1
|
Cun WY, Keller PA, Pyne SG. Current and Ongoing Developments in Targeting Clostridioides difficile Infection and Recurrence. Microorganisms 2024; 12:1206. [PMID: 38930588 PMCID: PMC11205563 DOI: 10.3390/microorganisms12061206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Clostridioides difficile is a Gram-positive, spore-forming anaerobic bacterial pathogen that causes severe gastrointestinal infection in humans. This review provides background information on C. difficile infection and the pathogenesis and toxigenicity of C. difficile. The risk factors, causes, and the problem of recurrence of disease and current therapeutic treatments are also discussed. Recent therapeutic developments are reviewed including small molecules that inhibit toxin formation, disrupt the cell membrane, inhibit the sporulation process, and activate the host immune system in cells. Other treatments discussed include faecal microbiota treatment, antibody-based immunotherapies, probiotics, vaccines, and violet-blue light disinfection.
Collapse
Affiliation(s)
- Wendy Y. Cun
- School of Chemistry and Molecular Science, Molecular Horizons Institute, University of Wollongong, Wollongong, NSW 2522, Australia;
| | | | - Stephen G. Pyne
- School of Chemistry and Molecular Science, Molecular Horizons Institute, University of Wollongong, Wollongong, NSW 2522, Australia;
| |
Collapse
|
2
|
Maraki S, Mavromanolaki VE, Stafylaki D, Iliaki-Giannakoudaki E, Kasimati A. In Vitro Activity of Dalbavancin and Fourteen Other Antimicrobial Agents Against Toxigenic Clostridioides Difficile Clinical Isolates in a Greek Tertiary-Care Hospital. Med Princ Pract 2024; 33:000538414. [PMID: 38508157 PMCID: PMC11324207 DOI: 10.1159/000538414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/17/2024] [Indexed: 03/22/2024] Open
Abstract
OBJECTIVE Clostridioides difficile is a major cause of healthcare-associated diarrhea worldwide. For years, metronidazole and vancomycin were considered the standard treatment for C. difficile infection (CDI). However, they are increasingly being associated with treatment failure and recurrence. In this study we investigated the in vitro activity of dalbavancin and fourteen other antimicrobials against 155 toxigenic C. difficile isolates originating from patients with C. difficile-associated diarrhea. MATERIALS AND METHODS Antimicrobial susceptibility was evaluated by the MIC Test Strip and the results were interpreted using both the Clinical and Laboratory Standards Institute (CLSI) and the European Committee on Antimicrobial susceptibility Testing (EUCAST) breakpoints. RESULTS C. difficile isolates were fully susceptible to metronidazole, vancomycin, amoxicillin/ clavulanate, piperacillin/tazobactam, and tigecycline. All isolates were dalbavancin susceptible by the CLSI breakpoint (≤ 0.25 μg/ml) compared with 97.4% susceptibility by the EUCAST breakpoint (≤ 0.125 μg/ml). Dalbavancin demonstrated significantly lower MIC50 and MIC90 values compared to vancomycin (0.047 vs. 0.38 and 0.125 vs. 0.5, respectively, p < 0.001). Resistance rates to penicillin, ampicilin, cefoxitin, imipenem, meropenem, clindamycin, moxifloxacin, chloramphenicol, and tetracycline were 20%, 14.2% , 100%, 75.5%, 0.6%, 51%, 36.1%, 3.2%, and 14.8%, respectively. Multidrug-resistant (MDR) phenotypes were detected among 41.3% of the isolates. CONCLUSION Dalbavancin exhibited potent activity against the isolates tested. As C. difficile is an important healthcare-associated pathogen, continued surveillance is required to monitor for development of resistance.
Collapse
Affiliation(s)
- Sofia Maraki
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Heraklion, Greece
| | | | - Dimitra Stafylaki
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Heraklion, Greece
| | | | - Anna Kasimati
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Heraklion, Greece
| |
Collapse
|
3
|
Khun PA, Phi LD, Bui HTT, Collins DA, Riley TV. Clostridioides (Clostridium) difficile in adults with diarrhoea in Vietnam. Anaerobe 2023:102741. [PMID: 37244476 DOI: 10.1016/j.anaerobe.2023.102741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Clostridioides (Clostridium) difficile causes antimicrobial-associated diarrhoea, however, presentations may range from asymptomatic carriage to severe diarrhoea, life-threatening toxic megacolon and even death. Reports on C. difficile infection (CDI) in Vietnam remain limited. The objectives of this study were to evaluate the epidemiology, molecular characteristics, and antimicrobial susceptibility of C. difficile isolated from adults with diarrhoea in Vietnam. METHODS Diarrhoeal stool samples from adult patients aged ≥17 years old were collected at Thai Binh General Hospital in northern Vietnam between 1st March 2021 and 28th February2022. All samples were transported to The University of Western Australia, Perth, Western Australia for C. difficile culture, toxin gene profiling, PCR ribotyping and antimicrobial susceptibility testing. RESULTS A total of 205 stool samples were collected from patients aged from 17 to 101 years old. The overall prevalence of C. difficile was 15.1% (31/205) with the recovery of toxigenic and non-toxigenic isolates 9.8% (20/205) and 6.3% (13/205), respectively. Thus 33 isolates were recovered comprising 18 known ribotypes (RTs) and one novel RT (two samples contained two different RTs in each sample). The most prevalent strains were RT 012 (five strains) and RTs 014/020, 017 and QX 070 three strains each. All C. difficile were susceptible to amoxicillin/clavulanate, fidaxomicin, metronidazole, moxifloxacin and vancomycin, while resistance to varying degrees was seen to clindamycin, erythromycin, tetracycline and rifaximin, 78.8% (26/33), 51.5% (17/33), 27.3% (9/33) and 6.1% (2/33), respectively. The prevalence of multidrug resistance was 27.3% (9/33) and multidrug resistance was most common in toxigenic RT 012 and non-toxigenic RT 038 strains. CONCLUSION The prevalence of C. difficile in adults with diarrhoea and multidrug resistance in C. difficile isolates was relatively high. A clinical assessment to differentiate between CDI/disease and colonisation is required.
Collapse
Affiliation(s)
- Peng An Khun
- School of Biomedical Sciences, The University of Western Australia, Western Australia, Australia
| | - Long Duc Phi
- Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet Nam
| | | | - Deirdre A Collins
- School of Medical & Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Thomas V Riley
- School of Biomedical Sciences, The University of Western Australia, Western Australia, Australia; School of Medical & Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Western Australia, Australia; Department of Microbiology, PathWest Laboratory Medicine, Nedlands, Western Australia, Australia.
