1
|
Xiao Y, Zhou M, Xiao W. Fracture events associated with GLP-1 receptor agonists in FDA adverse events reporting system. Acta Diabetol 2024:10.1007/s00592-024-02415-w. [PMID: 39556224 DOI: 10.1007/s00592-024-02415-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
AIMS Diabetes patients are at a higher risk of fractures, and glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been suggested to positively impact on bone metabolism. We aim to provide a comprehensive assessment of fracture events associated with GLP-1RAs based on pharmacovigilance data. METHODS In this study, fracture-related adverse events (AEs) associated with GLP-1RAs and other commonly used glucose-lowering drugs were identified from Food and Drug Administration Adverse Event Reporting System (FAERS) database (2004-2022). The reporting odds ratio (ROR) and adjusted ROR (adj. ROR) were used to compare the reporting of fracture-related AEs associated with insulin, GLP-1RAs, and Non GLP-1RAs, in patients with diabetes through two scenarios. This involved separately comparing each glucose-lowering drug to all other medications used in diabetic patients and reiterating after excluding insulin cases. RESULTS A total of 490,107 AE reports for patients with diabetes were identified and 98, 625 of them were for GLP-1RAs. Among all diabetes drugs, GLP-1RAs had the lowest reporting of any fracture-related AEs [adj. ROR = 0.44 (0.40-0.47)], consistent across osteoporotic fracture [adj. ROR = 0.39 (0.34-0.45)] and hip fracture [adj. ROR = 0.34 (0.28-0.41)]. Among GLP-1RA agents, albiglutide was associated with the lowest adj. ROR [0.11 (0.05-0.21)] for any fracture-related AEs. After excluded all insulin reports, GLP-1RAs retained a significantly lower adj. ROR towards any fracture [adj. ROR = 0.45 (0.40-0.50)], osteoporotic fracture [adj. ROR = 0.44 (0.37-0.52)], and hip fracture [adj. ROR = 0.43 (0.33-0.54)]. CONCLUSION In a real-world pharmacovigilance setting, GLP-1RAs were associated with lower reporting of fracture-related AEs, indicating the protective effect of GLP-1RAs against fractures.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, China.
| |
Collapse
|
2
|
Nazir F, John Kombe Kombe A, Khalid Z, Bibi S, Zhang H, Wu S, Jin T. SARS-CoV-2 replication and drug discovery. Mol Cell Probes 2024; 77:101973. [PMID: 39025272 DOI: 10.1016/j.mcp.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to wreak havoc across the globe. This sudden and deadly pandemic emphasizes the necessity for anti-viral drug development that can be rapidly administered to reduce morbidity, mortality, and virus propagation. Thus, lacking efficient anti-COVID-19 treatment, and especially given the lengthy drug development process as well as the critical death tool that has been associated with SARS-CoV-2 since its outbreak, drug repurposing (or repositioning) constitutes so far, the ideal and ready-to-go best approach in mitigating viral spread, containing the infection, and reducing the COVID-19-associated death rate. Indeed, based on the molecular similarity approach of SARS-CoV-2 with previous coronaviruses (CoVs), repurposed drugs have been reported to hamper SARS-CoV-2 replication. Therefore, understanding the inhibition mechanisms of viral replication by repurposed anti-viral drugs and chemicals known to block CoV and SARS-CoV-2 multiplication is crucial, and it opens the way for particular treatment options and COVID-19 therapeutics. In this review, we highlighted molecular basics underlying drug-repurposing strategies against SARS-CoV-2. Notably, we discussed inhibition mechanisms of viral replication, involving and including inhibition of SARS-CoV-2 proteases (3C-like protease, 3CLpro or Papain-like protease, PLpro) by protease inhibitors such as Carmofur, Ebselen, and GRL017, polymerases (RNA-dependent RNA-polymerase, RdRp) by drugs like Suramin, Remdesivir, or Favipiravir, and proteins/peptides inhibiting virus-cell fusion and host cell replication pathways, such as Disulfiram, GC376, and Molnupiravir. When applicable, comparisons with SARS-CoV inhibitors approved for clinical use were made to provide further insights to understand molecular basics in inhibiting SARS-CoV-2 replication and draw conclusions for future drug discovery research.
