1
|
Ly MT, Altaras C, Tripodis Y, Adler CH, Balcer LJ, Bernick C, Zetterberg H, Blennow K, Peskind ER, Banks SJ, Barr WB, Wethe JV, Lenio S, Bondi MW, Delano-Wood LM, Cantu RC, Coleman MJ, Dodick DW, Mez J, Daneshvar DH, Palmisano JN, Martin B, Lin AP, Koerte IK, Bouix S, Cummings JL, Reiman EM, Shenton ME, Stern RA, Alosco ML. Single- versus two-test criteria for cognitive impairment: associations with CSF and imaging markers in former American football players. Clin Neuropsychol 2025:1-25. [PMID: 39834028 DOI: 10.1080/13854046.2025.2451828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Objective: Cognitive impairment is a core feature of traumatic encephalopathy syndrome (TES), the putative clinical syndrome of chronic traumatic encephalopathy-a neuropathological disease associated with repetitive head impacts (RHI). Careful operationalization of cognitive impairment is essential to improving the diagnostic specificity and accuracy of TES criteria. We compared single- versus two-test criteria for cognitive impairment in their associations with CSF and imaging biomarkers in male former American football players. Method: 169 participants from the DIAGNOSE CTE Research Project completed neuropsychological tests of memory and executive functioning. Cognitive impairment was identified by single-test criteria (z≤-1.5 on one test) and two-test criteria (z<-1 on two tests within a domain). ANCOVAs adjusting for age, race, education, body mass index, word-reading score, and APOE ε4 status assessed whether single- or two-test criteria predicted CSF markers (Aβ1-42, p-tau181, p-tau181/Aβ1-42, total tau, neurofilament light [NfL], glial fibrillary acidic protein [GFAP]) and MRI markers (hippocampal volume, cortical thickness, white matter hyperintensities). Results: Ninety-nine participants met single-test criteria for cognitive impairment. Sixty-six met two-test criteria. Participants who met two-test criteria had greater exposure to RHI than those who did not (p=.04). Two-test criteria were -associated with higher CSF p-tau181/Aβ1-42 (q=.02) and CSF NfL (q=.02). The association between two-test criteria and CSF NfL remained after excluding amyloid-positive participants (q=.04). Single-test criteria were not associated with any biomarkers (q's>.05). Conclusions: Two-test but not single-test criteria for cognitive impairment were associated with markers of neurodegeneration. Future clinical research in TES may benefit from applying two-test criteria to operationalize cognitive impairment.
Collapse
Affiliation(s)
- Monica T Ly
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and Chronic Traumatic Encephalopathy Center, Boston, MA, USA
| | - Caroline Altaras
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and Chronic Traumatic Encephalopathy Center, Boston, MA, USA
| | - Yorghos Tripodis
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and Chronic Traumatic Encephalopathy Center, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Laura J Balcer
- Departments of Neurology, Population Health and Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, UCL Institute of Neurology, University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elaine R Peskind
- VA Northwest Mental Illness Research, Education, and Clinical Center, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Sarah J Banks
- Department of Psychiatry, University of California San Diego Health, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - William B Barr
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Jennifer V Wethe
- Department of Psychiatry and Psychology, Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Steve Lenio
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and Chronic Traumatic Encephalopathy Center, Boston, MA, USA
| | - Mark W Bondi
- Department of Psychiatry, University of California San Diego Health, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Lisa M Delano-Wood
- Department of Psychiatry, University of California San Diego Health, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Robert C Cantu
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and Chronic Traumatic Encephalopathy Center, Boston, MA, USA
| | - Michael J Coleman
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - David W Dodick
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Atria Academy of Science and Medicine, New York, NY, USA
| | - Jesse Mez
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and Chronic Traumatic Encephalopathy Center, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Daniel H Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Mass General Brigham-Spaulding Rehabilitation, Charlestown, MA, USA
| | - Joseph N Palmisano
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA, USA
| | - Brett Martin
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA, USA
| | - Alexander P Lin
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Department of Software Engineering and Information Technology, École de technologie supérieure, Université du Québec, Montréal, QC, Canada
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, Phoenix, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Phoenix, AZ, USA
- Translational Genomics Research Institute, Phoenix, AZ, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert A Stern
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and Chronic Traumatic Encephalopathy Center, Boston, MA, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy & Neurobiology and Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Michael L Alosco
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and Chronic Traumatic Encephalopathy Center, Boston, MA, USA
| |
Collapse
|
2
|
Bettcher BM, Lopez Paniagua D, Wang Y, McConnell BV, Coughlan C, Carlisle TC, Thaker AA, Lippitt W, Filley CM, Pelak VS, Shapiro AL, Heffernan KS, Potter H, Solano A, Boyd J, Carlson NE. Synergistic effects of GFAP and Aβ42: Implications for white matter integrity and verbal memory across the cognitive spectrum. Brain Behav Immun Health 2024; 40:100834. [PMID: 39206431 PMCID: PMC11357780 DOI: 10.1016/j.bbih.2024.100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024] Open
Abstract
Background Plasma glial fibrillary acidic protein (GFAP), an astrocytic biomarker, has previously been linked with Alzheimer's disease (AD) status, amyloid levels, and memory performance in older adults. The neuroanatomical pathways by which astrogliosis/astrocyte reactivity might impact cognitive outcomes remains unclear. We evaluated whether plasma GFAP and amyloid levels had a synergistic effect on fornix structure, which is critically involved in AD-associated cholinergic pathways. We also examined whether fornix structure mediates associations between GFAP and verbal memory. Methods In a cohort of both asymptomatic and symptomatic older adults (total n = 99), we assessed plasma GFAP, amyloid-β42 (Aβ42), other AD-related proteins, and vascular markers, and we conducted comprehensive memory testing. Tractography-based methods were used to assess fornix structure with whole brain diffusion metrics to control for diffuse alterations in brain white matter. Results In individuals in the low plasma amyloid-β42 (Aβ42) group, higher plasma GFAP was associated with lower fractional anisotropy (FA; p = 0.007), higher mean diffusivity (MD; p < 0.001), higher radial diffusivity (RD; p < 0.001), and higher axial diffusivity (DA; p = 0.001) in the left fornix. These associations were independent of APOE gene status, plasma levels of total tau and neurofilament light, plasma vascular biomarkers, and whole brain diffusion metrics. In a sub-analysis of participants in the low plasma Aβ42 group (n = 33), fornix structure mediated the association between higher plasma GFAP levels and lower verbal memory performance. Discussion Higher plasma GFAP was associated with altered fornix microstructure in the setting of greater amyloid deposition. We also expanded on our prior GFAP-verbal memory findings by demonstrating that in the low plasma Aβ42 group, left fornix integrity may be a primary white matter conduit for the negative associations between GFAP and verbal memory performance. Overall, these findings suggest that astrogliosis/astrocyte reactivity may play an early, pivotal role in AD pathogenesis, and further demonstrate that high GFAP and low Aβ42 in plasma may reflect a particularly detrimental synergistic role in forniceal-memory pathways.