| |
Collapse
|
4
|
Khun PA, Phi LD, Pham PT, Thu Nguyen HT, Huyen Vu QT, Collins DA, Riley TV. Clostridioides (Clostridium) difficile in children with diarrhoea in Vietnam. Anaerobe 2022; 74:102550. [PMID: 35331913 DOI: 10.1016/j.anaerobe.2022.102550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Clostridioides (Clostridium) difficile commonly causes hospital-acquired infection which can range from mild diarrhoea to life-threatening toxic megacolon and even death. Reports on C. difficile infection (CDI) in Vietnam are limited, so this study was designed to evaluate the prevalence, molecular epidemiology and antimicrobial susceptibility of C. difficile isolated from children with diarrhoea in Vietnam. Infants are often colonised with C. difficile and it was hypothesised that those colonising strains would represent strains of C. difficile circulating in the hospital/region at the time, however, this was not an attempt to determine if C. difficile was the cause of the diarrhoea. METHODS Diarrhoeal stool samples collected at two children's hospitals in northern Vietnam from 1st October 2020 to 28th February 2021 were transported to Perth, Western Australia, for culture of C. difficile and further investigations on isolates; PCR ribotyping, toxin gene profiling and antimicrobial susceptibility testing. RESULTS From these hospitals, 370 diarrhoeal stool samples were collected, most from children aged 1-15 months (71.9%; 266/370). The overall prevalence of C. difficile in stool samples from children aged ≤16 years was 37.8% (140/370) and the highest prevalence was in the 2-12 months age group (52.9%; 74/140). In total, 151 isolates of C. difficile were recovered; the proportion of toxigenic isolates was 16.6% (25/151). Of the 25 toxigenic C. difficile isolates, the toxin gene profiles A+B+CDT- and A-B+CDT- comprised 72% and 28%, respectively. The four most prevalent C. difficile ribotypes (RTs) were QX 011 (25/151), RT 010 (25/151), QX 107 (12/151) and RT 012 (11/151). All isolates were susceptible to vancomycin, metronidazole and fidaxomicin, while there was significant resistance to clindamycin (90.1%), and some to moxifloxacin (6.6%) and rifaximin (3.3%). CONCLUSION The prevalence of C. difficile in children with diarrhoea was high (37.8%) although the proportion of toxigenic strains was comparatively low. The clinical significance of any isolate needs to be determined.
Collapse
Affiliation(s)
- Peng An Khun
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Long Duc Phi
- Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet Nam
| | | | | | | | - Deirdre A Collins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Thomas V Riley
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia; Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia; PathWest Laboratory Medicine, Department of Microbiology, Nedlands, WA, Australia.
| |
Collapse
|
5
|
Prevalence and antimicrobial resistance pattern of Clostridium difficile among hospitalized diarrheal patients: A systematic review and meta-analysis. PLoS One 2022; 17:e0262597. [PMID: 35025959 PMCID: PMC8758073 DOI: 10.1371/journal.pone.0262597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/28/2021] [Indexed: 01/02/2023] Open
Abstract
Background
Clostridium difficile is the leading cause of infectious diarrhea that develops in patients after hospitalization during antibiotic administration. It has also become a big issue in community-acquired diarrhea. The emergence of hypervirulent strains of C. difficile poses a major problem in hospital-associated diarrhea outbreaks and it is difficult to treat. The antimicrobial resistance in C. difficile has worsened due to the inappropriate use of broad-spectrum antibiotics including cephalosporins, clindamycin, tetracycline, and fluoroquinolones together with the emergence of hypervirulent strains.
Objective
To estimate the pooled prevalence and antimicrobial resistance pattern of C. difficile derived from hospitalized diarrheal patients, a systematic review and meta-analysis was performed.
Methods
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline was followed to review published studies conducted. We searched bibliographic databases from PubMed, Scopus, Google Scholar, and Cochrane Library for studies on the prevalence and antimicrobial susceptibility testing on C. difficile. The weighted pooled prevalence and resistance for each antimicrobial agent was calculated using a random-effects model. A funnel plot and Egger’s regression test were used to see publication bias.
Results
A total of 15 studies were included. Ten articles for prevalence study and 5 additional studies for antimicrobial susceptibility testing of C. difficile were included. A total of 1967/7852 (25%) C. difficile were isolated from 10 included studies for prevalence study. The overall weighted pooled proportion (WPP) of C. difficile was 30% (95% CI: 10.0–49.0; p<0.001). The analysis showed substantial heterogeneity among studies (Cochran’s test = 7038.73, I2 = 99.87%; p<0.001). The weighed pooled antimicrobial resistance (WPR) were: vancomycin 3%(95% CI: 1.0–4.0, p<0.001); metronidazole 5%(95% CI: 3.0–7.0, p<0.001); clindamycin 61%(95% CI: 52.0–69.0, p<0.001); moxifloxacin 42%(95% CI: 29–54, p<0.001); tetracycline 35%(95% CI: 22–49, p<0.001); erythromycin 61%(95% CI: 48–75, p<0.001) and ciprofloxacin 64%(95% CI: 48–80; p< 0.001) using the random effect model.
Conclusions
A higher weighted pooled prevalence of C. difficile was observed. It needs a great deal of attention to decrease the prevailing prevalence. The resistance of C. difficile to metronidazole and vancomycin was low compared to other drugs used to treat C. difficile infection. Periodic antimicrobial resistance monitoring is vital for appropriate therapy of C. difficile infection.
Collapse
|
6
|
Wickramage I, Spigaglia P, Sun X. Mechanisms of antibiotic resistance of Clostridioides difficile. J Antimicrob Chemother 2021; 76:3077-3090. [PMID: 34297842 DOI: 10.1093/jac/dkab231] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clostridioides difficile (CD) is one of the top five urgent antibiotic resistance threats in USA. There is a worldwide increase in MDR of CD, with emergence of novel strains which are often more virulent and MDR. Antibiotic resistance in CD is constantly evolving with acquisition of novel resistance mechanisms, which can be transferred between different species of bacteria and among different CD strains present in the clinical setting, community, and environment. Therefore, understanding the antibiotic resistance mechanisms of CD is important to guide optimal antibiotic stewardship policies and to identify novel therapeutic targets to combat CD as well as other bacteria. Epidemiology of CD is driven by the evolution of antibiotic resistance. Prevalence of different CD strains and their characteristic resistomes show distinct global geographical patterns. Understanding epidemiologically driven and strain-specific characteristics of antibiotic resistance is important for effective epidemiological surveillance of antibiotic resistance and to curb the inter-strain and -species spread of the CD resistome. CD has developed resistance to antibiotics with diverse mechanisms such as drug alteration, modification of the antibiotic target site and extrusion of drugs via efflux pumps. In this review, we summarized the most recent advancements in the understanding of mechanisms of antibiotic resistance in CD and analysed the antibiotic resistance factors present in genomes of a few representative well known, epidemic and MDR CD strains found predominantly in different regions of the world.