Collapse
Affiliation(s)
- Farah Nazir
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zunera Khalid
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shaheen Bibi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Anhui, China
| | - Hongliang Zhang
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China
| | - Songquan Wu
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China.
| | - Tengchuan Jin
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China; Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Anhui, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China; Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
3
|
Noguchi Y, Masuda R, Aizawa H, Yoshimura T. Relationship Between Melatonin Receptor Agonists and Parkinson's Disease. J Pineal Res 2024; 76:e13002. [PMID: 39119925 DOI: 10.1111/jpi.13002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Parkinson's disease affects millions of people worldwide, and without significant progress in disease prevention and treatment, its incidence and prevalence could increase by more than 30% by 2030. Researchers have focused on targeting sleep and the circadian system as a novel treatment strategy for Parkinson's disease. This study investigated the association between melatonin receptor agonists and Parkinson's disease, using the Food and Drug Administration (FDA) Adverse Events Reporting System (FAERS). The target drugs were melatonin receptor agonists including ramelteon, tasimelteon, and agomelatine. Parkinson's disease cases were defined according to the Medical Dictionary for Regulatory Activities (MedDRA) 25.0; Standardized MedDRA Query (SMQ) using both the "narrow" and "broad" preferred terms (PTs) associated with Parkinson's disease. The association between melatonin receptor agonists (ramelteon, tasimelteon, and agomelatine) and Parkinson's disease was evaluated by the reporting odds ratio. Upon analyzing the data from all patients registered in the FAERS, ramelteon (ROR: 0.66, 95% confidence interval [95% CI]: 0.51-0.84) and tasimelteon (ROR: 0.49, 95% CI: 0.38-0.62) showed negative correlations with Parkinson's disease. Conversely, only agomelatine was positively correlated with Parkinson's disease (ROR: 2.63, 95% CI: 2.04-3.40). These results suggest that among the melatonin receptor agonists, ramelteon and tasimelteon are negatively correlated with Parkinson's disease. In contrast, agomelatine was shown to be positively correlated with Parkinson's disease. These results should be used in research to develop drugs for the treatment of Parkinson's disease, fully considering the limitations of the spontaneous reporting system.
Collapse
Affiliation(s)
- Yoshihiro Noguchi
- Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Rikuto Masuda
- Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Haruka Aizawa
- Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Tomoaki Yoshimura
- Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
4
|
Ohra S, Sharma R, Kumar A. Repurposing of drugs against bacterial infections: A pharmacovigilance-based data mining approach. Drug Dev Res 2024; 85:e22211. [PMID: 38807372 DOI: 10.1002/ddr.22211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/16/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
The World Health Organization (WHO) has published a list of priority pathogens that urgently require research to develop new antibiotics. The main aim of the current study is to identify potential marketed drugs that can be repurposed against bacterial infections. A pharmacovigilance-based drug repurposing approach was used to identify potential drugs. OpenVigil 2.1 tool was used to query the FDA Adverse Event Reporting System database. The reporting odds ratio (ROR) < 1, ROR95CI upper bound <1, and no. of cases ≥30 were used for filtering and sorting of drugs. Sunburst plot was used to represent drugs in a hierarchical order using the Anatomical Therapeutic Chemical classification. Molecular docking and dynamics were performed using the Maestro and Desmond modules of Schrodinger 2023 software respectively. A total of 40 drugs with different classes were identified based on the pharmacovigilance approach which has antibacterial potential. The molecular docking results have shown energetically favored binding conformation of lisinopril against 3-deoxy-manno-octulosonate cytidylyltransferase, UDP-2,3-diacylglucosamine hydrolase, and penicillin-binding protein 3 (PBP3) of Pseudomonas aeruginosa; olmesartan, atorvastatin against lipoteichoic acids flippase LtaA and rosiglitazone and varenicline against d-alanine ligase of Staphylococcus aureus; valsartan against peptidoglycan deacetylase (SpPgdA) and atorvastatin against CDP-activated ribitol for teichoic acid precursors of Streptococcus pneumoniae. Further, molecular dynamic results have shown the stability of identified drugs in the active site of bacterial targets except lisinopril with PBP3. Lisinopril, olmesartan, atorvastatin, rosiglitazone, varenicline, and valsartan have been identified as potential drugs for repurposing against bacterial infection.
