1
|
Boyanov VS, Alexandrova AS, Hristova PM, Hitkova HY, Gergova RT. Antibiotic Resistance and Serotypes Distribution in Streptococcus agalactiae Bulgarian Clinical Isolates During the Years of 2021-2024. Pol J Microbiol 2024; 73:505-514. [PMID: 39670636 PMCID: PMC11639287 DOI: 10.33073/pjm-2024-042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/16/2024] [Indexed: 12/14/2024] Open
Abstract
Streptococcus agalactiae (group B Streptococcus, GBS) is an important human and animal pathogen. In recent years, the number of streptococcal isolates resistant to antimicrobial agents has increased in many parts of the world. Various mechanisms of antimicrobial resistance and capsular serotypes of GBS with different geographical distributions can be found. A prospective cross-sectional study was conducted from September 2021 to May 2024. The survey included 257 GBS isolates from Bulgarian inpatients and outpatients with streptococcal infections. Antibiotic resistance genes and capsular serotypes were detected and evaluated using polymerase chain reaction (PCR). We classified GBS isolates into groups according to their source as vaginal samples (191) and extra-vaginal samples (66), subdivided as invasive (36) and non-invasive specimens (30). The most common serotypes were Ia (26.5%), III (20.2%), and V (19.8%). Antimicrobial susceptibility testing revealed that all examined isolates were susceptible to penicillin and vancomycin. Resistance to macrolides, lincosamides, and tetracyclines was observed in 60.3%, 24.9%, and 89.1% of the isolates. The distribution of phenotypes was cMLSb 47.4%, iMLSb 30.8%, M-type 21.2%, and L-type 0.6%. PCR analysis revealed nine genes associated with macrolide and lincosamide resistance: ermB (54.2%), ermA/TR (30.3%), mefA (20.7%), ermC (18.1%), msrD (14.8%), mefE (8.4%), IsaC (8.4%), InuB (7.7%), and IsaE (6.5%). Two genes linked to tetracycline resistance tetM (89.1%) and tetO (14.4%) were detected. Compared to the previous period, we observed increased antibiotic resistance. There was no statistical significance between the distribution of serotypes and antimicrobial non-susceptibility depending on the sample source.
Collapse
Affiliation(s)
- Vasil S. Boyanov
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Alexandra S. Alexandrova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Preslava M. Hristova
- Department of Microbiology and Virology, Medical University − Pleven, Pleven, Bulgaria
| | - Hristina Y. Hitkova
- Department of Microbiology and Virology, Medical University − Pleven, Pleven, Bulgaria
| | - Raina T. Gergova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
2
|
Shidan Z, Song L, Yumin Z, Rong C, Siteng W, Meirong L, Guangjin L. First report of Streptococcus agalactiae isolated from a healthy captive sichuan golden snub-nosed monkey (Rhinopithecus roxellana) in China. Microb Pathog 2024; 195:106907. [PMID: 39218375 DOI: 10.1016/j.micpath.2024.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Streptococcus agalactiae (S. agalactiae) is an opportunistic pathogen, and to date, studies have mainly focused on S. agalactiae strains isolated from humans, dairy cows, and fish. We reported one S. agalactiae strain, named CFFB, which was isolated from a healthy Sichuan golden snub-nosed monkey. Classical bacteriological approaches, as well as, next-generation sequencing, comparative genomics, and mice challenge test were used to characterize this strain. CFFB was identified as serotype III, ST19 combination which is a common type found in human strains. Phylogenetic analysis showed that the genome of CFFB was closely related to human clinical isolates, rather far away from animal strains. In total, CFFB contained fewer virulence-associated genes and antibiotic resistance genes than human isolates that were close to CFFB in evolutionary relationships. In the mice challenge test, CFFB had a relative weak virulence that just caused death in 33 % of ICR mice at a dose of 108 CFU by intraperitoneal injection, and CFFB was reisolated from the cardiac blood of the dead mice. Meanwhile, two intact prophages (prophage 1 and 2) were identified in the CFFB genome and shared high similarities with phage Javan52 and Javan29 which from human S. agalactiae isolate Gottschalk 1002A and RBH03, respectively. Moreover, the type II-A CRISPR-Cas system was detected in the CFFB genome, and the spacers from CFFB were the same to the streptococci isolates from human. These results suggest that CFFB isolated from healthy Sichuan golden snub-nosed monkeys may have its origin in human S. agalactiae. Our results suggested some genomic similarities between the S. agalactiae colonized in Sichuan golden snub-nosed monkey and those in infected humans.