Collapse
Affiliation(s)
- Ishani Wickramage
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Down Blvd, Tampa, FL 33612, USA
| | - Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Down Blvd, Tampa, FL 33612, USA
| |
Collapse
|
7
|
Putsathit P, Hong S, George N, Hemphill C, Huntington PG, Korman TM, Kotsanas D, Lahra M, McDougall R, McGlinchey A, Moore CV, Nimmo GR, Prendergast L, Robson J, Waring L, Wehrhahn MC, Weldhagen GF, Wilson RM, Riley TV, Knight DR. Antimicrobial resistance surveillance of Clostridioides difficile in Australia, 2015-18. J Antimicrob Chemother 2021; 76:1815-1821. [PMID: 33895826 DOI: 10.1093/jac/dkab099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/05/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Clostridioides difficile was listed as an urgent antimicrobial resistance (AMR) threat in a report by the CDC in 2019. AMR drives the evolution of C. difficile and facilitates its emergence and spread. The C. difficile Antimicrobial Resistance Surveillance (CDARS) study is nationwide longitudinal surveillance of C. difficile infection (CDI) in Australia. OBJECTIVES To determine the antimicrobial susceptibility of C. difficile isolated in Australia between 2015 and 2018. METHODS A total of 1091 strains of C. difficile were collected over a 3 year period by a network of 10 diagnostic microbiology laboratories in five Australian states. These strains were tested for their susceptibility to nine antimicrobials using the CLSI agar incorporation method. RESULTS All strains were susceptible to metronidazole, fidaxomicin, rifaximin and amoxicillin/clavulanate and low numbers of resistant strains were observed for meropenem (0.1%; 1/1091), moxifloxacin (3.5%; 38/1091) and vancomycin (5.7%; 62/1091). Resistance to clindamycin was common (85.2%; 929/1091), followed by resistance to ceftriaxone (18.8%; 205/1091). The in vitro activity of fidaxomicin [geometric mean MIC (GM) = 0.101 mg/L] was superior to that of vancomycin (1.700 mg/L) and metronidazole (0.229 mg/L). The prevalence of MDR C. difficile, as defined by resistance to ≥3 antimicrobial classes, was low (1.7%; 19/1091). CONCLUSIONS The majority of C. difficile isolated in Australia did not show reduced susceptibility to antimicrobials recommended for treatment of CDI (vancomycin, metronidazole and fidaxomicin). Resistance to carbapenems and fluoroquinolones was low and MDR was uncommon; however, clindamycin resistance was frequent. One fluoroquinolone-resistant ribotype 027 strain was detected.
Collapse
Affiliation(s)
- Papanin Putsathit
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, WA, Australia
| | - Stacey Hong
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, WA, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch 6150, WA, Australia
| | - Narelle George
- Pathology Queensland, Royal Brisbane and Women's Hospital, Herston 4029, QLD, Australia
| | | | - Peter G Huntington
- Department of Microbiology, NSW Health Pathology, Royal North Shore Hospital, St Leonards, 2065, NSW, Australia
| | - Tony M Korman
- Monash Infectious Diseases, Monash Health, Monash Medical Centre, Clayton 3168, VIC, Australia
| | - Despina Kotsanas
- Monash Infectious Diseases, Monash Health, Monash Medical Centre, Clayton 3168, VIC, Australia
| | - Monica Lahra
- Department of Microbiology, The Prince of Wales Hospital, Randwick 2031, NSW, Australia
| | | | | | - Casey V Moore
- Microbiology and Infectious Diseases Laboratories, SA Pathology, Adelaide 5000, SA, Australia
| | - Graeme R Nimmo
- Pathology Queensland, Royal Brisbane and Women's Hospital, Herston 4029, QLD, Australia
| | | | | | | | | | - Gerhard F Weldhagen
- Microbiology and Infectious Diseases Laboratories, SA Pathology, Adelaide 5000, SA, Australia
| | - Richard M Wilson
- Australian Clinical Labs, Microbiology Department, Wayville 5034, SA, Australia
| | - Thomas V Riley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, WA, Australia.,Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, WA, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch 6150, WA, Australia.,Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands 6009, WA, Australia
| | - Daniel R Knight
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, WA, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch 6150, WA, Australia
| |
Collapse
|
8
|
Wongkuna S, Janvilisri T, Phanchana M, Harnvoravongchai P, Aroonnual A, Aimjongjun S, Malaisri N, Chankhamhaengdecha S. Temporal Variations in Patterns of Clostridioides difficile Strain Diversity and Antibiotic Resistance in Thailand. Antibiotics (Basel) 2021; 10:antibiotics10060714. [PMID: 34199301 PMCID: PMC8231780 DOI: 10.3390/antibiotics10060714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 01/04/2023] Open
Abstract
Clostridioides difficile has been recognized as a life-threatening pathogen that causes enteric diseases, including antibiotic-associated diarrhea and pseudomembranous colitis. The severity of C. difficile infection (CDI) correlates with toxin production and antibiotic resistance of C. difficile. In Thailand, the data addressing ribotypes, toxigenic, and antimicrobial susceptibility profiles of this pathogen are scarce and some of these data sets are limited. In this study, two groups of C. difficile isolates in Thailand, including 50 isolates collected from 2006 to 2009 (THA group) and 26 isolates collected from 2010 to 2012 (THB group), were compared for toxin genes and ribotyping profiles. The production of toxins A and B were determined on the basis of toxin gene profiles. In addition, minimum inhibitory concentration of eight antibiotics were examined for all 76 C. difficile isolates. The isolates of the THA group were categorized into 27 A−B+CDT− (54%) and 23 A-B-CDT- (46%), while the THB isolates were classified into five toxigenic profiles, including six A+B+CDT+ (23%), two A+B+CDT− (8%), five A−B+CDT+ (19%), seven A−B+CDT− (27%), and six A−B−CDT− (23%). By visually comparing them to the references, only five ribotypes were identified among THA isolates, while 15 ribotypes were identified within THB isolates. Ribotype 017 was the most common in both groups. Interestingly, 18 unknown ribotyping patterns were identified. Among eight tcdA-positive isolates, three isolates showed significantly greater levels of toxin A than the reference strain. The levels of toxin B in 3 of 47 tcdB-positive isolates were significantly higher than that of the reference strain. Based on the antimicrobial susceptibility test, metronidazole showed potent efficiency against most isolates in both groups. However, high MIC values of cefoxitin (MICs 256 μg/mL) and chloramphenicol (MICs ≥ 64 μg/mL) were observed with most of the isolates. The other five antibiotics exhibited diverse MIC values among two groups of isolates. This work provides evidence of temporal changes in both C. difficile strains and patterns of antimicrobial resistance in Thailand.
Collapse
Affiliation(s)
- Supapit Wongkuna
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.W.); (T.J.)
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.W.); (T.J.)
| | - Matthew Phanchana
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Phurt Harnvoravongchai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.H.); (N.M.)
| | - Amornrat Aroonnual
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Sathid Aimjongjun
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Natamon Malaisri
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.H.); (N.M.)
| | - Surang Chankhamhaengdecha
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.H.); (N.M.)
- Correspondence:
| |
Collapse
|
9
|
Imwattana K, Putsathit P, Knight DR, Kiratisin P, Riley TV. Molecular Characterization of, and Antimicrobial Resistance in, Clostridioides difficile from Thailand, 2017-2018. Microb Drug Resist 2021; 27:1505-1512. [PMID: 33956520 DOI: 10.1089/mdr.2020.0603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial resistance (AMR) plays an important role in the pathogenesis and spread of Clostridioides difficile infection (CDI). Many antimicrobials, such as fluoroquinolones, have been associated with outbreaks of CDI globally. This study characterized AMR among clinical C. difficile strains in Thailand, where antimicrobial use remains inadequately regulated. Stool samples were screened for tcdB and positives were cultured. C. difficile isolates were characterized by toxin profiling and PCR ribotyping. Antimicrobial susceptibility testing was performed by agar incorporation, and whole-genome sequencing and AMR genotyping were performed on a subset of strains. There were 321 C. difficile strains isolated from 326 stool samples. The most common toxigenic ribotype (RT) was RT 017 (18%), followed by RTs 014 (12%) and 020 (7%). Resistance to clindamycin, erythromycin, moxifloxacin, and rifaximin was common, especially among RT 017 strains. AMR genotyping revealed a strong correlation between resistance genotype and phenotype for moxifloxacin and rifaximin. The presence of erm-class genes was associated with high-level clindamycin and erythromycin resistance. Point substitutions in the penicillin-binding proteins were not sufficient to confer meropenem resistance, but a Y721S substitution in PBP3 was associated with a 4.37-fold increase in meropenem minimal inhibitory concentration. No resistance to metronidazole, vancomycin, or fidaxomicin was observed.