Collapse
Affiliation(s)
- Simran Ohra
- Department of Clinical Research, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Ruchika Sharma
- Centre for Precision Medicine and Pharmacy, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Anoop Kumar
- Department of Clinical Research, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| |
Collapse
|
5
|
Zhao D, Long X, Wang J. Pharmacovigilance study of BCR-ABL1 tyrosine kinase inhibitors: a safety analysis of the FDA adverse event reporting system. BMC Pharmacol Toxicol 2024; 25:20. [PMID: 38395895 PMCID: PMC10885429 DOI: 10.1186/s40360-024-00741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND With the increased use of BCR-ABL1 tyrosine kinase inhibitors (TKIs) in cancer patients, adverse events (AEs) have garnered considerable interest. We conducted this pharmacovigilance study to evaluate the AEs of BCR-ABL1 TKIs in cancer patients using the Food and Drug Administration Adverse Event Reporting System (FAERS) database. METHODS To query AE reports from the FAERS database, we used OpenVigil 2.1. Descriptive analysis was then employed to describe the characteristics of TKIs-associated AE reports. We also utilized the disproportionality analysis to detect safety signals by calculating the proportional reporting ratio (PRR) and reporting odds ratios (ROR). RESULTS From the FAERS database, a total of 85,989 AE reports were retrieved, with 3,080 significant AE signals identified. Specifically, imatinib, nilotinib, dasatinib, bosutinib, and ponatinib had significant AE signals of 1,058, 813, 232, 186, and 791, respectively. These significant signals were further categorized into 26 system organ classes (SOCs). The AE signals of imatinib and ponatinib were primarily associated with general disorders and administration site conditions. On the other hand, nilotinib, dasatinib, and bosutinib were mainly linked to investigations, respiratory, thoracic and mediastinal disorders, and gastrointestinal disorders, respectively. Notably, new signals of 245, 278, 47, 55, and 253 were observed in imatinib, nilotinib, dasatinib, bosutinib, and ponatinib, respectively. CONCLUSIONS The results of this study demonstrated that AE signals differ among the five BCR-ABL1 TKIs. Furthermore, each BCR-ABL1 TKI displayed several new signals. These findings provide valuable information for clinicians aiming to reduce the risk of AEs during BCR-ABL1 TKI treatment.
Collapse
Affiliation(s)
- Dehua Zhao
- Department of Clinical Pharmacy, The Third Hospital of Mianyang (Sichuan Mental Health Center), 621000, Mianyang, Sichuan, People's Republic of China.
| | - Xiaoqing Long
- Department of Clinical Pharmacy, The Third Hospital of Mianyang (Sichuan Mental Health Center), 621000, Mianyang, Sichuan, People's Republic of China
| | - Jisheng Wang
- Department of Clinical Pharmacy, The Third Hospital of Mianyang (Sichuan Mental Health Center), 621000, Mianyang, Sichuan, People's Republic of China.
| |
Collapse
|
6
|
Morris R, Ali R, Cheng F. Drug Repurposing Using FDA Adverse Event Reporting System (FAERS) Database. Curr Drug Targets 2024; 25:454-464. [PMID: 38566381 DOI: 10.2174/0113894501290296240327081624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Drug repurposing is an emerging approach to reassigning existing pre-approved therapies for new indications. The FDA Adverse Event Reporting System (FAERS) is a large database of over 28 million adverse event reports submitted by medical providers, patients, and drug manufacturers and provides extensive drug safety signal data. In this review, four common drug repurposing strategies using FAERS are described, including inverse signal detection for a single disease, drug-drug interactions that mitigate a target ADE, identifying drug-ADE pairs with opposing gene perturbation signatures and identifying drug-drug pairs with congruent gene perturbation signatures. The purpose of this review is to provide an overview of these different approaches using existing successful applications in the literature. With the fast expansion of adverse drug event reports, FAERS-based drug repurposing represents a promising strategy for discovering new uses for existing therapies.
Collapse
Affiliation(s)
- Robert Morris
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL33612, USA
- Department of Biostatistics and Epidemiology, College of Public Health, University of South Florida, Tampa, FL33612, USA
| | - Rahinatu Ali
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL33612, USA
| | - Feng Cheng
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL33612, USA
- Department of Biostatistics and Epidemiology, College of Public Health, University of South Florida, Tampa, FL33612, USA
| |
Collapse
|