1
|
Van Acker ZP, Leroy T, Annaert W. Mitochondrial dysfunction, cause or consequence in neurodegenerative diseases? Bioessays 2025; 47:e2400023. [PMID: 39367555 DOI: 10.1002/bies.202400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/29/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024]
Abstract
Neurodegenerative diseases encompass a spectrum of conditions characterized by the gradual deterioration of neurons in the central and peripheral nervous system. While their origins are multifaceted, emerging data underscore the pivotal role of impaired mitochondrial functions and endolysosomal homeostasis to the onset and progression of pathology. This article explores whether mitochondrial dysfunctions act as causal factors or are intricately linked to the decline in endolysosomal function. As research delves deeper into the genetics of neurodegenerative diseases, an increasing number of risk loci and genes associated with the regulation of endolysosomal and autophagy functions are being identified, arguing for a downstream impact on mitochondrial health. Our hypothesis centers on the notion that disturbances in endolysosomal processes may propagate to other organelles, including mitochondria, through disrupted inter-organellar communication. We discuss these views in the context of major neurodegenerative diseases including Alzheimer's and Parkinson's diseases, and their relevance to potential therapeutic avenues.
Collapse
Affiliation(s)
- Zoë P Van Acker
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Thomas Leroy
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Lange LM, Cerquera-Cleves C, Schipper M, Panagiotaropoulou G, Braun A, Kraft J, Awasthi S, Bell N, Posthuma D, Ripke S, Blauwendraat C, Heilbron K. Prioritizing Parkinson's disease risk genes in genome-wide association loci. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.13.24318996. [PMID: 39711693 PMCID: PMC11661345 DOI: 10.1101/2024.12.13.24318996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Recent advancements in Parkinson's disease (PD) drug development have been significantly driven by genetic research. Importantly, drugs supported by genetic evidence are more likely to be approved. While genome-wide association studies (GWAS) are a powerful tool to nominate genomic regions associated with certain traits or diseases, pinpointing the causal biologically relevant gene is often challenging. Our aim was to prioritize genes underlying PD GWAS signals. The polygenic priority score (PoPS) is a similarity-based gene prioritization method that integrates genome-wide information from MAGMA gene-level association tests and more than 57,000 gene-level features, including gene expression, biological pathways, and protein-protein interactions. We applied PoPS to data from the largest published PD GWAS in East Asian- and European-ancestries. We identified 120 independent associations with P < 5×10-8 and prioritized 46 PD genes across these loci based on their PoPS scores, distance to the GWAS signal, and presence of non-synonymous variants in the credible set. Alongside well-established PD genes (e.g., TMEM175 and VPS13C), some of which are targeted in ongoing clinical trials (i.e., SNCA, LRRK2, and GBA1), we prioritized genes with a plausible mechanistic link to PD pathogenesis (e.g., RIT2, BAG3, and SCARB2). Many of these genes hold potential for drug repurposing or novel therapeutic developments for PD (i.e., FYN, DYRK1A, NOD2, CTSB, SV2C, and ITPKB). Additionally, we prioritized potentially druggable genes that are relatively unexplored in PD (XPO1, PIK3CA, EP300, MAP4K4, CAMK2D, NCOR1, and WDR43). We prioritized a high-confidence list of genes with strong links to PD pathogenesis that may represent our next-best candidates for disease-modifying therapeutics. We hope our findings stimulate further investigations and preclinical work to facilitate PD drug development programs.