Collapse
Affiliation(s)
- Korakrit Imwattana
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia.,Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Papanin Putsathit
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Daniel R Knight
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia
| | | | - Thomas V Riley
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia.,Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Australia
| |
Collapse
|
10
|
Mutai WC, Mureithi MW, Anzala O, Revathi G, Kullin B, Burugu M, Kyany'a C, Odoyo E, Otieno P, Musila L. High Prevalence of Multidrug-Resistant Clostridioides difficile Following Extensive Use of Antimicrobials in Hospitalized Patients in Kenya. Front Cell Infect Microbiol 2021; 10:604986. [PMID: 33628744 PMCID: PMC7897694 DOI: 10.3389/fcimb.2020.604986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023] Open
Abstract
Introduction Clostridioides difficile is a neglected pathogen in many African countries as it is generally not regarded as one of the major contributors toward the diarrheal disease burden in the continent. However, several studies have suggested that C. difficile infection (CDI) may be underreported in many African settings. The aim of this study was to determine the prevalence of CDI in hospitalized patients, evaluate antimicrobial exposure, and detect toxin and antimicrobial resistance profiles of the isolated C. difficile strains. Methods In this cross-sectional study, 333 hospitalized patients with hospital-onset diarrhoea were selected. The stool samples were collected and cultured on cycloserine-cefoxitin egg yolk agar (CCEY). Isolates were presumptively identified by phenotypic characteristics and Gram stain and confirmed by singleplex real-time PCR (qPCR) assays detecting the species-specific tpi gene, toxin A (tcdA) gene, toxin B (tcdB) gene, and the binary toxin (cdtA/cdtB) genes. Confirmed C. difficile isolates were tested against a panel of eight antimicrobials (vancomycin, metronidazole, rifampicin, ciprofloxacin, tetracycline, clindamycin, erythromycin, and ceftriaxone) using E-test strips. Results C. difficile was detected in 57 (25%) of diarrheal patients over the age of two, 56 (98.2%) of whom received antimicrobials before the diarrheal episode. Amongst the 71 confirmed isolates, 69 (97.1%) harbored at least one toxin gene. More than half of the toxigenic isolates harbored a truncated tcdA gene. All isolates were sensitive to vancomycin, while three isolates (2.1%) were resistant to metronidazole (MIC >32 mg/L). High levels of resistance were observed to rifampicin (65/71, 91.5%), erythromycin (63/71, 88.7%), ciprofloxacin (59/71, 83.1%), clindamycin (57/71, 80.3%), and ceftriaxone (36/71, 50.7.8%). Among the resistant isolates, 61 (85.9%) were multidrug-resistant. Conclusion Multidrug-resistant C. difficile strains were a significant cause of healthcare facility-onset C. difficile infections in patients with prior antimicrobial exposure in this Kenyan hospital.
Collapse
Affiliation(s)
- Winnie C Mutai
- Department of Medical Microbiology, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Marianne W Mureithi
- Department of Medical Microbiology, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Omu Anzala
- Department of Medical Microbiology, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Gunturu Revathi
- Department of Pathology, Division of Medical Microbiology, Aga Khan University Hospital, Nairobi, Kenya
| | - Brian Kullin
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Magdaline Burugu
- Department of Medical Microbiology, School of Medicine, University of Nairobi, Nairobi, Kenya
| | | | - Erick Odoyo
- US Army Medical Research Directorate-Africa, Nairobi, Kenya
| | - Peter Otieno
- US Army Medical Research Directorate-Africa, Nairobi, Kenya
| | - Lillian Musila
- US Army Medical Research Directorate-Africa, Nairobi, Kenya
| |
Collapse
|
11
|
Imwattana K, Kiratisin P, Riley TV, Knight DR. Genomic basis of antimicrobial resistance in non-toxigenic Clostridium difficile in Southeast Asia. Anaerobe 2020; 66:102290. [PMID: 33137436 DOI: 10.1016/j.anaerobe.2020.102290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 01/06/2023]
Abstract
Despite being incapable of causing Clostridium difficile infection, non-toxigenic C. difficile (NTCD) may still be relevant. This study explored the role of NTCD as a reservoir of accessory antimicrobial resistance (AMR) genes in NTCD from Southeast Asia. This region has high rates of antimicrobial use, a high prevalence of NTCD and phenotypic AMR in such strains. More than half of the 28 NTCD strains investigated had at least one accessory AMR gene on mobile genetic elements (MGEs) which were similar to the elements found in other bacteria, including Erysipelothrix rhusiopathiae and Streptococcus suis, both of which are found in the pig gut. Thus, C. difficile may facilitate the movement of AMR genes between different hosts within a wide range of pathogenic bacteria. C. difficile β-lactamases were not located on MGEs and were unlikely to be transferred. Concordance between the MLSB resistance genotype and phenotype was low, suggesting multiple resistance mechanisms, many of which remain unknown. On the contrary, there was a high concordance between resistance genotype and phenotype for both fluoroquinolones and rifaximin. From an epidemiological perspective, NTCD populations in Southeast Asia comprised members of evolutionary clades 1 and 4, which are thought to have originated from Europe and Asia, respectively. This population structure reflects the close relationship between the people of the two regions.
Collapse
Affiliation(s)
- Korakrit Imwattana
- School of Biomedical Sciences, The University of Western Australia, Western Australia, Australia; Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Pattarachai Kiratisin
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Thomas V Riley
- School of Biomedical Sciences, The University of Western Australia, Western Australia, Australia; Medical, Molecular and Forensic Sciences, Murdoch University, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, Western Australia, Australia; Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Western Australia, Australia
| | - Daniel R Knight
- School of Biomedical Sciences, The University of Western Australia, Western Australia, Australia; Medical, Molecular and Forensic Sciences, Murdoch University, Western Australia, Australia.
