1
|
Rangel K, De-Simone SG. Treatment and Management of Acinetobacter Pneumonia: Lessons Learned from Recent World Event. Infect Drug Resist 2024; 17:507-529. [PMID: 38348231 PMCID: PMC10860873 DOI: 10.2147/idr.s431525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
Acinetobacter pneumonia is a significant healthcare-associated infection that poses a considerable challenge to clinicians due to its multidrug-resistant nature. Recent world events, such as the COVID-19 pandemic, have highlighted the need for effective treatment and management strategies for Acinetobacter pneumonia. In this review, we discuss lessons learned from recent world events, particularly the COVID-19 pandemic, in the context of the treatment and management of Acinetobacter pneumonia. We performed an extensive literature review to uncover studies and information pertinent to the topic. The COVID-19 pandemic underscored the importance of infection control measures in healthcare settings, including proper hand hygiene, isolation protocols, and personal protective equipment use, to prevent the spread of multidrug-resistant pathogens like Acinetobacter. Additionally, the pandemic highlighted the crucial role of antimicrobial stewardship programs in optimizing antibiotic use and curbing the emergence of resistance. Advances in diagnostic techniques, such as rapid molecular testing, have also proven valuable in identifying Acinetobacter infections promptly. Furthermore, due to the limited availability of antibiotics for treating infections caused A. baumannii, alternative strategies are needed like the use of antimicrobial peptides, bacteriophages and their enzymes, nanoparticles, photodynamic and chelate therapy. Recent world events, particularly the COVID-19 pandemic, have provided valuable insights into the treatment and management of Acinetobacter pneumonia. These lessons emphasize the significance of infection control, antimicrobial stewardship, and early diagnostics in combating this challenging infection.
Collapse
Affiliation(s)
- Karyne Rangel
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
| | - Salvatore Giovanni De-Simone
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói, RJ, 22040-036, Brazil
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
| |
Collapse
|
2
|
Ziegler MJ, Babcock HH, Welbel SF, Warren DK, Trick WE, Tolomeo P, Omorogbe J, Garcia D, Habrock-Bach T, Donceras O, Gaynes S, Cressman L, Burnham JP, Bilker W, Reddy SC, Pegues D, Lautenbach E, Kelly BJ, Fuchs B, Martin ND, Han JH. Stopping Hospital Infections With Environmental Services (SHINE): A Cluster-randomized Trial of Intensive Monitoring Methods for Terminal Room Cleaning on Rates of Multidrug-resistant Organisms in the Intensive Care Unit. Clin Infect Dis 2022; 75:1217-1223. [PMID: 35100614 PMCID: PMC9525084 DOI: 10.1093/cid/ciac070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Multidrug-resistant organisms (MDROs) frequently contaminate hospital environments. We performed a multicenter, cluster-randomized, crossover trial of 2 methods for monitoring of terminal cleaning effectiveness. METHODS Six intensive care units (ICUs) at 3 medical centers received both interventions sequentially, in randomized order. Ten surfaces were surveyed each in 5 rooms weekly, after terminal cleaning, with adenosine triphosphate (ATP) monitoring or an ultraviolet fluorescent marker (UV/F). Results were delivered to environmental services staff in real time with failing surfaces recleaned. We measured monthly rates of MDRO infection or colonization, including methicillin-resistant Staphylococcus aureus, Clostridioides difficile, vancomycin-resistant Enterococcus, and MDR gram-negative bacilli (MDR-GNB) during a 12-month baseline period and sequential 6-month intervention periods, separated by a 2-month washout. Primary analysis compared only the randomized intervention periods, whereas secondary analysis included the baseline. RESULTS The ATP method was associated with a reduction in incidence rate of MDRO infection or colonization compared with the UV/F period (incidence rate ratio [IRR] 0.876; 95% confidence interval [CI], 0.807-0.951; P = .002). Including the baseline period, the ATP method was associated with reduced infection with MDROs (IRR 0.924; 95% CI, 0.855-0.998; P = .04), and MDR-GNB infection or colonization (IRR 0.856; 95% CI, 0.825-0.887; P < .001). The UV/F intervention was not associated with a statistically significant impact on these outcomes. Room turnaround time increased by a median of 1 minute with the ATP intervention and 4.5 minutes with UV/F compared with baseline. CONCLUSIONS Intensive monitoring of ICU terminal room cleaning with an ATP modality is associated with a reduction of MDRO infection and colonization.