Collapse
Affiliation(s)
- Lara M. Lange
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Catalina Cerquera-Cleves
- Neurology Unit, Department of Neurosciences, Hospital Universitario San Ignacio, Bogotá, Colombia
- CHU de Québec Research Center, Axe Neurosciences, Laval University, Quebec City, Quebec, Canada
| | | | - Georgia Panagiotaropoulou
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Alice Braun
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Julia Kraft
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Swapnil Awasthi
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Nathaniel Bell
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Karl Heilbron
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
- Current address: Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany
| |
Collapse
|
3
|
Jones-Tabah J, He K, Karpilovsky N, Senkevich K, Deyab G, Pietrantonio I, Goiran T, Cousineau Y, Nikanorova D, Goldsmith T, Del Cid Pellitero E, Chen CXQ, Luo W, You Z, Abdian N, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Fahn S, Waters C, Monchi O, Dauvilliers Y, Dupré N, Miliukhina I, Timofeeva A, Emelyanov A, Pchelina S, Greenbaum L, Hassin-Baer S, Alcalay RN, Milnerwood A, Durcan TM, Gan-Or Z, Fon EA. The Parkinson's disease risk gene cathepsin B promotes fibrillar alpha-synuclein clearance, lysosomal function and glucocerebrosidase activity in dopaminergic neurons. Mol Neurodegener 2024; 19:88. [PMID: 39587654 PMCID: PMC11587650 DOI: 10.1186/s13024-024-00779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Variants in the CTSB gene encoding the lysosomal hydrolase cathepsin B (catB) are associated with increased risk of Parkinson's disease (PD). However, neither the specific CTSB variants driving these associations nor the functional pathways that link catB to PD pathogenesis have been characterized. CatB activity contributes to lysosomal protein degradation and regulates signaling processes involved in autophagy and lysosome biogenesis. Previous in vitro studies have found that catB can cleave monomeric and fibrillar alpha-synuclein, a key protein involved in the pathogenesis of PD that accumulates in the brains of PD patients. However, truncated synuclein isoforms generated by catB cleavage have an increased propensity to aggregate. Thus, catB activity could potentially contribute to lysosomal degradation and clearance of pathogenic alpha synuclein from the cell, but also has the potential of enhancing synuclein pathology by generating aggregation-prone truncations. Therefore, the mechanisms linking catB to PD pathophysiology remain to be clarified. METHODS Here, we conducted genetic analyses of the association between common and rare CTSB variants and risk of PD. We then used genetic and pharmacological approaches to manipulate catB expression and function in cell lines, induced pluripotent stem cell-derived dopaminergic neurons and midbrain organoids and assessed lysosomal activity and the handling of aggregated synuclein fibrils. RESULTS We find that catB inhibition impairs autophagy, reduces glucocerebrosidase (encoded by GBA1) activity, and leads to an accumulation of lysosomal content. In cell lines, reduction of CTSB gene expression impairs the degradation of pre-formed alpha-synuclein fibrils, whereas CTSB gene activation enhances fibril clearance. In midbrain organoids and dopaminergic neurons treated with alpha-synuclein fibrils, catB inhibition potentiates the formation of inclusions which stain positively for phosphorylated alpha-synuclein. CONCLUSIONS These results indicate that the reduction of catB function negatively impacts lysosomal pathways associated with PD pathogenesis, while conversely catB activation could promote the clearance of pathogenic alpha-synuclein.
Collapse
Affiliation(s)
- Jace Jones-Tabah
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Kathy He
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Nathan Karpilovsky
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Konstantin Senkevich
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Ghislaine Deyab
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Isabella Pietrantonio
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Thomas Goiran
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Yuting Cousineau
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Daria Nikanorova
- Research Department, Bioinformatics Institute, Saint-Petersburg, Russia
| | - Taylor Goldsmith
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Esther Del Cid Pellitero
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Carol X-Q Chen
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Wen Luo
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Zhipeng You
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Narges Abdian
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Jamil Ahmad
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Jennifer A Ruskey
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Farnaz Asayesh
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
| | - Dan Spiegelman
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Oury Monchi
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
- Département de Radiologie, Radio-Oncologie Et Médecine Nucléaire, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche de L'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Yves Dauvilliers
- Sleep Unit, Department of Neurology, National Reference Center for Narcolepsy, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Nicolas Dupré
- Neuroscience Axis, CHU de Québec - Université Laval, , Quebec City, G1V 4G2, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, G1V 0A6, Canada
| | | | - Alla Timofeeva
- First Pavlov State Medical, University of St. Petersburg, Saint-Petersburg, Russia
| | - Anton Emelyanov
- First Pavlov State Medical, University of St. Petersburg, Saint-Petersburg, Russia
| | - Sofya Pchelina
- First Pavlov State Medical, University of St. Petersburg, Saint-Petersburg, Russia
| | - Lior Greenbaum
- Institute of the Human Brain of RAS, St. Petersburg, Russia
- First Pavlov State Medical, University of St. Petersburg, Saint-Petersburg, Russia
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Department of Neurology, The Movement Disorders Institute, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
- Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Austen Milnerwood
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Ziv Gan-Or
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
| | - Edward A Fon
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada.