Collapse
Affiliation(s)
- Brianne M. Bettcher
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dan Lopez Paniagua
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yue Wang
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brice V. McConnell
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christina Coughlan
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tara C. Carlisle
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ashesh A. Thaker
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Radiology, Denver Health, Denver, CO, USA
| | - William Lippitt
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christopher M. Filley
- Behavioral Neurology Section, Departments of Neurology and Psychiatry, University of Colorado Alzheimer's & Cognition Center, Marcus Institute for Brain Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Victoria S. Pelak
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Allison L.B. Shapiro
- Section of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kate S. Heffernan
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Huntington Potter
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Adriana Solano
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jada Boyd
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nichole E. Carlson
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Khan AF, Iturria-Medina Y. Beyond the usual suspects: multi-factorial computational models in the search for neurodegenerative disease mechanisms. Transl Psychiatry 2024; 14:386. [PMID: 39313512 PMCID: PMC11420368 DOI: 10.1038/s41398-024-03073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
From Alzheimer's disease to amyotrophic lateral sclerosis, the molecular cascades underlying neurodegenerative disorders remain poorly understood. The clinical view of neurodegeneration is confounded by symptomatic heterogeneity and mixed pathology in almost every patient. While the underlying physiological alterations originate, proliferate, and propagate potentially decades before symptomatic onset, the complexity and inaccessibility of the living brain limit direct observation over a patient's lifespan. Consequently, there is a critical need for robust computational methods to support the search for causal mechanisms of neurodegeneration by distinguishing pathogenic processes from consequential alterations, and inter-individual variability from intra-individual progression. Recently, promising advances have been made by data-driven spatiotemporal modeling of the brain, based on in vivo neuroimaging and biospecimen markers. These methods include disease progression models comparing the temporal evolution of various biomarkers, causal models linking interacting biological processes, network propagation models reproducing the spatial spreading of pathology, and biophysical models spanning cellular- to network-scale phenomena. In this review, we discuss various computational approaches for integrating cross-sectional, longitudinal, and multi-modal data, primarily from large observational neuroimaging studies, to understand (i) the temporal ordering of physiological alterations, i(i) their spatial relationships to the brain's molecular and cellular architecture, (iii) mechanistic interactions between biological processes, and (iv) the macroscopic effects of microscopic factors. We consider the extents to which computational models can evaluate mechanistic hypotheses, explore applications such as improving treatment selection, and discuss how model-informed insights can lay the groundwork for a pathobiological redefinition of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ahmed Faraz Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada.
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada.
| |
Collapse
|
4
|
Kumar J, Karim A, Sweety UH, Sarma H, Nurunnabi M, Narayan M. Bioinspired Approaches for Central Nervous System Targeted Gene Delivery. ACS APPLIED BIO MATERIALS 2024; 7:4975-4997. [PMID: 38100377 DOI: 10.1021/acsabm.3c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Disorders of the central nervous system (CNS) which include a wide range of neurodegenerative and neurological conditions have become a serious global issue. The presence of CNS barriers poses a significant challenge to the progress of designing effective therapeutic delivery systems, limiting the effectiveness of drugs, genes, and other therapeutic agents. Natural nanocarriers present in biological systems have inspired researchers to design unique delivery systems through biomimicry. As natural resource derived delivery systems are more biocompatible, current research has been focused on the development of delivery systems inspired by bacteria, viruses, fungi, and mammalian cells. Despite their structural potential and extensive physiological function, making them an excellent choice for biomaterial engineering, the delivery of nucleic acids remains challenging due to their instability in biological systems. Similarly, the efficient delivery of genetic material within the tissues of interest remains a hurdle due to a lack of selectivity and targeting ability. Considering that gene therapies are the holy grail for intervention in diseases, including neurodegenerative disorders such as Alzheimer's disease, Parkinson's Disease, and Huntington's disease, this review centers around recent advances in bioinspired approaches to gene delivery for the prevention of CNS disorders.
Collapse
Affiliation(s)
- Jyotish Kumar
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Afroz Karim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Ummy Habiba Sweety
- Environmental Science and Engineering, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, 783370, Kokrajhar (BTR), Assam, India
| | - Md Nurunnabi
- The Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
5
|
Leroi I, Dolphin H, Dinh R, Foley T, Kennelly S, Kinchin I, O'Caoimh R, O'Dowd S, O'Philbin L, O'Reilly S, Trepel D, Timmons S. Navigating the future of Alzheimer's care in Ireland - a service model for disease-modifying therapies in small and medium-sized healthcare systems. BMC Health Serv Res 2024; 24:705. [PMID: 38840115 PMCID: PMC11151472 DOI: 10.1186/s12913-024-11019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/19/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND A new class of antibody-based drug therapy with the potential for disease modification is now available for Alzheimer's disease (AD). However, the complexity of drug eligibility, administration, cost, and safety of such disease modifying therapies (DMTs) necessitates adopting new treatment and care pathways. A working group was convened in Ireland to consider the implications of, and health system readiness for, DMTs for AD, and to describe a service model for the detection, diagnosis, and management of early AD in the Irish context, providing a template for similar small-medium sized healthcare systems. METHODS A series of facilitated workshops with a multidisciplinary working group, including Patient and Public Involvement (PPI) members, were undertaken. This informed a series of recommendations for the implementation of new DMTs using an evidence-based conceptual framework for health system readiness based on [1] material resources and structures and [2] human and institutional relationships, values, and norms. RESULTS We describe a hub-and-spoke model, which utilises the existing dementia care ecosystem as outlined in Ireland's Model of Care for Dementia, with Regional Specialist Memory Services (RSMS) acting as central hubs and Memory Assessment and Support Services (MASS) functioning as spokes for less central areas. We provide criteria for DMT referral, eligibility, administration, and ongoing monitoring. CONCLUSIONS Healthcare systems worldwide are acknowledging the need for advanced clinical pathways for AD, driven by better diagnostics and the emergence of DMTs. Despite facing significant challenges in integrating DMTs into existing care models, the potential for overcoming challenges exists through increased funding, resources, and the development of a structured national treatment network, as proposed in Ireland's Model of Care for Dementia. This approach offers a replicable blueprint for other healthcare systems with similar scale and complexity.
Collapse
Affiliation(s)
- Iracema Leroi
- Global Brain Health Institute, School of Medicine, Trinity College Dublin, Lloyd Building, Dublin 2, Dublin, Ireland.
- Global Brain Health Institute, Dublin, Ireland.
- HRB-CTN Dementia Trials Ireland, Dublin, Ireland.