Collapse
Affiliation(s)
- Matthew J Ziegler
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Healthcare Epidemiology, Infection Prevention and Control, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hilary H Babcock
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Sharon F Welbel
- Cook County Health, Chicago, Illinois, USA
- Rush Medical College, Chicago, Illinois, USA
| | - David K Warren
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - William E Trick
- Cook County Health, Chicago, Illinois, USA
- Rush Medical College, Chicago, Illinois, USA
| | - Pam Tolomeo
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jacqueline Omorogbe
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Tracy Habrock-Bach
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | | | - Steven Gaynes
- Hospital of the University of Pennsylvania, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Leigh Cressman
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jason P Burnham
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Warren Bilker
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sujan C Reddy
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David Pegues
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Healthcare Epidemiology, Infection Prevention and Control, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ebbing Lautenbach
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brendan J Kelly
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Barry Fuchs
- Division of Pulmonary Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Niels D Martin
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer H Han
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Healthcare Epidemiology, Infection Prevention and Control, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Chen YC, Huang HM, Lin PY, Shi ZY. Comparing visual inspection and performance observation for evaluation of hospital cleanliness. Am J Infect Control 2021; 49:1511-1514. [PMID: 34314756 DOI: 10.1016/j.ajic.2021.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Environmental cleaning is an effective measure to prevent infections. However, performance observation has been rarely delineated. This study aimed to compare correlations among visual inspection, performance observation, and effectiveness by using adenosine triphosphate bioluminescence (ATP bioluminescence) as a comparator to find out which method is better to assess hospital cleanliness. METHODS This prospective study was conducted at a medical center from April 2019 to October 2020. Seven high-touch surfaces were evaluated during and after terminal cleaning by performance observation, visual inspection, and ATP bioluminescence. RESULTS The scores by performance observation, visual inspection, and ATP were 55.4%, 87.5%, and 26.6% after cleaning. The correlations between performance observation and visual inspection and between performance observation and ATP interpretation were weak positive (φ = 0.300, 0.324, P < .001). No correlation was between the visual inspection and ATP interpretation (φ=0.137). The median of ATP readings was lower in "compliant" group by performance observation and "clean" group by visual inspection than "not compliant" group and "not clean" group (P < .001). CONCLUSIONS Performance observation combined with ATP would be preferred to include to audit cleanliness on high-risk surfaces. Visual inspection would be a rapid and time-saving assessment tool on low-risk surfaces.
Collapse
Affiliation(s)
- Ying-Chun Chen
- Infection Control Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hui-Mei Huang
- Department of Nursing, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Pei-Yi Lin
- Department of Nursing, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Zhi-Yuan Shi
- Infection Control Center, Taichung Veterans General Hospital, Taichung, Taiwan.
| |
Collapse
|
5
|
Li Y, Ge H, Zhou H, Zhou W, Zheng J, Chen W, Cao X. Correction to: Impact of environmental cleaning on the colonization and infection rates of multidrug-resistant Acinetobacter baumannii in patients within the intensive care unit in a tertiary hospital. Antimicrob Resist Infect Control 2021; 10:46. [PMID: 33673869 PMCID: PMC7934355 DOI: 10.1186/s13756-021-00904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Yang Li
- Department of Nosocomial Infection Control, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Hai Ge
- Department of Nosocomial Infection Control, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Hui Zhou
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, Gulou, Nanjing, Jiangsu Province, People's Republic of China
| | - Wanqing Zhou
- Department of Nosocomial Infection Control, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Jie Zheng
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, Gulou, Nanjing, Jiangsu Province, People's Republic of China
| | - Wei Chen
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhongfu Road 1-1, Gulou, Nanjing, 210003, People's Republic of China.
| | - Xiaoli Cao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, Gulou, Nanjing, Jiangsu Province, People's Republic of China.
| |
Collapse
|