| |
Collapse
|
12
|
Sholeh M, Krutova M, Forouzesh M, Mironov S, Sadeghifard N, Molaeipour L, Maleki A, Kouhsari E. Antimicrobial resistance in Clostridioides (Clostridium) difficile derived from humans: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2020; 9:158. [PMID: 32977835 PMCID: PMC7517813 DOI: 10.1186/s13756-020-00815-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022] Open
Abstract
Background Clostridioides (Clostridium) difficile is an important pathogen of healthcare- associated diarrhea, however, an increase in the occurrence of C. difficile infection (CDI) outside hospital settings has been reported. The accumulation of antimicrobial resistance in C. difficile can increase the risk of CDI development and/or its spread. The limited number of antimicrobials for the treatment of CDI is matter of some concern. Objectives In order to summarize the data on antimicrobial resistance to C. difficile derived from humans, a systematic review and meta-analysis were performed. Methods We searched five bibliographic databases: (MEDLINE [PubMed], Scopus, Embase, Cochrane Library and Web of Science) for studies that focused on antimicrobial susceptibility testing in C. difficile and were published between 1992 and 2019. The weighted pooled resistance (WPR) for each antimicrobial agent was calculated using a random- effects model. Results A total of 111 studies were included. The WPR for metronidazole and vancomycin was 1.0% (95% CI 0–3%) and 1% (95% CI 0–2%) for the breakpoint > 2 mg/L and 0% (95% CI 0%) for breakpoint ≥32 μg/ml. Rifampin and tigecycline had a WPRs of 37.0% (95% CI 18–58%) and 1% (95% CI 0–3%), respectively. The WPRs for the other antimicrobials were as follows: ciprofloxacin 95% (95% CI 85–100%), moxifloxacin 32% (95% CI 25–40%), clindamycin 59% (95% CI 53–65%), amoxicillin/clavulanate 0% (0–0%), piperacillin/tazobactam 0% (0–0%) and ceftriaxone 47% (95% CI 29–65%). Tetracycline had a WPR 20% (95% CI 14–27%) and meropenem showed 0% (95% CI 0–1%); resistance to fidaxomicin was reported in one isolate (0.08%). Conclusion Resistance to metronidazole, vancomycin, fidaxomicin, meropenem and piperacillin/tazobactam is reported rarely. From the alternative CDI drug treatments, tigecycline had a lower resistance rate than rifampin. The high-risk antimicrobials for CDI development showed a high level of resistance, the highest was seen in the second generation of fluoroquinolones and clindamycin; amoxicillin/clavulanate showed almost no resistance. Tetracycline resistance was present in one fifth of human clinical C. difficile isolates.
Collapse
Affiliation(s)
- Mohammad Sholeh
- Dept. of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marcela Krutova
- Dept. of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Mehdi Forouzesh
- Assistant professor of Legal medicine Research Center, Legal Medicine organization, Tehran, Iran
| | - Sergey Mironov
- Department of propaedeutics of dental diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Leila Molaeipour
- Dept. of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Ebrahim Kouhsari
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran. .,Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran. .,Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
13
|
In Vitro and In Vivo Characterization of Tebipenem, an Oral Carbapenem. Antimicrob Agents Chemother 2020; 64:AAC.02240-19. [PMID: 32423950 DOI: 10.1128/aac.02240-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/25/2020] [Indexed: 12/12/2022] Open
Abstract
The continued evolution of bacterial resistance to the β-lactam class of antibiotics has necessitated countermeasures to ensure continued effectiveness in the treatment of infections caused by bacterial pathogens. One relatively successful approach has been the development of new β-lactam analogs with advantages over prior compounds in this class. The carbapenems are an example of such β-lactam analogs possessing improved stability against β-lactamase enzymes and, therefore, a wider spectrum of activity. However, all carbapenems currently marketed for adult patients are intravenous agents, and there is an unmet need for an oral agent to treat patients that otherwise do not require hospitalization. Tebipenem pivoxil hydrobromide (tebipenem-PI-HBr or SPR994) is an orally available prodrug of tebipenem, a carbapenem with activity versus multidrug-resistant (MDR) Gram-negative pathogens, including quinolone-resistant and extended-spectrum-β-lactamase-producing Enterobacterales Tebipenem-PI-HBr is currently in development for the treatment of complicated urinary tract infections (cUTI). Microbiological data are presented here that demonstrate equivalency of tebipenem with intravenous carbapenems such as meropenem and support its use in infections in which the potency and spectrum of a carbapenem are desired. The results from standard in vitro microbiology assays as well as efficacy in several in vivo mouse infection models suggest that tebipenem-PI-HBr could be a valuable oral agent available to physicians for the treatment of infections, particularly those caused by antibiotic-resistant Gram-negative pathogens.
Collapse
|
14
|
Yang Z, Huang Q, Qin J, Zhang X, Jian Y, Lv H, Liu Q, Li M. Molecular Epidemiology and Risk Factors of Clostridium difficile ST81 Infection in a Teaching Hospital in Eastern China. Front Cell Infect Microbiol 2020; 10:578098. [PMID: 33425775 PMCID: PMC7785937 DOI: 10.3389/fcimb.2020.578098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The prevalence of Clostridium difficile causes an increased morbidity and mortality of inpatients, especially in Europe and North America, while data on C. difficile infection (CDI) are limited in China. METHODS From September 2014 to August 2019, 562 C. difficile isolates were collected from patients and screened for toxin genes. Multilocus sequence typing (MLST) and antimicrobial susceptibility tests by E-test and agar dilution method were performed. A case group composed of patients infected with sequence type (ST) 81 C. difficile was compared to the non-ST81 infection group and non CDI diarrhea patients for risk factor and outcome analyses. RESULTS The incidence of inpatients with CDI was 7.06 cases per 10,000 patient-days. Of the 562 C. difficile isolates, ST81(22.78%) was the predominant clone over this period, followed by ST54 (11.21%), ST3 (9.61%), and ST2 (8.72%). Toxin genotype tcdA+tcdB+cdt- accounted for 50.18% of all strains, while 29.54% were tcdA-tcdB+cdt- genotypes. Overall, no isolate was resistant to vancomycin, teicoplanin or daptomycin, and resistance rates to meropenem gradually decreased during these years. Although several metronidazole-resistant strains were isolated in this study, the MIC values decreased during this period. Resistance rates to moxifloxacin and clindamycin remained higher than those to the other antibiotics. Among CDI inpatients, longer hospitalization, usage of prednisolone, suffering from chronic kidney disease or connective tissue diseases and admission to emergency ward 2 or emergency ICU were significant risk factors for ST81 clone infection. All-cause mortality of these CDI patients was 4.92%(n=18), while the recurrent cases accounted for 5.74%(n=21). The 60-day mortality of ST81-CDI was significantly higher than non-ST81 infected group, while ST81 also accounted for most of the recurrent CDI cases. CONCLUSION This study revealed the molecular epidemiology and risk factors for the dominant C. difficile ST81 genotype infection in eastern China. Continuous and stringent surveillance on the emerging ST81 genotype needs to be initiated.
Collapse
Affiliation(s)
- Ziyu Yang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qian Huang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Juanxiu Qin
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoye Zhang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Ying Jian
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huiying Lv
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qian Liu
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Qian Liu, ; Min Li,
| | - Min Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Qian Liu, ; Min Li,
| |
Collapse
|
15
|
Imwattana K, Knight DR, Kullin B, Collins DA, Putsathit P, Kiratisin P, Riley TV. Antimicrobial resistance in Clostridium difficile ribotype 017. Expert Rev Anti Infect Ther 2019; 18:17-25. [PMID: 31800331 DOI: 10.1080/14787210.2020.1701436] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Antimicrobial resistance (AMR) played an important role in the initial outbreaks of Clostridium difficile infection (CDI) in the 1970s. C. difficile ribotype (RT) 017 has emerged as the major strain of C. difficile in Asia, where antimicrobial use is poorly regulated. This strain has also caused CDI outbreaks around the world for almost 30 years. Many of these outbreaks were associated with clindamycin and fluoroquinolone resistance. AMR and selective pressure is likely to be responsible for the success of this RT and may drive future outbreaks.Areas covered: This narrative review summarizes the prevalence and mechanisms of AMR in C. difficile RT 017 and transmission of these AMR mechanisms. To address these topics, reports of outbreaks due to C. difficile RT 017, epidemiologic studies with antimicrobial susceptibility results, studies on resistance mechanisms found in C. difficile and related publications available through Pubmed until September 2019 were collated and the findings discussed.Expert opinion: Primary prevention is the key to control CDI. This should be achieved by developing antimicrobial stewardship in medical, veterinary and agricultural practices. AMR is the key factor that drives CDI outbreaks, and methods for the early detection of AMR can facilitate the control of outbreaks.