| | - Helena Dolphin
- Global Brain Health Institute, School of Medicine, Trinity College Dublin, Lloyd Building, Dublin 2, Dublin, Ireland
- Institute of Memory and Cognition, Tallaght University Hospital, Dublin, Ireland
| | - Rachel Dinh
- Centre for Global Health, Trinity College Dublin, Dublin, Ireland
| | - Tony Foley
- Department of General Practice, School of Medicine, University College Cork, Cork, Ireland
| | - Sean Kennelly
- Global Brain Health Institute, School of Medicine, Trinity College Dublin, Lloyd Building, Dublin 2, Dublin, Ireland
- Global Brain Health Institute, Dublin, Ireland
- HRB-CTN Dementia Trials Ireland, Dublin, Ireland
- Institute of Memory and Cognition, Tallaght University Hospital, Dublin, Ireland
| | - Irina Kinchin
- Global Brain Health Institute, School of Medicine, Trinity College Dublin, Lloyd Building, Dublin 2, Dublin, Ireland
- Global Brain Health Institute, Dublin, Ireland
| | - Rónán O'Caoimh
- HRB-CTN Dementia Trials Ireland, Dublin, Ireland
- Department of Geriatric Medicine, Mercy University Hospital, Cork, Ireland
| | - Sean O'Dowd
- Global Brain Health Institute, School of Medicine, Trinity College Dublin, Lloyd Building, Dublin 2, Dublin, Ireland
- Institute of Memory and Cognition, Tallaght University Hospital, Dublin, Ireland
- Health Service Executive's National Dementia Office, Dublin, Ireland
| | | | | | - Dominic Trepel
- Global Brain Health Institute, School of Medicine, Trinity College Dublin, Lloyd Building, Dublin 2, Dublin, Ireland
- Global Brain Health Institute, Dublin, Ireland
| | - Suzanne Timmons
- Global Brain Health Institute, School of Medicine, Trinity College Dublin, Lloyd Building, Dublin 2, Dublin, Ireland
- HRB-CTN Dementia Trials Ireland, Dublin, Ireland
- Centre for Gerontology and Rehabilitation, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Fang F, Chen C. MiRNA let-7d-5p Alleviates Inflammatory Responses by Targeting Map3k1 and Inactivating ERK/p38 MAPK Signaling in Microglia. Crit Rev Immunol 2024; 44:13-25. [PMID: 38848290 DOI: 10.1615/critrevimmunol.2024051776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Aberrant regulation of microRNAs (miRNAs) has been implicated in the pathogenesis of AD. In a large case-control study recruiting 208 patients with AD and 205 elderly control subjects, miRNA-let-7d-5p attracted our attention for its downregulated level in patients with AD. However, the biological functions of let-7d-5p in AD pathogenesis have not been investigated. This study emphasized the functions and mechanisms of let-7d-5p in the pathogenesis of AD. Mouse microglial BV2 cells treated with amyloid-β (Aβ)1-42 were used as in vitro AD inflammation models. We reported that let-7d-5p was downregulated in Aβ1-42-stimulated BV2 cells, and upregulation of let-7d-5p promoted the transversion of microglial cells from Ml phenotype to M2 phenotype. Then, the binding relationship between let-7d-5p and Map3k1 was verified by luciferase reporter assays. Mechanistically, let-7d-5p could target Map3k1 3'UTR to inactivate ERK/p38 MAPK signaling. Therefore, it was suggested that let-7d-5p might be a novel modulator of microglial neuroinflammation and serve as a novel target for diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Fan Fang
- Department of Geriatrics, Huangshi Central Hospital, Huangshi 435000, China
| | - Cheng Chen
- Huangshi Central Hospital,Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group
| |
Collapse
|
7
|
Robillard JM, Masellis M, Martin SE, Khachaturian AS, Dixon RA. The Return of Biomarker Results in Research: Balancing Complexity, Precision, and Ethical Responsibility. J Alzheimers Dis 2024; 97:1083-1090. [PMID: 38306053 PMCID: PMC10836546 DOI: 10.3233/jad-230359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Recent research aimed at the discovery, integration, and communication of health outcome measures (or "biomarkers") in Alzheimer's disease has raised challenging questions related to whether, how and when results from these investigations should be disclosed to research participants. Reflecting the apparent heterogeneity of many neurodegenerative diseases, biomarker or other risk factor results are often probabilistic, interactive, multi-modal, and selective. Such characteristics make it very complex to summarize and communicate to clinicians, researchers, and research participants. Whereas the format and content of academic literature is well-managed by the peer-review process, reporting individualized results to participants involves complex, sensitive, and ethical considerations. This paper describes three key factors to consider in decisions about the return of results to research participants: complexity, precision, and responsibility. The paper also presents six practical recommendations for implementing meaningful and ethical communication with research participants.
Collapse
Affiliation(s)
- Julie M Robillard
- Department of Medicine, Division of Neurology, University of British Columbia, Vancouver, BC, Canada
- BC Children's and Women's Hospital, Vancouver, BC, Canada
| | - Mario Masellis
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Susanna E Martin
- Department of Medicine, Division of Neurology, University of British Columbia, Vancouver, BC, Canada
- BC Children's and Women's Hospital, Vancouver, BC, Canada
| | - Ara S Khachaturian
- The Campaign to Prevent Alzheimer's Disease 2020, Inc. Rockville, MD, USA
| | - Roger A Dixon
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Besser LM, Chrisphonte S, Kleiman MJ, O’Shea D, Rosenfeld A, Tolea M, Galvin JE. The Healthy Brain Initiative (HBI): A prospective cohort study protocol. PLoS One 2023; 18:e0293634. [PMID: 37889891 PMCID: PMC10610524 DOI: 10.1371/journal.pone.0293634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The Health Brain Initiative (HBI), established by University of Miami's Comprehensive Center for Brain Health (CCBH), follows racially/ethnically diverse older adults without dementia living in South Florida. With dementia prevention and brain health promotion as an overarching goal, HBI will advance scientific knowledge by developing novel assessments and non-invasive biomarkers of Alzheimer's disease and related dementias (ADRD), examining additive effects of sociodemographic, lifestyle, neurological and biobehavioral measures, and employing innovative, methodologically advanced modeling methods to characterize ADRD risk and resilience factors and transition of brain aging. METHODS HBI is a longitudinal, observational cohort study that will follow 500 deeply-phenotyped participants annually to collect, analyze, and store clinical, cognitive, behavioral, functional, genetic, and neuroimaging data and biospecimens. Participants are ≥50 years old; have no, subjective, or mild cognitive impairment; have a study partner; and are eligible to undergo magnetic resonance imaging (MRI). Recruitment is community-based including advertisements, word-of-mouth, community events, and physician referrals. At baseline, following informed consent, participants complete detailed web-based surveys (e.g., demographics, health history, risk and resilience factors), followed by two half-day visits which include neurological exams, cognitive and functional assessments, an overnight sleep study, and biospecimen collection. Structural and functional MRI is completed by all participants and a subset also consent to amyloid PET imaging. Annual follow-up visits repeat the same data and biospecimen collection as baseline, except that MRIs are conducted every other year after baseline. ETHICS AND EXPECTED IMPACT HBI has been approved by the University of Miami Miller School of Medicine Institutional Review Board. Participants provide informed consent at baseline and are re-consented as needed with protocol changes. Data collected by HBI will lead to breakthroughs in developing new diagnostics and therapeutics, creating comprehensive diagnostic evaluations, and providing the evidence base for precision medicine approaches to dementia prevention with individualized treatment plans.
Collapse
Affiliation(s)
- Lilah M. Besser
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| | - Stephanie Chrisphonte
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| | - Michael J. Kleiman
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| | - Deirdre O’Shea
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| | - Amie Rosenfeld
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| | - Magdalena Tolea
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| | - James E. Galvin
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| |
Collapse
|
9
|
Besser LM, Chrisphonte S, Kleiman MJ, O'Shea D, Rosenfeld A, Tolea M, Galvin JE. The Healthy Brain Initiative (HBI): A prospective cohort study protocol. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.21.23295908. [PMID: 37808766 PMCID: PMC10557773 DOI: 10.1101/2023.09.21.23295908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Background The Health Brain Initiative (HBI), established by University of Miami's Comprehensive Center for Brain Health (CCBH), follows racially/ethnically diverse older adults without dementia living in South Florida. With dementia prevention and brain health promotion as an overarching goal, HBI will advance scientific knowledge by developing novel assessments and non-invasive biomarkers of Alzheimer's disease and related dementias (ADRD), examining additive effects of sociodemographic, lifestyle, neurological and biobehavioral measures, and employing innovative, methodologically advanced modeling methods to characterize ADRD risk and resilience factors and transition of brain aging. Methods HBI is a longitudinal, observational cohort study that will follow 500 deeply-phenotyped participants annually to collect, analyze, and store clinical, cognitive, behavioral, functional, genetic, and neuroimaging data and biospecimens. Participants are ≥50 years old; have no, subjective, or mild cognitive impairment; have a study partner; and are eligible to undergo magnetic resonance imaging (MRI). Recruitment is community-based including advertisements, word-of-mouth, community events, and physician referrals. At baseline, following informed consent, participants complete detailed web-based surveys (e.g., demographics, health history, risk and resilience factors), followed by two half-day visits which include neurological exams, cognitive and functional assessments, an overnight sleep study, and biospecimen collection. Structural and functional MRI is completed by all participants and a subset also consent to amyloid PET imaging. Annual follow-up visits repeat the same data and biospecimen collection as baseline, except that MRIs are conducted every other year after baseline. Ethics and expected impact HBI has been approved by the University of Miami Miller School of Medicine Institutional Review Board. Participants provide informed consent at baseline and are re-consented as needed with protocol changes. Data collected by HBI will lead to breakthroughs in developing new diagnostics and therapeutics, create comprehensive diagnostic evaluations, and provide the evidence base for precision medicine approaches to dementia prevention with individualized treatment plans.