| |
Collapse
|
4
|
Sun H, Tang Q, Yan X, Xie W, Xu Y, Zhang W. Cathepsins and neurological diseases: a Mendelian randomization study. Front Neurosci 2024; 18:1454369. [PMID: 39420987 PMCID: PMC11484041 DOI: 10.3389/fnins.2024.1454369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Background The causal relationship between cathepsins and neurological diseases remains uncertain. To address this, we utilized a two-sample Mendelian randomization (MR) approach to assess the potential causal effect of cathepsins on the development of neurological diseases. Methods This study conducted a two-sample two-way MR study using pooled data from published genome-wide association studies to evaluate the relationship between 10 cathepsins (B, D, E, F, G, H, L2, O, S, and Z) and 7 neurological diseases, which included ischemic stroke, cerebral hemorrhage, Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, and epilepsy. The analysis employed various methods such as inverse variance weighting (IVW), weighted median, MR Egger regression, MR pleiotropy residual sum and outlier, Cochran Q statistic, and leave-one-out analysis. Results We found a causal relationship between cathepsins and neurological diseases, including Cathepsin B and Parkinson's disease (IVW odds ratio (OR): 0.89, 95% confidence interval (CI): 0.83, 0.95, p = 0.001); Cathepsin D and Parkinson's disease (OR: 0.80, 95%CI: 0.68, 0.95, p = 0.012); Cathepsin E and ischemic stroke (OR: 1.05, 95%CI: 1.01, 1.09, p = 0.015); Cathepsin O and ischemic stroke (OR: 1.05, 95%CI: 1.01, 1.10, p = 0.021). Reverse MR analyses revealed that multiple sclerosis and Cathepsin E (OR: 1.05, 95%CI: 1.01, 1.10, p = 0.030). There is currently no significant relationship has been found between other cathepsins and neurological diseases. Conclusion Our study reveals a causal relationship between Cathepsins B, D, E, and O and neurological diseases, offering valuable insights for research aimed at improving the diagnosis and treatment of such conditions.
Collapse
Affiliation(s)
- Haitao Sun
- Changchun University of Chinese Medicine, Changchun, China
| | - Qingqing Tang
- Changchun University of Chinese Medicine, Changchun, China
| | - Xue Yan
- The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Wanying Xie
- Changchun University of Chinese Medicine, Changchun, China
| | - Yueshan Xu
- Changchun University of Chinese Medicine, Changchun, China
| | - Weimin Zhang
- Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
5
|
Feng T, Zheng H, Zhang Z, Fan P, Yang X. Mechanism and therapeutic targets of the involvement of a novel lysosomal proton channel TMEM175 in Parkinson's disease. Ageing Res Rev 2024; 100:102373. [PMID: 38960046 DOI: 10.1016/j.arr.2024.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
Parkinson's disease (PD), recognized as the second most prevalent neurodegenerative disease in the aging population, presents a significant challenge due to the current lack of effective treatment methods to mitigate its progression. Many pathogenesis of PD are related to lysosomal dysfunction. Moreover, extensive genetic studies have shown a significant correlation between the lysosomal membrane protein TMEM175 and the risk of developing PD. Building on this discovery, TMEM175 has been identified as a novel potassium ion channel. Intriguingly, further investigations have found that potassium ion channels gradually close and transform into hydrion "excretion" channels in the microenvironment of lysosomes. This finding was further substantiated by studies on TMEM175 knockout mice, which exhibited pronounced motor dysfunction in pole climbing and suspension tests, alongside a notable reduction in dopamine neurons within the substantia nigra compacta. Despite these advancements, the current research landscape is not without its controversies. In light of this, the present review endeavors to methodically examine and consolidate a vast array of recent literature on TMEM175. This comprehensive analysis spans from the foundational research on the structure and function of TMEM175 to expansive population genetics studies and mechanism research utilizing cellular and animal models.A thorough understanding of the structure and function of TMEM175, coupled with insights into the intricate mechanisms underpinning lysosomal dysfunction in PD dopaminergic neurons, is imperative. Such knowledge is crucial for pinpointing precise intervention targets, thereby paving the way for novel therapeutic strategies that could potentially alter the neurodegenerative trajectory of PD.