Collapse
Affiliation(s)
- Korakrit Imwattana
- School of Biomedical Sciences, The University of Western Australia, Crawley, Australia.,Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Daniel R Knight
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia
| | - Brian Kullin
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Deirdre A Collins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Papanin Putsathit
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Pattarachai Kiratisin
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thomas V Riley
- School of Biomedical Sciences, The University of Western Australia, Crawley, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Australia
| |
Collapse
|
16
|
Putsathit P, Neela VK, Joseph NMS, Ooi PT, Ngamwongsatit B, Knight DR, Riley TV. Molecular epidemiology of Clostridium difficile isolated from piglets. Vet Microbiol 2019; 237:108408. [PMID: 31585650 DOI: 10.1016/j.vetmic.2019.108408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 02/04/2023]
Abstract
Information on the epidemiology of C. difficile infection (CDI) in South-East Asian countries is limited, as is data on possible animal reservoirs of C. difficile in the region. We investigated the prevalence and molecular epidemiology of C. difficile in piglets and the piggery environment in Thailand and Malaysia. Piglet rectal swabs (n = 224) and piggery environmental specimens (n = 23) were collected between 2015 and 2016 from 11 farms located in Thailand and Malaysia. All specimens were tested for the presence of C. difficile with toxigenic culture. PCR assays were performed on isolates to determine the ribotype (RT), and the presence of toxin genes. Whole genome sequencing was used on a subset of isolates to determine the evolutionary relatedness of RT038 (the most prevalent RT identified) common to pigs and humans from Thailand and Indonesia. C. difficile was recovered from 35% (58/165) and 92% (54/59) of the piglets, and 89% (8/9) and 93% (13/14) of the environmental specimens from Thailand and Malaysia, respectively. All strains from Thailand, and 30 strains from Malaysia (23 piglet and 7 environmental isolates) were non-toxigenic. To our knowledge, this is the first and only report with a complete lack of toxigenic C. difficile among piglets, a feature which could have a protective effect on the host. The most common strain belonged to RT038 (ST48), accounting for 88% (51/58) of piglet and 78% (7/9) of environmental isolates from Thailand, and all 30 isolates tested from Malaysia. Piglet RT038 isolates from Thailand and Malaysia differed by only 18 core-genome single nucleotide variants (cgSNVs) and both were, on average, 30 cgSNVs different from the human strains from Thailand and Indonesia, indicating a common ancestor in the last two decades.
Collapse
Affiliation(s)
- Papanin Putsathit
- Edith Cowan University, School of Medical and Health Sciences, Joondalup, Western Australia, Australia
| | - Vasantha K Neela
- Universiti Putra Malaysia, Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Serdang, Malaysia
| | - Narcisse M S Joseph
- Universiti Putra Malaysia, Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Serdang, Malaysia
| | - Peck Toung Ooi
- Universiti Putra Malaysia, Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Serdang, Malaysia
| | | | - Daniel R Knight
- Murdoch University, Medical, Molecular and Forensic Sciences, Murdoch, Western Australia, Australia
| | - Thomas V Riley
- Edith Cowan University, School of Medical and Health Sciences, Joondalup, Western Australia, Australia; Murdoch University, Medical, Molecular and Forensic Sciences, Murdoch, Western Australia, Australia; PathWest Laboratory Medicine, Nedlands, Western Australia, Australia.
| |
Collapse
|
17
|
Imwattana K, Knight DR, Kullin B, Collins DA, Putsathit P, Kiratisin P, Riley TV. Clostridium difficile ribotype 017 - characterization, evolution and epidemiology of the dominant strain in Asia. Emerg Microbes Infect 2019; 8:796-807. [PMID: 31138041 PMCID: PMC6542179 DOI: 10.1080/22221751.2019.1621670] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clostridium difficile ribotype (RT) 017 is an important toxigenic C. difficile RT which, due to a deletion in the repetitive region of the tcdA gene, only produces functional toxin B. Strains belonging to this RT were initially dismissed as nonpathogenic and circulated largely undetected for almost two decades until they rose to prominence following a series of outbreaks in the early 2000s. Despite lacking a functional toxin A, C. difficile RT 017 strains have been shown subsequently to be capable of causing disease as severe as that caused by strains producing both toxins A and B. While C. difficile RT 017 strains can be found in almost every continent today, epidemiological studies suggest that the RT is endemic in Asia and that the global spread of this MLST clade 4 lineage member is a relatively recent event. C. difficile RT 017 transmission appears to be mostly from human to human with only a handful of reports of isolations from animals. An important feature of C. difficile RT 017 strains is their resistance to several antimicrobials and this has been documented as a possible factor driving multiple outbreaks in different parts of the world. This review summarizes what is currently known regarding the emergence and evolution of strains belonging to C. difficile RT 017 as well as features that have allowed it to become an RT of global importance.
Collapse
Affiliation(s)
- Korakrit Imwattana
- a School of Biomedical Sciences , The University of Western Australia , Crawley, Australia.,b Department of Microbiology, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok, Thailand
| | - Daniel R Knight
- c School of Veterinary and Life Sciences , Murdoch University , Murdoch, Australia
| | - Brian Kullin
- d Department of Molecular and Cell Biology , University of Cape Town , Cape Town , South Africa
| | - Deirdre A Collins
- e School of Medical and Health Sciences , Edith Cowan University , Joondalup, Australia
| | - Papanin Putsathit
- e School of Medical and Health Sciences , Edith Cowan University , Joondalup, Australia
| | - Pattarachai Kiratisin
- b Department of Microbiology, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok, Thailand
| | - Thomas V Riley
- a School of Biomedical Sciences , The University of Western Australia , Crawley, Australia.,c School of Veterinary and Life Sciences , Murdoch University , Murdoch, Australia.,e School of Medical and Health Sciences , Edith Cowan University , Joondalup, Australia.,f PathWest Laboratory Medicine , Queen Elizabeth II Medical Centre , Nedlands , Australia
| |
Collapse
|
18
|
Imwattana K, Wangroongsarb P, Riley TV. High prevalence and diversity of tcdA-negative and tcdB-positive, and non-toxigenic, Clostridium difficile in Thailand. Anaerobe 2019; 57:4-10. [PMID: 30862468 DOI: 10.1016/j.anaerobe.2019.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 02/05/2023]
Abstract
Studies on the prevalence and diversity of Clostridium difficile in Thailand have been limited to those derived from a few tertiary hospitals in Central Thailand. In this study, 145 C. difficile isolates collected in 13 provinces in Thailand during 2006-2018 were characterized by ribotyping and detection of toxin genes. Minimum inhibitory concentrations of eight antimicrobial agents were determined also for all 100 C. difficile strains collected from 2006 until 2015. Of the 145 strains of C. difficile, 71 (49%) were non-toxigenic, 46 (32%) were toxin A-negative, toxin B-positive (A-B+) and 28 (19%) were A+B+. No binary toxin-positive strain was found. The most common ribotype (RT) was RT 017 (A-B+CDT-, 19%, 28/145). Besides RT 017, 20 novel non-toxigenic and A-B+ ribotyping profiles, which may be related to RT 017 by the similarity of ribotyping profile, were identified. All C. difficile strains remained susceptible to metronidazole and vancomycin, however, a slight increase in MIC for metronidazole was seen in both toxigenic and non-toxigenic strains (overall MIC50/90 0.25/0.25 mg/L during 2006-2010 compared to overall MIC50/90 1.0/2.0 mg/L during 2011-2015). There was a high rate of fluoroquinolone resistance among RT 017 strains (77%), but there was little resistance among non-toxigenic strains. These results suggest that RT 017 is endemic in Thailand, and that the misuse of fluoroquinolones may lead to outbreaks of RT 017 infection in this country. Further studies on non-toxigenic C. difficile are needed to understand whether they have a role in the pathogenesis of C. difficile infection in Asia.