Collapse
|
10
|
Jin Y, Chen J, Chai Q, Zhu J, Jin X. Exploration of acupuncture therapy in the treatment of MCI patients with the ApoE ε4 gene based on the brain-gut axis theory. BMC Complement Med Ther 2023; 23:227. [PMID: 37422636 DOI: 10.1186/s12906-023-04060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Mild cognitive impairment (MCI) is the predementia phase of Alzheimer's disease (AD). The intestinal microbiome is altered in MCI and AD, and apolipoprotein E (ApoE) ε4 gene polymorphism is a risk factor for the progression of MCI to AD. This study aims to investigate the improvement in cognitive function of MCI patients with and without ApoE ε4 due to acupuncture and the changes in gut microbiota community composition and abundance in MCI. METHODS This randomized assessor-blind controlled study will enrol MCI patients with and without the ApoE ε4 gene (n = 60/60). Sixty subjects with the ApoE ε4 gene and 60 subjects without the ApoE ε4 gene will be randomly allocated into treatment and control groups in a 1:1 ratio. Intestinal microbiome profiles will be evaluated by 16 S rRNA sequencing of faecal samples and compared between the groups. RESULTS/CONCLUSIONS Acupuncture is an effective method to improve cognitive function in MCI. This study will provide data on the relationship between the gut microbiota and the effectiveness of acupuncture in patients with MCI from a new angle. This study will also provide data on the relationship between the gut microbiota and an AD susceptibility gene by integrating microbiologic and molecular approaches. TRIAL REGISTRATION www.chictr.org.cn , ID: ChiCTR2100043017, recorded on 4 February 2021.
Collapse
Affiliation(s)
- Yuanyuan Jin
- Department of Acupuncture and Moxibustion, Zhejiang Hospital, No. 1229 Gudun Road, Xihu District, Hangzhou, China.
| | - Jin Chen
- Department of General Medicine, Zhejiang Hospital, No. 1229 Gudun Road, Xihu District, Hangzhou, China
| | - Qichen Chai
- Department of General Medicine, Zhejiang Hospital, No. 1229 Gudun Road, Xihu District, Hangzhou, China
| | - Jianfang Zhu
- Department of Acupuncture and Moxibustion, Zhejiang Hospital, No. 1229 Gudun Road, Xihu District, Hangzhou, China
| | - Xiaoqing Jin
- Department of Acupuncture and Moxibustion, Zhejiang Hospital, No. 1229 Gudun Road, Xihu District, Hangzhou, China.
| |
Collapse
|
11
|
Gomez Limia C, Baird M, Schwartz M, Saxena S, Meyer K, Wein N. Emerging Perspectives on Gene Therapy Delivery for Neurodegenerative and Neuromuscular Disorders. J Pers Med 2022; 12:1979. [PMID: 36556200 PMCID: PMC9788053 DOI: 10.3390/jpm12121979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD) and Parkinson's Disease (PD), are a group of heterogeneous diseases that mainly affect central nervous system (CNS) functions. A subset of NDDs exhibit CNS dysfunction and muscle degeneration, as observed in Gangliosidosis 1 (GM1) and late stages of PD. Neuromuscular disorders (NMDs) are a group of diseases in which patients show primary progressive muscle weaknesses, including Duchenne Muscular Dystrophy (DMD), Pompe disease, and Spinal Muscular Atrophy (SMA). NDDs and NMDs typically have a genetic component, which affects the physiological functioning of critical cellular processes, leading to pathogenesis. Currently, there is no cure or efficient treatment for most of these diseases. More than 200 clinical trials have been completed or are currently underway in order to establish safety, tolerability, and efficacy of promising gene therapy approaches. Thus, gene therapy-based therapeutics, including viral or non-viral delivery, are very appealing for the treatment of NDDs and NMDs. In particular, adeno-associated viral vectors (AAV) are an attractive option for gene therapy for NDDs and NMDs. However, limitations have been identified after systemic delivery, including the suboptimal capacity of these therapies to traverse the blood-brain barrier (BBB), degradation of the particles during the delivery, high reactivity of the patient's immune system during the treatment, and the potential need for redosing. To circumvent these limitations, several preclinical and clinical studies have suggested intrathecal (IT) delivery to target the CNS and peripheral organs via cerebrospinal fluid (CSF). CSF administration can vastly improve the delivery of small molecules and drugs to the brain and spinal cord as compared to systemic delivery. Here, we review AAV biology and vector design elements, different therapeutic routes of administration, and highlight CSF delivery as an attractive route of administration. We discuss the different aspects of neuromuscular and neurodegenerative diseases, such as pathogenesis, the landscape of mutations, and the biological processes associated with the disease. We also describe the hallmarks of NDDs and NMDs as well as discuss current therapeutic approaches and clinical progress in viral and non-viral gene therapy and enzyme replacement strategies for those diseases.
Collapse
Affiliation(s)
- Cintia Gomez Limia
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Megan Baird
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Maura Schwartz
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Smita Saxena
- Department of Neurology, Inselspital, 3010 Bern, Switzerland
| | - Kathrin Meyer
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | - Nicolas Wein
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
12
|
Vipin A, Koh CL, Wong BYX, Zailan FZ, Tan JY, Soo SA, Satish V, Kumar D, Wang BZ, Ng ASL, Chiew HJ, Ng KP, Kandiah N. Amyloid-Tau-Neurodegeneration Profiles and Longitudinal Cognition in Sporadic Young-Onset Dementia. J Alzheimers Dis 2022; 90:543-551. [DOI: 10.3233/jad-220448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We examined amyloid-tau-neurodegeneration biomarker effects on cognition in a Southeast-Asian cohort of 84 sporadic young-onset dementia (YOD; age-at-onset <65 years) patients. They were stratified into A+N+, A– N+, and A– N– profiles via cerebrospinal fluid amyloid-β1–42 (A), phosphorylated-tau (T), MRI medial temporal atrophy (neurodegeneration– N), and confluent white matter hyperintensities cerebrovascular disease (CVD). A, T, and CVD effects on longitudinal Mini-Mental State Examination (MMSE) were evaluated. A+N+ patients demonstrated steeper MMSE decline than A– N+ (β = 1.53; p = 0.036; CI 0.15:2.92) and A– N– (β = 4.68; p = 0.001; CI 1.98:7.38) over a mean follow-up of 1.24 years. Within A– N+, T– CVD+ patients showed greater MMSE decline compared to T+CVD– patients (β = – 2.37; p = 0.030; CI – 4.41:– 0.39). A+ results in significant cognitive decline, while CVD influences longitudinal cognition in the A– sub-group.