Collapse
Affiliation(s)
- Tingting Feng
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China; Xinjiang Medical University, Urumqi 830017, China
| | | | - Zhan Zhang
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China
| | - Peidong Fan
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China
| | - Xinling Yang
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China; Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
6
|
Ki MR, Youn S, Kim DH, Pack SP. Natural Compounds for Preventing Age-Related Diseases and Cancers. Int J Mol Sci 2024; 25:7530. [PMID: 39062777 PMCID: PMC11276798 DOI: 10.3390/ijms25147530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is a multifaceted process influenced by hereditary factors, lifestyle, and environmental elements. As time progresses, the human body experiences degenerative changes in major functions. The external and internal signs of aging manifest in various ways, including skin dryness, wrinkles, musculoskeletal disorders, cardiovascular diseases, diabetes, neurodegenerative disorders, and cancer. Additionally, cancer, like aging, is a complex disease that arises from the accumulation of various genetic and epigenetic alterations. Circadian clock dysregulation has recently been identified as an important risk factor for aging and cancer development. Natural compounds and herbal medicines have gained significant attention for their potential in preventing age-related diseases and inhibiting cancer progression. These compounds demonstrate antioxidant, anti-inflammatory, anti-proliferative, pro-apoptotic, anti-metastatic, and anti-angiogenic effects as well as circadian clock regulation. This review explores age-related diseases, cancers, and the potential of specific natural compounds in targeting the key features of these conditions.
Collapse
Affiliation(s)
- Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| |
Collapse
|
7
|
Mächtel R, Dobert J, Hehr U, Weiss A, Kettwig M, Laugwitz L, Groeschel S, Schmidt M, Arnold P, Regensburger M, Zunke F. Late-onset Krabbe disease presenting as spastic paraplegia - implications of GCase and CTSB/D. Ann Clin Transl Neurol 2024; 11:1715-1731. [PMID: 38837642 PMCID: PMC11251474 DOI: 10.1002/acn3.52078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 06/07/2024] Open
Abstract
OBJECTIVE Krabbe disease (KD) is a multisystem neurodegenerative disorder with severe disability and premature death, mostly with an infancy/childhood onset. In rare cases of late-onset phenotypes, symptoms are often milder and difficult to diagnose. We here present a translational approach combining diagnostic and biochemical analyses of a male patient with a progressive gait disorder starting at the age of 44 years, with a final diagnosis of late-onset KD (LOKD). METHODS Additionally to cerebral MRI, protein structural analyses of the β-galactocerebrosidase protein (GALC) were performed. Moreover, expression, lysosomal localization, and activities of β-glucocerebrosidase (GCase), cathepsin B (CTSB), and cathepsin D (CTSD) were analyzed in leukocytes, fibroblasts, and lysosomes of fibroblasts. RESULTS Exome sequencing revealed biallelic likely pathogenic variants: GALC exons 11-17: 33 kb deletion; exon 4: missense variant (c.334A>G, p.Thr112Ala). We detected a reduced GALC activity in leukocytes and fibroblasts. While histological KD phenotypes were absent in fibroblasts, they showed a significantly decreased activities of GCase, CTSB, and CTSD in lysosomal fractions, while expression levels were unaffected. INTERPRETATION The presented LOKD case underlines the age-dependent appearance of a mildly pathogenic GALC variant and its interplay with other lysosomal proteins. As GALC malfunction results in reduced ceramide levels, we assume this to be causative for the here described decrease in CTSB and CTSD activity, potentially leading to diminished GCase activity. Hence, we emphasize the importance of a functional interplay between the lysosomal enzymes GALC, CTSB, CTSD, and GCase, as well as between their substrates, and propose their conjoined contribution in KD pathology.
