002 (9.3%), RT106 (8.4%) and RT070 (6.5%). Binary toxin gene-positive isolates (RT023, RT078 and RT126) were rarely detected and RT027 was absent. Interestingly, within one isolate only the toxin A gene (tcdA) was detected. Multiple-locus variable-number tandem repeat analysis (MLVA) revealed strong strain diversity in most RTs. The isolates were sensitive to metronidazole and vancomycin, and only a small proportion of strains displayed resistance against moxifloxacin, rifampicin, and clarithromycin (5.6%, 1.9%, and 2.8%), respectively. The data indicate that the genetic strain composition of Lebanese strains differs markedly from the situation seen in Europe and North America. Especially the epidemic RTs seen in the latter regions were almost absent in Lebanon. Interestingly, most strains showed almost no resistance to commonly used antibiotics that are suspected to play a major role in the development of C. difficile infection, despite frequent use of these antibiotics in Lebanon. Thus, the role of antimicrobial resistance as a major driving force for infection development remains uncertain in this area.
Collapse
Affiliation(s)
- Fabian K Berger
- Institute of Medical Microbiology and Hygiene, National Reference Laboratory for Clostridium difficile, Saarland University, Kirrberger Straße, Building 43, 66421 Homburg/Saar, Germany.
| | - Sari S Rasheed
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Riad El-Solh 1107, 2020, Beirut, Lebanon; Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut Medical Center, Riad El-Solh 1107, 2020, Beirut, Lebanon
| | - George F Araj
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Riad El-Solh 1107, 2020, Beirut, Lebanon; Department of Pathology and Lab Medicine, American University of Beirut Medical Center, Riad El-Solh 1107, 2020, Beirut, Lebanon
| | - Rami Mahfouz
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Riad El-Solh 1107, 2020, Beirut, Lebanon; Department of Pathology and Lab Medicine, American University of Beirut Medical Center, Riad El-Solh 1107, 2020, Beirut, Lebanon
| | - Hussein H Rimmani
- Department of Internal Medicine, American University of Beirut Medical Center, Riad El-Solh 1107, 2020, Beirut, Lebanon
| | - Walid R Karaoui
- Department of Internal Medicine, American University of Beirut Medical Center, Riad El-Solh 1107, 2020, Beirut, Lebanon
| | - Ala I Sharara
- Department of Internal Medicine, American University of Beirut Medical Center, Riad El-Solh 1107, 2020, Beirut, Lebanon
| | - Ghassan Dbaibo
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Riad El-Solh 1107, 2020 Beirut, Lebanon
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, National Reference Laboratory for Clostridium difficile, Saarland University, Kirrberger Straße, Building 43, 66421 Homburg/Saar, Germany; Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland; University of Basel, P.O. Box, CH-4003 Basel, Switzerland
| | - Lutz von Müller
- Institute of Medical Microbiology and Hygiene, National Reference Laboratory for Clostridium difficile, Saarland University, Kirrberger Straße, Building 43, 66421 Homburg/Saar, Germany; Institute for Laboratory Medicine, Microbiology and Hygiene, Christophorus Kliniken, Südwall 22, 48653, Coesfeld, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, National Reference Laboratory for Clostridium difficile, Saarland University, Kirrberger Straße, Building 43, 66421 Homburg/Saar, Germany
| | - Ghassan M Matar
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Riad El-Solh 1107, 2020, Beirut, Lebanon; Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut Medical Center, Riad El-Solh 1107, 2020, Beirut, Lebanon
| | - Barbara Gärtner
- Institute of Medical Microbiology and Hygiene, National Reference Laboratory for Clostridium difficile, Saarland University, Kirrberger Straße, Building 43, 66421 Homburg/Saar, Germany
| |
Collapse
|
12
|
Cataldo MA, Granata G, Petrosillo N. Clostridium difficile infection: new approaches to prevention, non-antimicrobial treatment, and stewardship. Expert Rev Anti Infect Ther 2017; 15:1027-1040. [PMID: 28980505 DOI: 10.1080/14787210.2017.1387535] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Despite the large amount of scientific publications exploring the epidemiology and the clinical management of Clostridium difficile (CD) infection, some issues remain unsolved or need further studies. The aim of this review is to give an update on the hot topics on CD prevention, including stewardship programs, and on the non-microbiological treatment of CD infection. Areas covered: This article will review the importance of minimizing the CD spore shedding in the healthcare environment for potentially reducing CD transmission. Moreover, antimicrobial stewardship programs aimed to reduce CD incidence will be reviewed. Finally, new strategies for reducing CD infection recurrence will be described. Expert commentary: Besides the basic infection control and prevention practices, including hand hygiene, contact isolation and environmental cleaning, in the prevention of CD infection other issues should be addressed including minimizing the spread of CD in the healthcare setting, and implementing the best strategy for reducing CD infection occurrence, including tailored antimicrobial stewardship programs. Regarding new advancements in treatment and management of CDI episodes, non-antimicrobial approaches seem to be promising in reducing and managing recurrent CD infection.
Collapse
Affiliation(s)
- Maria Adriana Cataldo
- a Clinical and Research Department , National Institute for Infectious Diseases 'L. Spallanzani' , Rome , Italy
| | - Guido Granata
- a Clinical and Research Department , National Institute for Infectious Diseases 'L. Spallanzani' , Rome , Italy
| | - Nicola Petrosillo
- a Clinical and Research Department , National Institute for Infectious Diseases 'L. Spallanzani' , Rome , Italy
| |
Collapse
|