Collapse
Affiliation(s)
- Ashwati Vipin
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | - Chen Ling Koh
- National Neuroscience Institute, Singapore, Singapore
| | | | - Fatin Zahra Zailan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | - Jayne Yi Tan
- National Neuroscience Institute, Singapore, Singapore
| | - See Ann Soo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | - Vaynii Satish
- National Neuroscience Institute, Singapore, Singapore
| | - Dilip Kumar
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | | | - Adeline Su Lyn Ng
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Hui Jin Chiew
- National Neuroscience Institute, Singapore, Singapore
| | - Kok Pin Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Nagaendran Kandiah
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
13
|
Jin Y, Hu F, Zhu J. Exploration of acupuncture therapy in the treatment of mild cognitive impairment based on the brain-gut axis theory. Front Hum Neurosci 2022; 16:891411. [PMID: 36204718 PMCID: PMC9531719 DOI: 10.3389/fnhum.2022.891411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/24/2022] [Indexed: 01/31/2023] Open
Abstract
Background Mild cognitive impairment (MCI) is an intermediary state between normal aging and dementia. Early intervention for MCI may be a key opportunity in managing dementia. Recent studies have demonstrated the alterations in the gut microbial communities associated with MCI. This study aims to evaluate if acupuncture can improve cognitive function in subjects with MCI and explore the possible mechanism of acupuncture by better defining the interactions of gut microbiota. Methods A randomized assessor-blind controlled study is proposed. A total of 62 subjects will be recruited and randomly allocated into two groups in a 1:1 ratio: the treatment and control groups. Participants in the treatment group will receive active acupuncture and exercise/cognitive training (conventional treatment). The control group will receive sham acupuncture and exercise/cognitive training. Each participant will receive active or sham acupuncture for 12 weeks. The primary outcome will be the Montreal Cognitive Assessment (MoCA) score and intestinal flora. Secondary outcomes will include mini-mental state examination (MMSE) and activity of daily living (ADL) scores. Various scales will be collected at baseline, during the treatment (weeks 4 and 8), week 12, and months 4 and 6 after the intervention. Feces will be collected before and after the treatment based on 16S rRNA gene sequencing technology for each participant to characterize the intestinal flora. Adverse events will be recorded by monthly follow-up. Results The trial is expected to show that cognitive function can be improved by acupuncture and produce reliable clinical outcomes in MCI patients. It will also provide preliminary data on the possible mechanism based on the changes in the intestinal flora. Collected data will be used to support future large-scale fundamental studies. Conclusion Acupuncture is an effective method to improve cognitive function for MCI. This study will provide data on the relationship between gut microbiota and the effectiveness of acupuncture in patients with MCI from a new angle. Clinical trial registration [www.ClinicalTrials.gov], identifier [MR-33-22-002376].
Collapse
Affiliation(s)
- Yuanyuan Jin
- Department of Acupuncture and Moxibustion, Zhejiang Hospital, Hangzhou, China
| | - Fen Hu
- Department of Acupuncture and Moxibustion, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianfang Zhu
- Department of Acupuncture and Moxibustion, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
14
|
Jamshidnejad-Tosaramandani T, Kashanian S, Al-Sabri MH, Kročianová D, Clemensson LE, Gentreau M, Schiöth HB. Statins and cognition: Modifying factors and possible underlying mechanisms. Front Aging Neurosci 2022; 14:968039. [PMID: 36046494 PMCID: PMC9421063 DOI: 10.3389/fnagi.2022.968039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Statins are a class of widely prescribed drugs used to reduce low-density lipoprotein cholesterol (LDL-C) and important to prevent cardiovascular diseases (CVD). Most statin users are older adults with CVD, who are also at high risk of cognitive decline. It has been suggested that statins can alter cognitive performance, although their positive or negative effects are still debated. With more than 200 million people on statin therapy worldwide, it is crucial to understand the reasons behind discrepancies in the results of these studies. Here, we review the effects of statins on cognitive function and their association with different etiologies of dementia, and particularly, Alzheimer's disease (AD). First, we summarized the main individual and statin-related factors that could modify the cognitive effects of statins. Second, we proposed the underlying mechanisms for the protective and adverse effects of statins on cognitive performance. Finally, we discussed potential causes of discrepancies between studies and suggested approaches to improve future studies assessing the impact of statins on dementia risk and cognitive function.
Collapse
Affiliation(s)
- Tahereh Jamshidnejad-Tosaramandani
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Soheila Kashanian
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC), Razi University, Kermanshah, Iran
| | - Mohamed H. Al-Sabri
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Daniela Kročianová
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Laura E. Clemensson
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Mélissa Gentreau
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Klyucherev TO, Olszewski P, Shalimova AA, Chubarev VN, Tarasov VV, Attwood MM, Syvänen S, Schiöth HB. Advances in the development of new biomarkers for Alzheimer's disease. Transl Neurodegener 2022; 11:25. [PMID: 35449079 PMCID: PMC9027827 DOI: 10.1186/s40035-022-00296-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a complex, heterogeneous, progressive disease and is the most common type of neurodegenerative dementia. The prevalence of AD is expected to increase as the population ages, placing an additional burden on national healthcare systems. There is a large need for new diagnostic tests that can detect AD at an early stage with high specificity at relatively low cost. The development of modern analytical diagnostic tools has made it possible to determine several biomarkers of AD with high specificity, including pathogenic proteins, markers of synaptic dysfunction, and markers of inflammation in the blood. There is a considerable potential in using microRNA (miRNA) as markers of AD, and diagnostic studies based on miRNA panels suggest that AD could potentially be determined with high accuracy for individual patients. Studies of the retina with improved methods of visualization of the fundus are also showing promising results for the potential diagnosis of the disease. This review focuses on the recent developments of blood, plasma, and ocular biomarkers for the diagnosis of AD.
Collapse
Affiliation(s)
- Timofey O Klyucherev
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Pawel Olszewski
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Alena A Shalimova
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir N Chubarev
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Misty M Attwood
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
16
|
Burke BT, Latimer C, Keene CD, Sonnen JA, McCormick W, Bowen JD, McCurry SM, Larson EB, Crane PK. Theoretical impact of the AT(N) framework on dementia using a community autopsy sample. Alzheimers Dement 2021; 17:1879-1891. [PMID: 33900044 DOI: 10.1002/alz.12348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 11/07/2022]
Abstract
The AT(N) research framework categorizes eight biomarker profiles using amyloid (A), tauopathy (T), and neurodegeneration (N), regardless of dementia status. We evaluated associations with dementia risk in a community-based cohort by approximating AT(N) profiles using autopsy-based neuropathology correlates, and considered cost implications for clinical trials for secondary prevention of dementia based on AT(N) profiles. We used Consortium to Establish a Registry for Alzheimer's Disease (moderate/frequent) to approximate A+, Braak stage (IV-VI) for T+, and temporal pole lateral ventricular dilation for (N)+. Outcomes included dementia prevalence at death and incidence in the last 5 years of life. A+T+(N)+ was the most common profile (31%). Dementia prevalence ranged from 14% (A-T-[N]-) to 79% (A+T+[N]+). Between 8% (A+T-[N]-) and 68% (A+T+[N]-) of decedents developed incident dementia in the last 5 years of life. Clinical trials would incur substantial expense to characterize AT(N). Many people with biomarker-defined preclinical Alzheimer's disease will never develop clinical dementia during life, highlighting resilience to clinical expression of AD neuropathologic changes and the need for improved tools for prediction beyond current AT(N) biomarkers.
Collapse
Affiliation(s)
- Bridget Teevan Burke
- Kaiser Permanente, Washington Health Research Institute, Seattle, Washington, USA
| | - Caitlin Latimer
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Joshua A Sonnen
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Wayne McCormick
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - James D Bowen
- Department of Neurology, Swedish Hospital Medical Center, Seattle, Washington, USA
| | - Susan M McCurry
- Department of Community Health and Nursing, University of Washington, Seattle, Washington, USA
| | - Eric B Larson
- Kaiser Permanente, Washington Health Research Institute, Seattle, Washington, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Stefanovski L, Meier JM, Pai RK, Triebkorn P, Lett T, Martin L, Bülau K, Hofmann-Apitius M, Solodkin A, McIntosh AR, Ritter P. Bridging Scales in Alzheimer's Disease: Biological Framework for Brain Simulation With The Virtual Brain. Front Neuroinform 2021; 15:630172. [PMID: 33867964 PMCID: PMC8047422 DOI: 10.3389/fninf.2021.630172] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Despite the acceleration of knowledge and data accumulation in neuroscience over the last years, the highly prevalent neurodegenerative disease of AD remains a growing problem. Alzheimer's Disease (AD) is the most common cause of dementia and represents the most prevalent neurodegenerative disease. For AD, disease-modifying treatments are presently lacking, and the understanding of disease mechanisms continues to be incomplete. In the present review, we discuss candidate contributing factors leading to AD, and evaluate novel computational brain simulation methods to further disentangle their potential roles. We first present an overview of existing computational models for AD that aim to provide a mechanistic understanding of the disease. Next, we outline the potential to link molecular aspects of neurodegeneration in AD with large-scale brain network modeling using The Virtual Brain (www.thevirtualbrain.org), an open-source, multiscale, whole-brain simulation neuroinformatics platform. Finally, we discuss how this methodological approach may contribute to the understanding, improved diagnostics, and treatment optimization of AD.