Collapse
Affiliation(s)
- Rebecca Mächtel
- Department of Molecular NeurologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Jan‐Philipp Dobert
- Department of Molecular NeurologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Ute Hehr
- Center for Human GeneticsRegensburgGermany
| | - Alexander Weiss
- Department of Molecular NeurologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Matthias Kettwig
- Department of Pediatrics and Pediatric NeurologyUniversity Medical Center Göttingen, Georg August University GöttingenGöttingenGermany
| | - Lucia Laugwitz
- Department of Pediatric NeurologyUniversity Children's Hospital TübingenTübingenGermany
| | - Samuel Groeschel
- Department of Pediatric NeurologyUniversity Children's Hospital TübingenTübingenGermany
| | | | - Philipp Arnold
- Institute of Functional and Clinical AnatomyFAUErlangenGermany
| | - Martin Regensburger
- Department of Molecular NeurologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
- Department of Stem Cell BiologyFAUErlangenGermany
- Deutsches Zentrum Immuntherapie (DZI)University Hospital ErlangenErlangenGermany
| | - Friederike Zunke
- Department of Molecular NeurologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| |
Collapse
|
8
|
Lu C, Cai X, Zhi S, Wen X, Shen J, Ercoli T, Simula ER, Masala C, Sechi LA, Solla P. Exploring the Association between Cathepsin B and Parkinson's Disease. Brain Sci 2024; 14:482. [PMID: 38790460 PMCID: PMC11119263 DOI: 10.3390/brainsci14050482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
OBJECTIVE The aim of this study is to investigate the association between Cathepsin B and Parkinson's Disease (PD), with a particular focus on determining the role of N-acetylaspartate as a potential mediator. METHODS We used summary-level data from Genome-Wide Association Studies (GWAS) for a two-sample Mendelian randomization (MR) analysis, exploring the association between Cathepsin B (3301 cases) and PD (4681 cases). A sequential two-step MR approach was applied (8148 cases) to study the role of N-acetylaspartate. RESULTS The MR analysis yielded that genetically predicted elevated Cathepsin B levels correlated with a reduced risk of developing PD (p = 0.0133, OR: 0.9171, 95% CI: 0.8563-0.9821). On the other hand, the analysis provided insufficient evidence to determine that PD affected Cathepsin B levels (p = 0.8567, OR: 1.0035, 95% CI: 0.9666-1.0418). The estimated effect of N-acetylaspartate in this process was 7.52% (95% CI = -3.65% to 18.69%). CONCLUSIONS This study suggested that elevated Cathepsin B levels decreased the risk of developing PD, with the mediation effect of N-acetylaspartate. Further research is needed to better understand this relationship.
Collapse
Affiliation(s)
- Changhao Lu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (E.R.S.); (L.A.S.)
| | - Xinyi Cai
- Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology, Shantou University Medical College, Shantou 515041, China;
| | - Shilin Zhi
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China;
| | - Xiaofen Wen
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China;
| | - Jiaxin Shen
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China;
| | - Tommaso Ercoli
- Department of Neurology, University of Sassari, Viale S. Pietro 10, 07100 Sassari, Italy
| | - Elena Rita Simula
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (E.R.S.); (L.A.S.)
| | - Carla Masala
- Department of Biomedical Sciences, University of Cagliari, SP 8 Cittadella Universitaria, 09042 Monserrato, Italy;
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (E.R.S.); (L.A.S.)