Collapse
Affiliation(s)
- Zhang Shidan
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, 572000, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang Song
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhang Yumin
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, 201100, China
| | - Chen Rong
- Nanjing Hongshan Forest Zoo, Nanjing, 210028, China
| | - Wang Siteng
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Meirong
- Nanjing Hongshan Forest Zoo, Nanjing, 210028, China.
| | - Liu Guangjin
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, 572000, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Yang Y, Xie S, He F, Xu Y, Wang Z, Ihsan A, Wang X. Recent development and fighting strategies for lincosamide antibiotic resistance. Clin Microbiol Rev 2024; 37:e0016123. [PMID: 38634634 PMCID: PMC11237733 DOI: 10.1128/cmr.00161-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
SUMMARYLincosamides constitute an important class of antibiotics used against a wide range of pathogens, including methicillin-resistant Staphylococcus aureus. However, due to the misuse of lincosamide and co-selection pressure, the resistance to lincosamide has become a serious concern. It is urgently needed to carefully understand the phenomenon and mechanism of lincosamide resistance to effectively prevent and control lincosamide resistance. To date, six mobile lincosamide resistance classes, including lnu, cfr, erm, vga, lsa, and sal, have been identified. These lincosamide resistance genes are frequently found on mobile genetic elements (MGEs), such as plasmids, transposons, integrative and conjugative elements, genomic islands, and prophages. Additionally, MGEs harbor the genes that confer resistance not only to antimicrobial agents of other classes but also to metals and biocides. The ultimate purpose of discovering and summarizing bacterial resistance is to prevent, control, and combat resistance effectively. This review highlights four promising strategies, including chemical modification of antibiotics, the development of antimicrobial peptides, the initiation of bacterial self-destruct program, and antimicrobial stewardship, to fight against resistance and safeguard global health.
Collapse
Affiliation(s)
- Yingying Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shiyu Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fangjing He
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yindi Xu
- Institute of Animal Husbandry Research, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Zhifang Wang
- Institute of Animal Husbandry Research, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal campus, Islamabad, Pakistan
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
4
|
de Oliveira LMA, Simões LC, Crestani C, Costa NS, Pantoja JCDF, Rabello RF, Teixeira LM, Khan UB, Bentley S, Jamrozy D, Pinto TDCA, Zadoks RN. Long-Term Co-Circulation of Host-Specialist and Host-Generalist Lineages of Group B Streptococcus in Brazilian Dairy Cattle with Heterogeneous Antimicrobial Resistance Profiles. Antibiotics (Basel) 2024; 13:389. [PMID: 38786118 PMCID: PMC11117364 DOI: 10.3390/antibiotics13050389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Group B Streptococcus (GBS) is a major cause of contagious bovine mastitis (CBM) in Brazil. The GBS population is composed of host-generalist and host-specialist lineages, which may differ in antimicrobial resistance (AMR) and zoonotic potential, and the surveillance of bovine GBS is crucial to developing effective CBM control and prevention measures. Here, we investigated bovine GBS isolates (n = 156) collected in Brazil between 1987 and 2021 using phenotypic testing and whole-genome sequencing to uncover the molecular epidemiology of bovine GBS. Clonal complex (CC) 61/67 was the predominant clade in the 20th century; however, it was replaced by CC91, with which it shares a most common recent ancestor, in the 21st century, despite the higher prevalence of AMR in CC61/67 than in CC91, and high selection pressure for AMR from indiscriminate antimicrobial use in the Brazilian dairy industry. CC103 also emerged as a dominant CC in the 21st century, and a considerable proportion of herds had two or more GBS strains, suggesting poor biosecurity and within-herd evolution due to the chronic nature of CBM problems. The majority of bovine GBS belonged to serotype Ia or III, which was strongly correlated with CCs. Ninety-three isolates were resistant to tetracycline (≥8 μg/mL; tetO = 57, tetM = 34 or both = 2) and forty-four were resistant to erythromycin (2.0 to >4 μg/mL; ermA = 1, ermB = 38, mechanism unidentified n = 5). Only three isolates were non-susceptible to penicillin (≥8.0 μg/mL), providing opportunities for improved antimicrobial stewardship through the use of narrow-spectrum antimicrobials for the treatment of dairy cattle. The common bovine GBS clades detected in this study have rarely been reported in humans, suggesting limited risk of interspecies transmission of GBS in Brazil. This study provides new data to support improvements to CBM and AMR control, bovine GBS vaccine design, and the management of public health risks posed by bovine GBS in Brazil.