Collapse
Affiliation(s)
- Leon Stefanovski
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Jil Mona Meier
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Roopa Kalsank Pai
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Paul Triebkorn
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
| | - Tristram Lett
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Leon Martin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Konstantin Bülau
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Sankt Augustin, Germany
| | - Ana Solodkin
- Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, United States
| | | | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neuroscience Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| |
Collapse
|
18
|
Wang J, Hu HJ, Liu ZK, Liu JJ, Wang SS, Cheng Q, Chen HZ, Song M. Pharmacological inhibition of asparaginyl endopeptidase by δ-secretase inhibitor 11 mitigates Alzheimer's disease-related pathologies in a senescence-accelerated mouse model. Transl Neurodegener 2021; 10:12. [PMID: 33789744 PMCID: PMC8015189 DOI: 10.1186/s40035-021-00235-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Currently, there is no cure for Alzheimer's disease (AD). Therapeutics that can modify the early stage of AD are urgently needed. Recent studies have shown that the pathogenesis of AD is closely regulated by an endo/lysosomal asparaginyl endopeptidase (AEP). Inhibition of AEP has been reported to prevent neural degeneration in transgenic mouse models of AD. However, more than 90% of AD cases are age-related sporadic AD rather than hereditary AD. The therapeutic efficacy of AEP inhibition in ageing-associated sporadic AD remains unknown. METHODS The senescence-accelerated mouse prone 8 (SAMP8) was chosen as an approximate model of sporadic AD and treated with a selective AEP inhibitor,: δ-secretase inhibitor 11. Activation of AEP was determined by enzymatic activity assay. Concentration of soluble amyloid β (Aβ) in the brain was determined by ELISA. Morris water maze test was performed to assess the learning and memory-related cognitive ability. Pathological changes in the brain were explored by morphological and western blot analyses. RESULTS The enzymatic activity of AEP in the SAMP8 mouse brain was significantly higher than that in the age-matched SAMR1 mice. The half maximal inhibitory concentration (IC50) for δ-secretase inhibitor 11 to inhibit AEP in vitro is was around 150 nM. Chronic treatment with δ-secretase inhibitor 11 markedly decreased the brain AEP activity, reduced the generation of Aβ1-40/42 and ameliorated memory loss. The inhibition of AEP with this reagent not only reduced the AEP-cleaved tau fragments and tau hyperphosphorylation, but also attenuated neuroinflammation in the form of microglial activation. Moreover, treatment with δ-secretase inhibitor 11 prevented the synaptic loss and alleviated dendritic disruption in SAMP8 mouse brain. CONCLUSIONS Pharmacological inhibition of AEP can intervene and prevent AD-like pathological progress in the model of sporadic AD. The up-regulated AEP in the brain could be a promising target for early treatment of AD. The δ-secretase inhibitor 11 can be used as a lead compound for translational development of AD treatment.
Collapse
Affiliation(s)
- Ju Wang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hui-Jie Hu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zi-Kai Liu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing-Jing Liu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shan-Shan Wang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qing Cheng
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hong-Zhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| | - Mingke Song
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
19
|
Pluta R, Januszewski S, Czuczwar SJ. Brain Ischemia as a Prelude to Alzheimer's Disease. Front Aging Neurosci 2021; 13:636653. [PMID: 33679381 PMCID: PMC7931451 DOI: 10.3389/fnagi.2021.636653] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/25/2021] [Indexed: 01/07/2023] Open
Abstract
Transient ischemic brain injury causes massive neuronal death in the hippocampus of both humans and animals. This was accompanied by progressive atrophy of the hippocampus, brain cortex, and white matter lesions. Furthermore, it has been noted that neurodegenerative processes after an episode of ischemia-reperfusion in the brain can continue well-beyond the acute stage. Rarefaction of white matter was significantly increased in animals at 2 years following ischemia. Some rats that survived 2 years after ischemia developed severe brain atrophy with dementia. The profile of post-ischemic brain neurodegeneration shares a commonality with neurodegeneration in Alzheimer's disease. Furthermore, post-ischemic brain injury is associated with the deposition of folding proteins, such as amyloid and tau protein, in the intracellular and extracellular space. Recent studies on post-ischemic brain neurodegeneration have revealed the dysregulation of Alzheimer's disease-associated genes such as amyloid protein precursor, α-secretase, β-secretase, presenilin 1, presenilin 2, and tau protein. The latest data demonstrate that Alzheimer's disease-related proteins and their genes play a key role in the development of post-ischemic brain neurodegeneration with full-blown dementia in disease types such as Alzheimer's. Ongoing interest in the study of brain ischemia has provided evidence showing that ischemia may be involved in the development of the genotype and phenotype of Alzheimer's disease, suggesting that brain ischemia can be considered as a useful model for understanding the mechanisms responsible for the initiation of Alzheimer's disease.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland,*Correspondence: Ryszard Pluta
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
20
|
Castro-Costa É, Diniz BS, Blay SL. Editorial: Cognitive Impairment and Inflammation in Old Age and the Role of Modifiable Risk Factors of Neurocognitive Disorders. Front Psychiatry 2021; 12:784134. [PMID: 34899437 PMCID: PMC8661092 DOI: 10.3389/fpsyt.2021.784134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/04/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
- Érico Castro-Costa
- Center for Studies in Public Health and Aging, René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Breno S Diniz
- The University of Connecticut Health Center, Farmington, CT, United States
| | - Sergio L Blay
- Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Balasubramanian P, DelFavero J, Ungvari A, Papp M, Tarantini A, Price N, de Cabo R, Tarantini S. Time-restricted feeding (TRF) for prevention of age-related vascular cognitive impairment and dementia. Ageing Res Rev 2020; 64:101189. [PMID: 32998063 PMCID: PMC7710623 DOI: 10.1016/j.arr.2020.101189] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Aging is the most significant risk factor for vascular cognitive impairment (VCI), and the number of individuals affected by VCI is expected to exponentially increase in the upcoming decades. Yet, there are no current preventative or therapeutic treatments available against the development and progression of VCI. Therefore, there is a pressing need to better understand the pathophysiology underlying these conditions, for the development of novel tools and interventions to improve cerebrovascular health and delay the onset of VCI. There is strong epidemiological and experimental evidence that lifestyle factors, including nutrition and dietary habits, significantly affect cerebrovascular health and thereby influence the pathogenesis of VCI. Here, recent evidence is presented discussing the effects of lifestyle interventions against age-related diseases which in turn, inspired novel research aimed at investigating the possible beneficial effects of dietary interventions for the prevention of cognitive decline in older adults.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jordan DelFavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Magor Papp
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Amber Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Nathan Price
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
22
|
Gauthier S, Chertkow H, Theriault J, Chayer C, Ménard M, Lacombe G, Rosa‐Neto P, Ismail Z. CCCDTD5: research diagnostic criteria for Alzheimer's Disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12036. [PMID: 32864413 PMCID: PMC7446944 DOI: 10.1002/trc2.12036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 11/06/2022]