- Struttura Complessa di Microbiologia e Virologia, Azienda Ospedaliera Universitaria di Sassari, 07100 Sassari, Italy
| | - Paolo Solla
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
- Department of Neurology, University of Sassari, Viale S. Pietro 10, 07100 Sassari, Italy
| |
Collapse
|
9
|
Zhang S, Yin H, Zhang Y, Zhu Y, Zhu X, Zhu W, Tang L, Liu Y, Wu K, Zhao B, Tian Y, Lu H. Autophagic-lysosomal damage induced by swainsonine is protected by trehalose through activation of TFEB-regulated pathway in renal tubular epithelial cells. Chem Biol Interact 2024; 394:110990. [PMID: 38579922 DOI: 10.1016/j.cbi.2024.110990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Swainsonine (SW) is the main toxic component of locoweed. Previous studies have shown that kidney damage is an early pathologic change in locoweed poisoning in animals. Trehalose induces autophagy and alleviates lysosomal damage, while its protective effect and mechanism against the toxic injury induced by SW is not clear. Based on the published literature, we hypothesize that transcription factor EB(TFEB) -regulated is targeted by SW and activating TFEB by trehalose would reverse the toxic effects. In this study, we investigate the mechanism of protective effects of trehalose using renal tubular epithelial cells. The results showed that SW induced an increase in the expression level of microtubule-associated protein light chain 3-II and p62 proteins and a decrease in the expression level of ATPase H+ transporting V1 Subunit A, Cathepsin B, Cathepsin D, lysosome-associated membrane protein 2 and TFEB proteins in renal tubular epithelial cells in a time and dose-dependent manner suggesting TFEB-regulated lysosomal pathway is adversely affected by SW. Conversely, treatment with trehalose, a known activator of TFEB promote TFEB nuclear translocation suggesting that TFEB plays an important role in protection against SW toxicity. We demonstrated in lysosome staining that SW reduced the number of lysosomes and increased the luminal pH, while trehalose could counteract these SW-induced effects. In summary, our results demonstrated for the first time that trehalose could alleviate the autophagy degradation disorder and lysosomal damage induced by SW. Our results provide an interesting method for reversion of SW-induced toxicity in farm animals and furthermore, activation of TFEB by trehalose suggesting novel mechanism of treating lysosomal storage diseases.
Collapse
Affiliation(s)
- Shuhang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hai Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiqingqing Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanli Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xueyao Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenting Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lihui Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiling Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kexin Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Hao Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
Jones-Tabah J, He K, Senkevich K, Karpilovsky N, Deyab G, Cousineau Y, Nikanorova D, Goldsmith T, Del-Cid Pellitero E, Chen CX, Luo W, You Z, Abdian N, Pietrantonio I, Goiran T, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Waters C, Monchi O, Dauvilliers Y, Dupre N, Miliukhina I, Timofeeva A, Emelyanov A, Pchelina S, Greenbaum L, HassinBaer S, Alcalay RN, Milnerwood A, Durcan TM, Gan-Or Z, Fon EA. The Parkinson's disease risk gene cathepsin B promotes fibrillar alpha-synuclein clearance, lysosomal function and glucocerebrosidase activity in dopaminergic neurons. RESEARCH SQUARE 2024:rs.3.rs-3979098. [PMID: 38562709 PMCID: PMC10984014 DOI: 10.21203/rs.3.rs-3979098/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Variants in the CTSB gene encoding the lysosomal hydrolase cathepsin B (catB) are associated with increased risk of Parkinson's disease (PD). However, neither the specific CTSB variants driving these associations nor the functional pathways that link catB to PD pathogenesis have been characterized. CatB activity contributes to lysosomal protein degradation and regulates signaling processes involved in autophagy and lysosome biogenesis. Previous in vitro studies have found that catB can cleave monomeric and fibrillar alpha-synuclein, a key protein involved in the pathogenesis of PD that accumulates in the brains of PD patients. However, truncated synuclein isoforms generated by catB cleavage have an increased propensity to aggregate. Thus, catB activity could potentially contribute to lysosomal degradation and clearance of pathogenic alpha synuclein from the cell, but also has the potential of enhancing synuclein pathology by generating aggregation-prone truncations. Therefore, the mechanisms linking catB to PD pathophysiology remain to be clarified. Methods Here, we conducted genetic analyses of the association between common and rare CTSB variants and risk of PD. We then used genetic and pharmacological approaches to manipulate catB expression and function in cell lines and induced pluripotent stem cell-derived dopaminergic neurons and assessed lysosomal activity and the handling of aggregated synuclein fibrils. Results We first identified specific non-coding variants in CTSB that drive the association with PD and are linked to changes in brain CTSB expression levels. Using iPSC-derived dopaminergic neurons we then find that catB inhibition impairs autophagy, reduces glucocerebrosidase (encoded by GBA1) activity, and leads to an accumulation of lysosomal content. Moreover, in cell lines, reduction of CTSB gene expression impairs the degradation of pre-formed alpha-synuclein fibrils, whereas CTSB gene activation enhances fibril clearance. Similarly, in midbrain organoids and dopaminergic neurons treated with alpha-synuclein fibrils, catB inhibition or knockout potentiates the formation of inclusions which stain positively for phosphorylated alpha-synuclein. Conclusions The results of our genetic and functional studies indicate that the reduction of catB function negatively impacts lysosomal pathways associated with PD pathogenesis, while conversely catB activation could promote the clearance of pathogenic alpha-synuclein.