Collapse
Affiliation(s)
- Laura Maria Andrade de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.C.S.); (N.S.C.); (L.M.T.); (T.d.C.A.P.)
| | - Leandro Correia Simões
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.C.S.); (N.S.C.); (L.M.T.); (T.d.C.A.P.)
| | | | - Natália Silva Costa
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.C.S.); (N.S.C.); (L.M.T.); (T.d.C.A.P.)
| | | | | | - Lucia Martins Teixeira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.C.S.); (N.S.C.); (L.M.T.); (T.d.C.A.P.)
| | - Uzma Basit Khan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; (U.B.K.); (S.B.); (D.J.)
| | - Stephen Bentley
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; (U.B.K.); (S.B.); (D.J.)
| | - Dorota Jamrozy
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; (U.B.K.); (S.B.); (D.J.)
| | - Tatiana de Castro Abreu Pinto
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.C.S.); (N.S.C.); (L.M.T.); (T.d.C.A.P.)
| | - Ruth N. Zadoks
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW 2570, Australia
| |
Collapse
|
5
|
Dec M, Zomer A, Webster J, Nowak T, Stępień-Pyśniak D, Urban-Chmiel R. Integrative and Conjugative Elements and Prophage DNA as Carriers of Resistance Genes in Erysipelothrix rhusiopathiae Strains from Domestic Geese in Poland. Int J Mol Sci 2024; 25:4638. [PMID: 38731857 PMCID: PMC11083093 DOI: 10.3390/ijms25094638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Goose erysipelas is a serious problem in waterfowl breeding in Poland. However, knowledge of the characteristics of Erysipelothrix rhusiopathiae strains causing this disease is limited. In this study, the antimicrobial susceptibility and serotypes of four E. rhusiopathiae strains from domestic geese were determined, and their whole-genome sequences (WGSs) were analyzed to detect resistance genes, integrative and conjugative elements (ICEs), and prophage DNA. Sequence type and the presence of resistance genes and transposons were compared with 363 publicly available E. rhusiopathiae strains, as well as 13 strains of other Erysipelothrix species. Four strains tested represented serotypes 2 and 5 and the MLST groups ST 4, 32, 242, and 243. Their assembled circular genomes ranged from 1.8 to 1.9 kb with a GC content of 36-37%; a small plasmid was detected in strain 1023. Strains 1023 and 267 were multidrug-resistant. The resistance genes detected in the genome of strain 1023 were erm47, tetM, and lsaE-lnuB-ant(6)-Ia-spw cluster, while strain 267 contained the tetM and ermB genes. Mutations in the gyrA gene were detected in both strains. The tetM gene was embedded in a Tn916-like transposon, which in strain 1023, together with the other resistance genes, was located on a large integrative and conjugative-like element of 130 kb designated as ICEEr1023. A minor integrative element of 74 kb was identified in strain 1012 (ICEEr1012). This work contributes to knowledge about the characteristics of E. rhusiopathiae bacteria and, for the first time, reveals the occurrence of erm47 and ermB resistance genes in strains of this species. Phage infection appears to be responsible for the introduction of the ermB gene into the genome of strain 267, while ICEs most likely play a key role in the spread of the other resistance genes identified in E. rhusiopathiae.