Abstract
The CCCDTD5 reviewed the research diagnostic criteria for Alzheimer's disease proposed in the NIA-AA Research Framework and supports their use in research but not in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Céline Chayer
- Départment de NeurologieUniversité de MontréalMontréalCanada
| | | | - Guy Lacombe
- Département de médecineService de gériatrieCIUSSS de l'Estrie‐CHUSUniversité de SherbrookeSherbrookeCanada
| | | | - Zahinoor Ismail
- Hotchkiss Brain Institute and O<Brien Institute for Public HealthUniversity of CalgaryCalgaryCanada
| |
Collapse
|
23
|
Brosseron F, Kolbe C, Santarelli F, Carvalho S, Antonell A, Castro‐Gomez S, Tacik P, Namasivayam AA, Mangone G, Schneider R, Latz E, Wüllner U, Svenningsson P, Sánchez‐Valle R, Molinuevo JL, Corvol J, Heneka MT. Multicenter Alzheimer's and Parkinson's disease immune biomarker verification study. Alzheimers Dement 2020; 16:292-304. [DOI: 10.1016/j.jalz.2019.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Frederic Brosseron
- Department of Neurodegenerative Diseases & Geropsychiatry/Neurology University of Bonn Medical Center Bonn Germany
- German Center for Neurodegenerative Diseases (DZNE) Bonn Germany
| | | | - Francesco Santarelli
- Department of Neurodegenerative Diseases & Geropsychiatry/Neurology University of Bonn Medical Center Bonn Germany
- German Center for Neurodegenerative Diseases (DZNE) Bonn Germany
| | - Stephanie Carvalho
- Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Assistance‐Publique Hôpitaux de Paris, INSERM, UMRS 1127, CNRS, UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital Pitié‐Salpêtrière, Department of Neurology, Centre d'Investigation Clinique Neurosciences Paris France
| | - Anna Antonell
- Alzheimer's disease and other cognitive disorders Unit, Hospital Clínic, Fundació Clínic per a la Recerca Biomèdica Institut d'Investigacions Biomè; diques August Pi i Sunyer (IDIBAPS) Barcelona Spain
| | - Sergio Castro‐Gomez
- Department of Neurodegenerative Diseases & Geropsychiatry/Neurology University of Bonn Medical Center Bonn Germany
| | - Pawel Tacik
- Department of Neurodegenerative Diseases & Geropsychiatry/Neurology University of Bonn Medical Center Bonn Germany
| | - Aishwarya Alex Namasivayam
- Luxembourg Centre for Systems Biomedicine (LCSB) University of Luxembourg Campus Belval Belvaux Luxembourg
| | - Graziella Mangone
- Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Assistance‐Publique Hôpitaux de Paris, INSERM, UMRS 1127, CNRS, UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital Pitié‐Salpêtrière, Department of Neurology, Centre d'Investigation Clinique Neurosciences Paris France
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine (LCSB) University of Luxembourg Campus Belval Belvaux Luxembourg
| | - Eicke Latz
- German Center for Neurodegenerative Diseases (DZNE) Bonn Germany
- University of Bonn Medical Center Institute of Innate Immune Bonn Germany
| | - Ullrich Wüllner
- German Center for Neurodegenerative Diseases (DZNE) Bonn Germany
- Department of Neurology University of Bonn Medical Center Bonn Germany
| | - Per Svenningsson
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
| | - Raquel Sánchez‐Valle
- Alzheimer's disease and other cognitive disorders Unit, Hospital Clínic, Fundació Clínic per a la Recerca Biomèdica Institut d'Investigacions Biomè; diques August Pi i Sunyer (IDIBAPS) Barcelona Spain
| | - José Luis Molinuevo
- Barcelonabeta Brain Research Center, Pasqual Maragall Foundation Barcelona Spain
| | - Jean‐Christophe Corvol
- Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Assistance‐Publique Hôpitaux de Paris, INSERM, UMRS 1127, CNRS, UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital Pitié‐Salpêtrière, Department of Neurology, Centre d'Investigation Clinique Neurosciences Paris France
| | - Michael T. Heneka
- Department of Neurodegenerative Diseases & Geropsychiatry/Neurology University of Bonn Medical Center Bonn Germany
- German Center for Neurodegenerative Diseases (DZNE) Bonn Germany
| | | |
Collapse
|
24
|
Ng KP, Therriault J, Kang MS, Struyfs H, Pascoal TA, Mathotaarachchi S, Shin M, Benedet AL, Massarweh G, Soucy JP, Rosa-Neto P, Gauthier S. Rasagiline, a monoamine oxidase B inhibitor, reduces in vivo [ 18F]THK5351 uptake in progressive supranuclear palsy. NEUROIMAGE-CLINICAL 2019; 24:102091. [PMID: 31795034 PMCID: PMC6889764 DOI: 10.1016/j.nicl.2019.102091] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND [18F]THK5351 is a tau positron emission tomography tracer that has shown promise in quantifying tau distribution in tauopathies such as Alzheimer's disease (AD) and progressive supranuclear palsy (PSP). However, the interpretation of [18F]THK5351 uptake has been shown to be confounded by high monoamine oxidase B (MAO-B) availability across the brain in AD. OBJECTIVES To test the hypothesis that the MAO-B inhibitor, rasagiline reduces [18F]THK5351 uptake in PSP. METHODS Six individuals (4: PSP; 2: cognitively unimpaired, CU) underwent [18F]THK5351 and [18F]AZD4694 to quantify baseline tau and amyloid deposition, respectively. Following a 10-day course of 1 mg rasagiline, all participants received a post-challenge [18F]THK5351 scan. The baseline and post-rasagiline challenge standardized uptake value (SUV) were generated normalized for patient weight and injected radioactivity. RESULTS The post-rasagiline regional SUV was reduced on average by 69-89% in PSP, and 53-81% in CU. The distributions of post-rasagiline [18F]THK5351 SUV among PSP individuals were not consistent with the typical pattern of tau aggregates in PSP. CONCLUSIONS Similar to AD, the interpretation of [18F]THK5351 uptake in PSP is likely confounded by off-target binding to MAO-B binding sites. [18F]THK5351 is not sufficient in quantifying tau aggregates in PSP using the proposed rasagiline dosing regimen.
Collapse
Affiliation(s)
- Kok Pin Ng
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, 6825 Boulevard LaSalle, Verdun, Montreal, QC H4H 1R3, Canada; Alzheimer's Disease Research Unit, Douglas Hospital, McGill University, Montreal, Canada; Department of Neurology, National Neuroscience Institute, Singapore
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, 6825 Boulevard LaSalle, Verdun, Montreal, QC H4H 1R3, Canada; Alzheimer's Disease Research Unit, Douglas Hospital, McGill University, Montreal, Canada
| | - Min Su Kang
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, 6825 Boulevard LaSalle, Verdun, Montreal, QC H4H 1R3, Canada; Alzheimer's Disease Research Unit, Douglas Hospital, McGill University, Montreal, Canada
| | - Hanne Struyfs
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, 6825 Boulevard LaSalle, Verdun, Montreal, QC H4H 1R3, Canada; Reference Center for Biological Markers of Dementia (BIODEM), University of Antwerp, Antwerp, Belgium
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, 6825 Boulevard LaSalle, Verdun, Montreal, QC H4H 1R3, Canada; Alzheimer's Disease Research Unit, Douglas Hospital, McGill University, Montreal, Canada
| | - Sulantha Mathotaarachchi
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, 6825 Boulevard LaSalle, Verdun, Montreal, QC H4H 1R3, Canada; Alzheimer's Disease Research Unit, Douglas Hospital, McGill University, Montreal, Canada
| | - Monica Shin
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, 6825 Boulevard LaSalle, Verdun, Montreal, QC H4H 1R3, Canada; Alzheimer's Disease Research Unit, Douglas Hospital, McGill University, Montreal, Canada
| | - Andrea L Benedet
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, 6825 Boulevard LaSalle, Verdun, Montreal, QC H4H 1R3, Canada; Alzheimer's Disease Research Unit, Douglas Hospital, McGill University, Montreal, Canada
| | - Gassan Massarweh
- McConnell Brain Imaging Centre, McGill University, 3801 University Street, Montreal, Québec H3A 2B4, Canada
| | - Jean-Paul Soucy
- McConnell Brain Imaging Centre, McGill University, 3801 University Street, Montreal, Québec H3A 2B4, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, 6825 Boulevard LaSalle, Verdun, Montreal, QC H4H 1R3, Canada; Alzheimer's Disease Research Unit, Douglas Hospital, McGill University, Montreal, Canada; Montreal Neurological Institute, 3801 University Street, Montreal, Québec H3A 2B4, Canada; Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Québec H3A 2B4, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, 6825 Boulevard LaSalle, Verdun, Montreal, QC H4H 1R3, Canada; Alzheimer's Disease Research Unit, Douglas Hospital, McGill University, Montreal, Canada.