Collapse
Affiliation(s)
| | - Kathy He
- Montreal Neurological Institute-Hospital
| | | | | | | | | | | | | | | | | | - Wen Luo
- Montreal Neurological Institute-Hospital
| | | | | | | | | | | | | | | | | | - Cheryl Waters
- Columbia University Medical Center: Columbia University Irving Medical Center
| | - Oury Monchi
- Université de Montréal: Universite de Montreal
| | | | | | - Irina Miliukhina
- Institute of the Human Brain RAS: FGBUN Institut mozga celoveka im N P Behterevoj Rossijskoj akademii nauk
| | | | | | | | - Lior Greenbaum
- Sheba Medical Center: Sheba Medical Center at Tel Hashomer
| | | | - Roy N Alcalay
- Tel Aviv Ichilov-Sourasky Medical Center: Tel Aviv Sourasky Medical Center
| | | | | | - Ziv Gan-Or
- Montreal Neurological Institute-Hospital
| | | |
Collapse
|
11
|
Mahbub NU, Islam MM, Hong ST, Chung HJ. Dysbiosis of the gut microbiota and its effect on α-synuclein and prion protein misfolding: consequences for neurodegeneration. Front Cell Infect Microbiol 2024; 14:1348279. [PMID: 38435303 PMCID: PMC10904658 DOI: 10.3389/fcimb.2024.1348279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
Abnormal behavior of α-synuclein and prion proteins is the hallmark of Parkinson's disease (PD) and prion illnesses, respectively, being complex neurological disorders. A primary cause of protein aggregation, brain injury, and cognitive loss in prion illnesses is the misfolding of normal cellular prion proteins (PrPC) into an infectious form (PrPSc). Aggregation of α-synuclein causes disruptions in cellular processes in Parkinson's disease (PD), leading to loss of dopamine-producing neurons and motor symptoms. Alteration in the composition or activity of gut microbes may weaken the intestinal barrier and make it possible for prions to go from the gut to the brain. The gut-brain axis is linked to neuroinflammation; the metabolites produced by the gut microbiota affect the aggregation of α-synuclein, regulate inflammation and immunological responses, and may influence the course of the disease and neurotoxicity of proteins, even if their primary targets are distinct proteins. This thorough analysis explores the complex interactions that exist between the gut microbiota and neurodegenerative illnesses, particularly Parkinson's disease (PD) and prion disorders. The involvement of the gut microbiota, a complex collection of bacteria, archaea, fungi, viruses etc., in various neurological illnesses is becoming increasingly recognized. The gut microbiome influences neuroinflammation, neurotransmitter synthesis, mitochondrial function, and intestinal barrier integrity through the gut-brain axis, which contributes to the development and progression of disease. The review delves into the molecular mechanisms that underlie these relationships, emphasizing the effects of microbial metabolites such as bacterial lipopolysaccharides (LPS), and short-chain fatty acids (SCFAs) in regulating brain functioning. Additionally, it looks at how environmental influences and dietary decisions affect the gut microbiome and whether they could be risk factors for neurodegenerative illnesses. This study concludes by highlighting the critical role that the gut microbiota plays in the development of Parkinson's disease (PD) and prion disease. It also provides a promising direction for future research and possible treatment approaches. People afflicted by these difficult ailments may find hope in new preventive and therapeutic approaches if the role of the gut microbiota in these diseases is better understood.