Collapse
Affiliation(s)
- Korakrit Imwattana
- School of Biomedical Sciences, The University of Western Australia, Western Australia, 6009, Australia
| | - Piyada Wangroongsarb
- The National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Thomas V Riley
- School of Biomedical Sciences, The University of Western Australia, Western Australia, 6009, Australia; School of Veterinary and Life Sciences, Murdoch University, Western Australia, 6150, Australia; School of Medical and Health Sciences, Edith Cowan University, Western Australia, 6027, Australia; Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Western Australia, 6009, Australia.
| |
Collapse
|
19
|
Zhou Y, Mao L, Yu J, Lin Q, Luo Y, Zhu X, Sun Z. Epidemiology of Clostridium difficile infection in hospitalized adults and the first isolation of C. difficile PCR ribotype 027 in central China. BMC Infect Dis 2019; 19:232. [PMID: 30845918 PMCID: PMC6407249 DOI: 10.1186/s12879-019-3841-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 02/21/2019] [Indexed: 02/08/2023] Open
Abstract
Background Clostridium difficile infection (CDI) is an emerging healthcare problem in the world. The purpose of this study was to perform a systematic epidemiological research of CDI in Tongji hospital, the central of China. Methods Stool samples from hospitalized adults suspected of CDI were enrolled. The diagnosis of CDI were based on the combination of clinical symptoms and laboratory results. Clinical features of CDI and non-CDI patients were compared by appropriate statistical tests to determine the risk factors of CDI. Multilocus sequence typing (MLST) was employed for molecular epidemiological analysis. Susceptibility testing and relevant antimicrobial agent resistance genes were performed as well. Results From June 2016 to September 2017, 839 hospitalized adults were enrolled. Among them, 107 (12.8%, 107/839) patients were C. difficile culture positive, and 73 (8.7%, 73/839) were infected with toxigenic C. difficile (TCD), with tcdA + tcdB+ strains accounting for 90.4% (66/73) and tcdA-tcdB+ for 9.6% (7/73). Meanwhile, two TCD strains were binary toxin positive and one of them was finally identified as CD027. Severe symptoms were observed in these two cases. Multivariate analysis indicated antibiotic exposure (p = 0.001, OR = 5.035) and kidney disease (p = 0.015, OR = 8.329) significantly increased the risk of CDI. Phylogenetic tree analysis demonstrated 21 different STs, including one new ST (ST467); and the most dominant type was ST54 (35.6%, 26/73). Multidrug-resistant (MDR) TCD were 53.4% (39/73); resistance to ciprofloxacin, erythromycin, and clindamycin were > 50%. Other antibiotics showed relative efficiency and all strains were susceptible to metronidazole and vancomycin. All moxifloxacin-resistant isolates carried a mutation in GyrA (Thr82 → Ile), with one both having mutation in GyrB (Ser366 → Ala). Conclusions Knowledge of epidemiological information for CDI is limited in China. Our finding indicated tcdA + tcdB+ C. difficile strains were the dominant for CDI in our hospital. Significant risk factors for CDI in our setting appeared to be antibiotic exposure and kidney disease. Metronidazole and vancomycin were still effective for CDI. Although no outbreak was observed, the first isolation of CD027 in center China implied the potential spread of this hypervirulent clone. Further studies are needed to enhance our understanding of the epidemiology of CDI in China. Electronic supplementary material The online version of this article (10.1186/s12879-019-3841-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, 310014, Hangzhou, China
| | - Liyan Mao
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030, China
| | - Jing Yu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030, China
| | - Qun Lin
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030, China
| | - Ying Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030, China
| | - Xuhui Zhu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030, China.
| | - Ziyong Sun
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030, China.
| |
Collapse
|
20
|
Dingsdag SA, Hunter N. Metronidazole: an update on metabolism, structure-cytotoxicity and resistance mechanisms. J Antimicrob Chemother 2019; 73:265-279. [PMID: 29077920 DOI: 10.1093/jac/dkx351] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Metronidazole, a nitroimidazole, remains a front-line choice for treatment of infections related to inflammatory disorders of the gastrointestinal tract including colitis linked to Clostridium difficile. Despite >60 years of research, the metabolism of metronidazole and associated cytotoxicity is not definitively characterized. Nitroimidazoles are prodrugs that are reductively activated (the nitro group is reduced) under low oxygen tension, leading to imidazole fragmentation and cytotoxicity. It remains unclear if nitroimidazole reduction (activation) contributes to the cytotoxicity profile, or whether subsequent fragmentation of the imidazole ring and formed metabolites alone mediate cytotoxicity. A molecular mechanism underpinning high level (>256 mg/L) bacterial resistance to metronidazole also remains elusive. Considering the widespread use of metronidazole and other nitroimidazoles, this review was undertaken to emphasize the structure-cytotoxicity profile of the numerous metabolites of metronidazole in human and murine models and to examine conflicting reports regarding metabolite-DNA interactions. An alternative hypothesis, that DNA synthesis and repair of existing DNA is indirectly inhibited by metronidazole is proposed. Prokaryotic metabolism of metronidazole is detailed to discuss new resistance mechanisms. Additionally, the review contextualizes the history and current use of metronidazole, rates of metronidazole resistance including metronidazole MDR as well as the biosynthesis of azomycin, the natural precursor of metronidazole. Changes in the gastrointestinal microbiome and the host after metronidazole administration are also reviewed. Finally, novel nitroimidazoles and new antibiotic strategies are discussed.