| |
Collapse
|
25
|
Li B, He Y, Ma J, Huang P, Du J, Cao L, Wang Y, Xiao Q, Tang H, Chen S. Mild cognitive impairment has similar alterations as Alzheimer's disease in gut microbiota. Alzheimers Dement 2019; 15:1357-1366. [PMID: 31434623 DOI: 10.1016/j.jalz.2019.07.002] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/03/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Gut microbiota changes before the onset of Alzheimer's disease (AD) and the alterations could be detected in the stage of mild cognitive impairment (MCI). The findings might offer diagnostic biomarkers before the onset of dementia. BACKGROUND AD is the most common cause of dementia, and MCI is the predementia state. Recent studies suggest the alterations in the gut microbial communities associated with AD, whereas the microbiota in MCI before the onset of dementia has not been discovered and characterized in humans. NEW/UPDATED HYPOTHESIS We hypothesize that the dysbiosis happens in the MCI stage. Patients with AD and MCI have decreased microbial diversity, and changes in gut microbiota could be detected for early detection of AD. In our preliminary study, we identified differences between AD and normal controls in 11 genera from the feces and 11 genera from the blood. No difference in genera between AD and MCI was detected. Using the diagnostic model from fecal samples with all different genera input, 93% (28 in 30) of patients with MCI could be identified correctly. MAJOR CHALLENGES FOR THE HYPOTHESIS The diagnosis of MCI and AD in the study was based on symptoms and neuroimaging, and AD biomarkers should be included for precise diagnosis in further validating studies. Besides, as the microbiota changes longitudinally, their relationship with the progress of dementia needs to be studied in the prospective studies. LINKAGE TO OTHER MAJOR THEORIES Escherichia was observed increased at genus level in both fecal and blood samples from AD and MCI. For AD biomarker, postmortem brain tissue from patients with AD showed lipopolysaccharides and gram-negative Escherichia coli fragments colocalize with amyloid plaque. In this way, the amyloid pathogenesis for AD would be triggered during MCI by gut microbiota shifting. Besides, systemic inflammatory reactions caused by compounds secreted by bacteria may impair the blood-brain barrier and promote neuroinflammation and/or neurodegeneration. Furthermore, abnormal metabolites caused by microbial gene functions have an impact on neurodegeneration.
Collapse
Affiliation(s)
- Binyin Li
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yixi He
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Jianfang Ma
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Pei Huang
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Juanjuan Du
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Li Cao
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yan Wang
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Qin Xiao
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Huidong Tang
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.
| | - Shengdi Chen
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.
| |
Collapse
|
26
|
Stefanovski L, Triebkorn P, Spiegler A, Diaz-Cortes MA, Solodkin A, Jirsa V, McIntosh AR, Ritter P. Linking Molecular Pathways and Large-Scale Computational Modeling to Assess Candidate Disease Mechanisms and Pharmacodynamics in Alzheimer's Disease. Front Comput Neurosci 2019; 13:54. [PMID: 31456676 PMCID: PMC6700386 DOI: 10.3389/fncom.2019.00054] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022] Open
Abstract
Introduction: While the prevalence of neurodegenerative diseases associated with dementia such as Alzheimer's disease (AD) increases, our knowledge on the underlying mechanisms, outcome predictors, or therapeutic targets is limited. In this work, we demonstrate how computational multi-scale brain modeling links phenomena of different scales and therefore identifies potential disease mechanisms leading the way to improved diagnostics and treatment. Methods: The Virtual Brain (TVB; thevirtualbrain.org) neuroinformatics platform allows standardized large-scale structural connectivity-based simulations of whole brain dynamics. We provide proof of concept for a novel approach that quantitatively links the effects of altered molecular pathways onto neuronal population dynamics. As a novelty, we connect chemical compounds measured with positron emission tomography (PET) with neural function in TVB addressing the phenomenon of hyperexcitability in AD related to the protein amyloid beta (Abeta). We construct personalized virtual brains based on an averaged healthy connectome and individual PET derived distributions of Abeta in patients with mild cognitive impairment (MCI, N = 8) and Alzheimer's Disease (AD, N = 10) and in age-matched healthy controls (HC, N = 15) using data from ADNI-3 data base (http://adni.loni.usc.edu). In the personalized virtual brains, individual Abeta burden modulates regional Excitation-Inhibition balance, leading to local hyperexcitation with high Abeta loads. We analyze simulated regional neural activity and electroencephalograms (EEG). Results: Known empirical alterations of EEG in patients with AD compared to HCs were reproduced by simulations. The virtual AD group showed slower frequencies in simulated local field potentials and EEG compared to MCI and HC groups. The heterogeneity of the Abeta load is crucial for the virtual EEG slowing which is absent for control models with homogeneous Abeta distributions. Slowing phenomena primarily affect the network hubs, independent of the spatial distribution of Abeta. Modeling the N-methyl-D-aspartate (NMDA) receptor antagonism of memantine in local population models, reveals potential functional reversibility of the observed large-scale alterations (reflected by EEG slowing) in virtual AD brains. Discussion: We demonstrate how TVB enables the simulation of systems effects caused by pathogenetic molecular candidate mechanisms in human virtual brains.
Collapse
Affiliation(s)
- Leon Stefanovski
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Brain Simulation Section, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Paul Triebkorn
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Brain Simulation Section, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Andreas Spiegler
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Brain Simulation Section, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Margarita-Arimatea Diaz-Cortes
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Brain Simulation Section, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Institut für Informatik, Freie Universität Berlin, Berlin, Germany
| | - Ana Solodkin
- Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, United States
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
| | | | - Petra Ritter
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Brain Simulation Section, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | | |
Collapse
|
27
|
Sestini S, Alongi P, Berti V, Calcagni ML, Cecchin D, Chiaravalloti A, Chincarini A, Cistaro A, Guerra UP, Pappatà S, Tiraboschi P, Nobili F. The role of molecular imaging in the frame of the revised dementia with Lewy body criteria. Clin Transl Imaging 2019. [DOI: 10.1007/s40336-019-00321-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Tangestani Fard M, Stough C. A Review and Hypothesized Model of the Mechanisms That Underpin the Relationship Between Inflammation and Cognition in the Elderly. Front Aging Neurosci 2019; 11:56. [PMID: 30930767 PMCID: PMC6425084 DOI: 10.3389/fnagi.2019.00056] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
Age is associated with increased risk for several disorders including dementias, cardiovascular disease, atherosclerosis, obesity, and diabetes. Age is also associated with cognitive decline particularly in cognitive domains associated with memory and processing speed. With increasing life expectancies in many countries, the number of people experiencing age-associated cognitive impairment is increasing and therefore from both economic and social terms the amelioration or slowing of cognitive aging is an important target for future research. However, the biological causes of age associated cognitive decline are not yet, well understood. In the current review, we outline the role of inflammation in cognitive aging and describe the role of several inflammatory processes, including inflamm-aging, vascular inflammation, and neuroinflammation which have both direct effect on brain function and indirect effects on brain function via changes in cardiovascular function.
Collapse
Affiliation(s)
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Schneider JA, Viswanathan A. The time for multiple biomarkers in studies of cognitive aging and dementia is now. Neurology 2019; 92:551-552. [DOI: 10.1212/wnl.0000000000007120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|