Collapse
Affiliation(s)
- Marta Dec
- Department of Veterinary Prevention and Avian Diseases, University of Life Sciences in Lublin, 20-033 Lublin, Poland; (D.S.-P.); (R.U.-C.)
| | - Aldert Zomer
- Division of Infectious Diseases and Immunology, Faculty of Veterinaty Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
- WOAH Reference Laboratory for Campylobacteriosis, WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from a One Health Perspective, 3584 CL Utrecht, The Netherlands
| | - John Webster
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, PMB 4008, Narellan, NSW 2570, Australia;
| | - Tomasz Nowak
- Diagnostic Veterinary Laboratory “Vet-Lab Brudzew Dr. Piotr Kwieciński”, 62-720 Brudzew, Poland;
| | - Dagmara Stępień-Pyśniak
- Department of Veterinary Prevention and Avian Diseases, University of Life Sciences in Lublin, 20-033 Lublin, Poland; (D.S.-P.); (R.U.-C.)
| | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, University of Life Sciences in Lublin, 20-033 Lublin, Poland; (D.S.-P.); (R.U.-C.)
| |
Collapse
|
6
|
Azpiroz MF, Burger N, Mazza M, Rodríguez G, Camou T, García Gabarrot G. Characterization of Streptococcus equi subsp. zooepidemicus isolates containing lnuB gene responsible for the L phenotype. PLoS One 2023; 18:e0284869. [PMID: 37115801 PMCID: PMC10146458 DOI: 10.1371/journal.pone.0284869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Within the framework of the β-hemolytic streptococci surveillance carried out by the National Reference Laboratory from Uruguay, three putative Streptococcus equi subsp. zooepidemicus (SEZ) were received from different health centers. Being these the first reports associated with human infections in Uruguay, the objective of this work was to confirm their identification, to determine their genetic relationship and to study their antibiotic susceptibility. Using four different methods, they were identified as SEZ, a subspecies which has been described as the etiologic agent of rare and severe zoonosis in a few cases in other countries. The three isolates presented different pulsotypes by PFGE; however, two of them appeared to be related and were confirmed as ST431 by MLST, while the remaining isolate displayed ST72. Their resistance profile exhibited an unexpected feature: despite all of them were susceptible to macrolides, they showed different levels of resistance to clindamycin, i.e. they had the so-called "L phenotype". This rare trait is known to be due to a nucleotidyl-transferase, encoded by genes of the lnu family. Although this phenotype was previously described in a few SEZ isolates, its genetic basis has not been studied yet. This was now analyzed by PCR in the three isolates and they were found to contain a lnuB gene. The lnuB sequence was identical among the three isolates and with many lnuB sequences deposited in data banks. In conclusion, for the first time in Uruguay, three SEZ isolates recovered from non-epidemiologically related cases of human invasive infection were identified. Moreover, this is the first report about the presence of a lnu gene in the S. equi species, revealing the active lateral spread of the lnuB in a new streptococcal host.