Collapse
Affiliation(s)
- Simon A Dingsdag
- Institute of Dental Research and Westmead Centre for Oral Health, Westmead, NSW 2145, Australia.,Department of Life Sciences Faculty of Dentistry, The University of Sydney, NSW 2006, Australia.,The Westmead Institute for Medical Research, The University of Sydney, NSW 2145, Australia
| | - Neil Hunter
- Institute of Dental Research and Westmead Centre for Oral Health, Westmead, NSW 2145, Australia.,Department of Life Sciences Faculty of Dentistry, The University of Sydney, NSW 2006, Australia.,The Westmead Institute for Medical Research, The University of Sydney, NSW 2145, Australia
| |
Collapse
|
21
|
MOHAMMADBEIGI M, SAFAYI DELOUYI Z, MOHAMMADZADEH N, ALA’ALMOHADESIN A, TAHERI K, EDALATI E, SEDIGHI M, ZAHEDI BIALVAEI A. Prevalence and antimicrobial susceptibility pattern of toxigenic Clostridium difficilestrains isolated in Iran. Turk J Med Sci 2019; 49:384-391. [PMID: 30761842 PMCID: PMC7350832 DOI: 10.3906/sag-1808-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background/aim Clostridium difficile is a frequent cause of nosocomial infections and has become a major public health concern in developed nations. In the present study, the prevalence and antimicrobial susceptibility pattern of toxigenic C. difficile strains isolated in Iran were investigated. Materials and methods Between June 2016 and May 2017, 2947 inpatient fecal samples were taken from symptomatic adult hospitalized patients in different units of 32 care facilities in Tehran, Iran. C. difficile strains were identified by microbiological/biochemical methods. Susceptibility to 20 antimicrobials was measured by E-test method. Toxin-specific immunoassays and cytotoxicity assays were used to determine in vitro toxin production. Results Out of 2947 fecal samples, 538 (18.25%) C. difficile isolates were obtained among those with suspected CDI. In E-test method, all C. difficile isolates were susceptible to fidaxomicin, vancomycin, amoxicillin/clavulanate, and meropenem and were resistant to penicillin G. The prevalence of multidrug resistant C. difficile was 69.33% (373/538). Among 538 C. difficile, 147 (27.32%), 169 (31.41%), and 222 (41.26%) isolates were TcdA+/TcdB+, TcdA-/TcdB+, and TcdA-/TcdB-, respectively. Conclusion The results evidently support the hypothesis of a probable role of toxigenic strains of C. difficile in developing gastrointestinal complaints in patients with diarrhea.
Collapse
Affiliation(s)
- Maryam MOHAMMADBEIGI
- Department of Microbiology and Immunology, Qazvin University of Medical Sciences, QazvinIran
| | - Zahra SAFAYI DELOUYI
- Department of Microbiology, School of Basic Sciences, Qom Branch, Islamic Azad University, QomIran
| | - Nima MOHAMMADZADEH
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, TehranIran
| | - Arash ALA’ALMOHADESIN
- Department of Microbiology, School of Basic Sciences, Qom Branch, Islamic Azad University, QomIran
| | - Keyvan TAHERI
- Department of Biology, Damghan Branch, Islamic Azad University, DamghanIran
| | - Elahe EDALATI
- Department of Microbiology, Kerman Branch, Islamic Azad University, KermanIran
| | - Mansour SEDIGHI
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, TehranIran
- Azarbaijan-Gharbi Regional Blood Transfusion Center, UrmiaIran
| | - Abed ZAHEDI BIALVAEI
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, TehranIran
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Lacy BE. Review article: an analysis of safety profiles of treatments for diarrhoea-predominant irritable bowel syndrome. Aliment Pharmacol Ther 2018; 48:817-830. [PMID: 30194692 PMCID: PMC6667996 DOI: 10.1111/apt.14948] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/27/2018] [Accepted: 07/28/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is multifactorial in nature, and a wide range of therapies is available to manage symptoms of this common disorder. AIM To provide an overview of the safety of interventions that may be used to manage patients with diarrhoea-predominant IBS (IBS-D). METHODS Medline and Embase database searches (through 02 May 2018) to identify clinical studies that evaluated treatment safety and/or efficacy in adults with IBS-D. RESULTS IBS-D treatments include dietary modification, probiotics, serotonin receptor antagonists, opioid receptor agonists and antagonists, nonsystemic antibiotics, bile acid sequestrants, antidepressants, and complementary and alternative therapies. These treatments vary in administration frequency (eg, daily; short-course therapy) and target various pathophysiologic factors. Safety profiles vary considerably by treatment among IBS-D therapies. The number needed to harm (defined as the number of patients treated to encounter an adverse event) was lowest (worse) for antidepressants (8.5) and highest (best) for probiotics (35), and the number needed to harm (defined as the number of patients who discontinued due to an adverse event) was lowest for tricyclic antidepressants (9) and highest for rifaximin (8971). Notable safety concerns with IBS-D treatments include pancreatitis with eluxadoline, ischaemic colitis and serious complications of constipation with alosetron, and cardiac adverse events with loperamide and tricyclic antidepressants. Treatment decisions need to account for medication risks and adverse events for each patient. CONCLUSIONS Multiple treatment options are now available for patients with IBS-D. However, the safety profiles of these agents vary widely by number needed to harm value. Providers should consider both safety and efficacy of a specific intervention when determining how best to manage patients' IBS-D symptoms.
Collapse
Affiliation(s)
- Brian E. Lacy
- Section of GastroenterologyMayo ClinicJacksonvilleFlorida
| |
Collapse
|
23
|
Wolfe C, Pagano P, Pillar CM, Shinabarger DL, Boulos RA. Comparison of the in vitro antibacterial activity of Ramizol, fidaxomicin, vancomycin, and metronidazole against 100 clinical isolates of Clostridium difficile by broth microdilution. Diagn Microbiol Infect Dis 2018; 92:250-252. [PMID: 30042035 DOI: 10.1016/j.diagmicrobio.2018.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/12/2018] [Accepted: 06/01/2018] [Indexed: 01/11/2023]
Abstract
Antibiotic drug development remains a major challenge with few candidates in clinical development. Ramizol, a first-in-class styrylbenzene antibiotic, is under development for the treatment of Clostridium difficile associated disease. Here, we investigate the in vitro antibacterial activity of Ramizol in comparison to fidaxomicin, vancomycin and metronidazole against 100 clinical isolates of C. difficile by the broth microdilution method. We show there is no apparent impact of ribotype, toxin-production, or resistance to fidaxomicin, vancomycin or metronidazole on the activity of Ramizol. Moreover, we show Ramizol has a narrower MIC range translating to potentially better control over the therapeutic dose. Together, these results support the further development of Ramizol for the treatment of C. difficile associated disease.
Collapse
Affiliation(s)
| | | | | | | | - Ramiz A Boulos
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, Australia; Antibiotic Development, Boulos & Cooper Pharmaceuticals Pty Ltd, Balcatta, WA, Australia.
| |
Collapse
|
24
|
Antibiotic Resistances of Clostridium difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:137-159. [PMID: 29383668 DOI: 10.1007/978-3-319-72799-8_9] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The rapid evolution of antibiotic resistance in Clostridium difficile and the consequent effects on prevention and treatment of C. difficile infections (CDIs) are matter of concern for public health. Antibiotic resistance plays an important role in driving C. difficile epidemiology. Emergence of new types is often associated with the emergence of new resistances and most of epidemic C. difficile clinical isolates is currently resistant to multiple antibiotics. In particular, it is to worth to note the recent identification of strains with reduced susceptibility to the first-line antibiotics for CDI treatment and/or for relapsing infections. Antibiotic resistance in C. difficile has a multifactorial nature. Acquisition of genetic elements and alterations of the antibiotic target sites, as well as other factors, such as variations in the metabolic pathways and biofilm production, contribute to the survival of this pathogen in the presence of antibiotics. Different transfer mechanisms facilitate the spread of mobile elements among C. difficile strains and between C. difficile and other species. Furthermore, recent data indicate that both genetic elements and alterations in the antibiotic targets can be maintained in C. difficile regardless of the burden imposed on fitness, and therefore resistances may persist in C. difficile population in absence of antibiotic selective pressure.
Collapse
|