Collapse
Affiliation(s)
- Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
12
|
Jones-Tabah J, He K, Senkevich K, Karpilovsky N, Deyab G, Cousineau Y, Nikanorova D, Goldsmith T, Del Cid Pellitero E, Chen CXQ, Luo W, You Z, Abdian N, Pietrantonio I, Goiran T, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Waters C, Monchi O, Dauvilliers Y, Dupré N, Miliukhina I, Timofeeva A, Emelyanov A, Pchelina S, Greenbaum L, Hassin-Baer S, Alcalay RN, Milnerwood A, Durcan TM, Gan-Or Z, Fon EA. The Parkinson's disease risk gene cathepsin B promotes fibrillar alpha-synuclein clearance, lysosomal function and glucocerebrosidase activity in dopaminergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566693. [PMID: 38014143 PMCID: PMC10680785 DOI: 10.1101/2023.11.11.566693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Variants in the CTSB gene encoding the lysosomal hydrolase cathepsin B (catB) are associated with increased risk of Parkinson's disease (PD). However, neither the specific CTSB variants driving these associations nor the functional pathways that link catB to PD pathogenesis have been characterized. CatB activity contributes to lysosomal protein degradation and regulates signaling processes involved in autophagy and lysosome biogenesis. Previous in vitro studies have found that catB can cleave monomeric and fibrillar alpha-synuclein, a key protein involved in the pathogenesis of PD that accumulates in the brains of PD patients. However, truncated synuclein isoforms generated by catB cleavage have an increased propensity to aggregate. Thus, catB activity could potentially contribute to lysosomal degradation and clearance of pathogenic alpha synuclein from the cell, but also has the potential of enhancing synuclein pathology by generating aggregation-prone truncations. Therefore, the mechanisms linking catB to PD pathophysiology remain to be clarified. Here, we conducted genetic analyses of the association between common and rare CTSB variants and risk of PD. We then used genetic and pharmacological approaches to manipulate catB expression and function in cell lines and induced pluripotent stem cell-derived dopaminergic neurons and assessed lysosomal activity and the handling of aggregated synuclein fibrils. We find that catB inhibition impairs autophagy, reduces glucocerebrosidase (encoded by GBA1) activity, and leads to an accumulation of lysosomal content. In cell lines, reduction of CTSB gene expression impairs the degradation of pre-formed alpha-synuclein fibrils, whereas CTSB gene activation enhances fibril clearance. In midbrain organoids and dopaminergic neurons treated with alpha-synuclein fibrils, catB inhibition potentiates the formation of inclusions which stain positively for phosphorylated alpha-synuclein. These results indicate that the reduction of catB function negatively impacts lysosomal pathways associated with PD pathogenesis, while conversely catB activation could promote the clearance of pathogenic alpha-synuclein.
Collapse
Affiliation(s)
- Jace Jones-Tabah
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Kathy He
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Konstantin Senkevich
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Nathan Karpilovsky
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Ghislaine Deyab
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Yuting Cousineau
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Daria Nikanorova
- Research Department, Bioinformatics Institute, Saint-Petersburg, Russia
| | - Taylor Goldsmith
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Esther Del Cid Pellitero
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Carol X-Q Chen
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Wen Luo
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Zhipeng You
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Narges Abdian
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Isabella Pietrantonio
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Thomas Goiran
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Jamil Ahmad
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Jennifer A Ruskey
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Farnaz Asayesh
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
| | - Dan Spiegelman
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
| | - Oury Monchi
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
- Département de radiologie, radio-oncologie et médecine nucléaire, Université de Montréal, Montréal, QC, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, QC, Canada
| | - Yves Dauvilliers
- National Reference Center for Narcolepsy, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Nicolas Dupré
- Neuroscience Axis, CHU de Québec - Université Laval, Quebec City, G1V 4G2, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, G1V 0A6, Canada
| | | | - Alla Timofeeva
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Anton Emelyanov
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Sofya Pchelina
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Lior Greenbaum
- Institute of the Human Brain of RAS, St. Petersburg, Russia
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- The Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
- Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Austen Milnerwood
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Ziv Gan-Or
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
| | - Edward A Fon
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| |
Collapse
|