Collapse
Affiliation(s)
- María F Azpiroz
- Facultad de Ciencias, Fisiología y Genética Bacterianas, UdelaR, Montevideo, Uruguay
| | | | | | | | - Teresa Camou
- Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Montevideo, Uruguay
| | | |
Collapse
|
7
|
Karakulska J, Woroszyło M, Szewczuk M, Fijałkowski K. Identification, Superantigen Toxin Gene Profile and Antimicrobial Resistance of Staphylococci Isolated from Polish Primitive Sheep Breeds. Animals (Basel) 2022; 12:ani12162139. [PMID: 36009729 PMCID: PMC9404845 DOI: 10.3390/ani12162139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
The study aimed to analyze staphylococcal microbiota of the nasal cavity of the primitive sheep breeds Polish Świniarka and Wrzosówka kept on the same ecological farm. The research included the identification of staphylococcal species, evaluation of the prevalence of genes encoding enterotoxins, staphylococcal enterotoxin-like proteins, exfoliative toxins, toxic shock syndrome toxin 1, and detection of antimicrobial resistance. From 61 swab samples gathered from Świniarka (33) and Wrzosówka (28) healthy sheep, 127 coagulase-negative staphylococci (CoNS) were isolated. Based on PCR-RFLP analysis of the gap gene using AluI and HpyCH4V enzymes, the isolates were identified as: Staphylococcus xylosus (33.9%), S. equorum (29.1%), S. arlettae (15%), S. warneri (9.4%), S. lentus (7.9%), S. succinus (3.9%) and S. sciuri (0.8%). Three of these species, S. lentus, S. succinus, and S. sciuri, were detected only from the Świniarka breed. It was found that 77.2% of isolates harbored from 1 to 7 out of 21 analyzed genes for superantigenic toxins. The greatest diversity of toxin genes was recorded for S. equorum (16 different genes). The most prevalent gene was ser (40.2%). The incidence and number of resistances to antimicrobials were found to be bacterial species but not sheep breed dependent. The highest percentage of resistance was found for S. sciuri. The most frequent resistance was observed to clindamycin (45.7%). The findings of this study prove that toxigenic and antimicrobial resistant CoNS can colonize the nasal cavity of healthy sheep.
Collapse
Affiliation(s)
- Jolanta Karakulska
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland
| | - Marta Woroszyło
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland
| | - Małgorzata Szewczuk
- Department of Ruminant Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Janickiego 29, 71-270 Szczecin, Poland
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland
- Correspondence:
| |
Collapse
|
8
|
Molecular Characteristics of IS 1216 Carrying Multidrug Resistance Gene Cluster in Serotype III/Sequence Type 19 Group B Streptococcus. mSphere 2021; 6:e0054321. [PMID: 34319128 PMCID: PMC8386385 DOI: 10.1128/msphere.00543-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus agalactiae is the leading cause of meningitis in newborns and a significant cause of invasive diseases in pregnant women and adults with underlying diseases. Antibiotic resistance against erythromycin and clindamycin in group B streptococcus (GBS) isolates has been increasing worldwide. GBS expresses the Srr1 and Srr2 proteins, which have important roles in bacterial infection. They have been investigated as novel vaccine candidates against GBS infection, with promising results. But a recent study detected non-srr1/2-expressing clinical isolates belonging to serotype III. Thus, we aimed to analyze the genotypes of non-srr1/2 GBS clinical isolates collected between 2013 and 2016 in South Korea. Forty-one (13.4%) of the 305 serotype III isolates were identified as non-srr1/2 strains, including sequence type 19 (ST19) (n = 16) and ST27 (n = 18) strains. The results of the comparative genomic analysis of the ST19/serotype III/non-srr1/2 strains further revealed four unique gene clusters. Site 4 in the srr1 gene locus was replaced by an lsa(E)-lnu(B)-aadK-aac-aph-aadE-carrying multidrug-resistant gene cluster flanked by two IS1216 transposases with 99% homology to the enterococcal plasmid pKUB3007-1. Despite the Srr1 and Srr2 deficiencies, which resulted in reduced fibrinogen binding, the adherence of non-srr1/2 strains to endothelial and epithelial cells was comparable to that of Srr1- or Srr2-expressing strains. Moreover, their virulence in mouse models of meningitis was not significantly affected. Furthermore, additional adhesin-encoding genes, including a gene encoding a BspA-like protein, which may contribute to colonization by non-srr1/2 strains, were identified via whole-genome analysis. Thus, our study provides important findings that can aid in the development of vaccines and antibiotics against GBS. IMPORTANCE Most previously isolated group B streptococcus (GBS) strains express either the Srr1 or Srr2 glycoprotein, which plays an important role in bacterial colonization and invasion. These glycoproteins are potential protein vaccine candidates. In this study, we first report GBS clinical isolates in which the srr1/2 gene was deleted or replaced with foreign genes. Despite Srr1/2 deficiency, in vitro adherence to mammalian cells and in vivo virulence in murine models were not affected, suggesting that the isolates might have another adherence mechanism that enhanced their virulence aside from Srr1/2-fibrinogen-mediated adherence. In addition, several non-srr1/2 isolates replaced the srr1/2 gene with the lnu(B) and lsa(E) antibiotic resistance genes flanked by IS1216, effectively causing multidrug resistance. Collectively, we believe that our study identifies the underlying genes responsible for the pathogenesis of new GBS serotype III. Furthermore, our study emphasizes the need for alternative antibiotics for patients who are allergic to β-lactams and for those who are pregnant.
Collapse
|
9
|
Motallebirad T, Fazeli H, Ghahiri A, Shokri D, Jalalifar S, Moghim S, Esfahani BN. Prevalence, population structure, distribution of serotypes, pilus islands and resistance genes among erythromycin-resistant colonizing and invasive Streptococcus agalactiae isolates recovered from pregnant and non-pregnant women in Isfahan, Iran. BMC Microbiol 2021; 21:139. [PMID: 33947330 PMCID: PMC8096152 DOI: 10.1186/s12866-021-02186-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/06/2021] [Indexed: 01/31/2023] Open
Abstract
Background The information on antibiotic resistance and molecular features of Group B Streptococcus (GBS) are essential for epidemiological purposes as well as vaccine development. Therefore, we aimed to assess the antimicrobial resistance profiles and molecular characteristics of GBS isolates in Isfahan, Iran. A total number of 72 colonizing and invasive GBS were collected from pregnant and non-pregnant women. The GBS isolates were analyzed for resistance profiles, capsular genotyping, and detection of PI-1, PI-2a, PI-2b, hvgA, ermB, ermTR, lnuB and, mefA genes. Besides, erythromycin-resistant strains were subjected to multilocus sequence typing (MLST). Results The prevalence of colonizing and invasive GBS were 11 and 0.05%, respectively. The frequency of capsular serotypes was as follows: III (26.3%), Ia (20.83%), Ib and V (each 15.2%), IV (9.7%), II (8.3%), VII (2.7%), and VI (1.3%). Overall frequencies of PIs were as follows: PI-1, 37.5%, PI-1 + PI-2a, 30.5%, PI-1 + PI-2b, 29.1% and PI-2b, 2.7%. Two maternal colonizing GBS (2.6%) were hvgA positive and were belonged to ST-17/CPS-III/PI-1 + PI-2b lineage. Among 30(41.6%) erythromycin resistant GBS, 21 isolates (70%) harbored ermB gene, followed by ermTR (23.3%) and mefA (10%). One clindamycin-resistant isolate harbored the lnuB gene. MLST analysis revealed the following five clonal complexes (CCs) and nine STs: (CC-19/ST-335, ST-19, and ST-197), (CC-12/ST-43, ST-12), (CC-23/ST-163, ST-23), (CC-17/ST-17) and (CC-4/ST-16). Conclusion The study shows an alarmingly high prevalence of erythromycin-resistant GBS in Iran. In addition, we report dissemination of ST-335/CPS-III clone associated with tetracycline and erythromycin resistance in our region. The distribution of capsular and pilus genotypes varies between invasive and colonizing GBS that could be helpful for vaccine development.
Collapse
Affiliation(s)
- Tahereh Motallebirad
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Hezar-Jerib Street, Isfahan, Iran
| | - Hossein Fazeli
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Hezar-Jerib Street, Isfahan, Iran
| | - Ataollah Ghahiri
- Department of Gynecology and Obstetrics, Al-Zahra university Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Dariush Shokri
- Infectious disease and tropical medicine research center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Hezar-Jerib Street, Isfahan, Iran
| | - Sharareh Moghim
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Hezar-Jerib Street, Isfahan, Iran
| | - Bahram Nasr Esfahani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Hezar-Jerib Street, Isfahan, Iran.
| |
Collapse
|
10
|
Baldan R, Droz S, Casanova C, Knabben L, Huang DJ, Brülisauer C, Kind AB, Krause E, Mauerer S, Spellerberg B, Sendi P. Group B streptococcal colonization in elderly women. BMC Infect Dis 2021; 21:408. [PMID: 33941088 PMCID: PMC8091692 DOI: 10.1186/s12879-021-06102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background In non-pregnant adults, the incidence of invasive Group B Streptococcus (GBS) disease is continuously increasing. Elderly and immunocompromised persons are at increased risk of infection. GBS commonly colonizes the vaginal tract, though data on colonization in the elderly are scarce. It is unknown whether the prevalence of GBS colonization is increasing in parallel to the observed rise of invasive infection. We conducted a three-year (2017–2019) prospective observational cross-sectional study in two teaching hospitals in Switzerland to determine the rate of GBS vaginal colonization in women over 60 years and i) to compare the proportions of known risk factors associated with invasive GBS diseases in colonized versus non-colonized women and ii) to evaluate the presence of GBS clusters with specific phenotypic and genotypic patterns in this population. Methods GBS screening was performed by using vaginal swabs collected during routine examination from women willing to participate in the study and to complete a questionnaire for risk factors. Isolates were characterized for antibiotic resistance profile, serotype and sequence type (ST). Results The GBS positivity rate in the elderly was 17% (44/255 positive samples), and similar to the one previously reported in pregnant women (around 20%). We could not find any association between participants’ characteristics, previously published risk factors and GBS colonization. All strains were susceptible to penicillin, 22% (8/36) were not susceptible to erythromycin, 14% (5/36) were not susceptible to clindamycin and 8% (3/36) showed inducible clindamycin resistance. Both M and L phenotypes were each detected in one isolate. The most prevalent serotypes were III (33%, 12/36) and V (31%, 11/36). ST1 and ST19 accounted for 11% of isolates each (4/36); ST175 for 8% (3/36); and ST23, ST249 and ST297 for 6% each (2/36). Significantly higher rates of resistance to macrolides and clindamycin were associated with the ST1 genetic background of ST1. Conclusions Our findings indicate a similar colonization rate for pregnant and elderly women. Trial registration Current Controlled Trial ISRCTN15468519; 06/01/2017 Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06102-x.
Collapse
Affiliation(s)
- Rossella Baldan
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland
| | - Sara Droz
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland
| | - Carlo Casanova
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland
| | - Laura Knabben
- Department of Gynecology and Obstetrics, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Dorothy J Huang
- Outpatient Department & Colposcopy Unit, University Women's Hospital Basel, Basel, Switzerland
| | - Christine Brülisauer
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland
| | - André B Kind
- Outpatient Department & Colposcopy Unit, University Women's Hospital Basel, Basel, Switzerland
| | - Elke Krause
- Department of Gynecology and Obstetrics, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Stefanie Mauerer
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Parham Sendi
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland. .,Division of Infectious Diseases & Hospital Hygiene, University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
11
|
Meehan M, Eogan M, McCallion N, Cunney R, Bray JE, Jolley KA, Unitt A, Maiden MCJ, Harrison OB, Drew RJ. Genomic epidemiology of group B streptococci spanning 10 years in an Irish maternity hospital, 2008-2017. J Infect 2021; 83:37-45. [PMID: 33862060 DOI: 10.1016/j.jinf.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The genomic epidemiology of group b streptococcal (GBS) isolates from the Rotunda maternity hospital, Dublin, 2008-2017, was investigated. METHODS Whole genome sequences of isolates (invasive, n = 114; non-invasive, n = 76) from infants and women were analysed using the PubMLST database (https://pubmlst.org/sagalactiae/). RESULTS Serotypes III (36%), Ia (18%), V (17%), II (11%) and Ib, (9%) and sequence types (ST) 17 (23%), ST-23 (14%), ST-1 (12%) and ST-19 (7%) were most common. Core genome MLST (cgMLST) differentiated isolates of the same ST, grouped STs into five lineages congruent with known clonal complexes and identified known mother-baby pairs and suspected linked infant cases. Clonal complex (CC) 17 accounted for 40% and 22% of infant and maternal invasive cases, respectively and 21% of non-invasive isolates. CC23 and CC19 were associated with maternal disease (30%) and carriage (24%), respectively. Erythromycin (26%) and clindamycin (18%) resistance increased over the study period and was associated with presence of the erm(B) gene (55%), CC1 (33%) and CC19 (24%). A multi-resistant integrative conjugative element incorporated in the PI-1 locus was detected in CC17, an ST-12 and ST-23 isolate confirming the global dissemination of this element. All isolates possessed one or more pilus islands. Genes encoding other potential protective proteins including Sip, C5a peptidase and Srr1 were present in 100%, 99.5% and 65.8% of isolates, respectively. The srr2 gene was unique to CC17. CONCLUSIONS The PubMLST.org website provides a valuable framework for genomic GBS surveillance to inform on local and global GBS epidemiology, preventive and control measures.
Collapse
Affiliation(s)
- Mary Meehan
- Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland.
| | - Maeve Eogan
- Department of Obstetrics and Gynaecology, Rotunda Hospital, Dublin, Ireland
| | - Naomi McCallion
- Department of Neonatology, The Rotunda Hospital, Dublin, Ireland; Department of Paediatrics, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Robert Cunney
- Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland; Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James E Bray
- Department of Zoology, University of Oxford, Peter Medawar Building, Oxford OX1 3SY, UK
| | - Keith A Jolley
- Department of Zoology, University of Oxford, Peter Medawar Building, Oxford OX1 3SY, UK
| | - Anastasia Unitt
- Department of Zoology, University of Oxford, Peter Medawar Building, Oxford OX1 3SY, UK
| | - Martin C J Maiden
- Department of Zoology, University of Oxford, Peter Medawar Building, Oxford OX1 3SY, UK
| | - Odile B Harrison
- Department of Zoology, University of Oxford, Peter Medawar Building, Oxford OX1 3SY, UK
| | - Richard J Drew
- Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland; Clinical Innovation Unit, Rotunda Hospital, Dublin, Ireland; Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
12
|
Tan MF, Tan J, Zeng YB, Li HQ, Yang Q, Zhou R. Antimicrobial resistance phenotypes and genotypes of Streptococcus suis isolated from clinically healthy pigs from 2017 to 2019 in Jiangxi Province, China. J Appl Microbiol 2020; 130:797-806. [PMID: 32881196 DOI: 10.1111/jam.14831] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
Abstract
AIMS This study aimed to investigate the antimicrobial resistance (AMR) profiles and genotypes of Streptococcus suis from Jiangxi Province, China. METHODS AND RESULTS A total of 314 nasal swab samples were collected from clinically healthy pigs, with a positive isolation rate of S. suis of 34·08%. Antimicrobial susceptibility testing showed that more than 80% of the isolates were susceptible to vancomycin, penicillin, minocycline and chloramphenicol. A high frequency of resistance to clindamycin, tetracycline, clarithromycin and erythromycin was observed. All of the isolates were resistant to three or more categories of antimicrobials. The erm(B) and tet(O) served as the most frequent genotypes that contributed to lincosamide, macrolide and tetracycline resistances. A part of macrolide-resistant genotypes could not exhibit specific phenotypes. Finally, integrative and conjugative elements (ICEs) were identified in 28·97% of the isolates. CONCLUSIONS The multidrug resistance of S. suis has widely emerged in Jiangxi Province. The most prevalent resistance genes and genotypes were similar to those in other regions or countries. The presence of ICEs is increasing the risk of horizontal transfer of AMR genes. SIGNIFICANCE AND IMPACT OF THE STUDY The findings could provide guidance for the rational use of antimicrobial drugs and be helpful for monitoring the AMR information of S. suis in China.
Collapse
Affiliation(s)
- M-F Tan
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - J Tan
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Y-B Zeng
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - H-Q Li
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Q Yang
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - R Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China.,International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan, China
| |
Collapse
|