1
|
de Sousa T, Silva C, Alves O, Costa E, Igrejas G, Poeta P, Hébraud M. Determination of Antimicrobial Resistance and the Impact of Imipenem + Cilastatin Synergy with Tetracycline in Pseudomonas aeruginosa Isolates from Sepsis. Microorganisms 2023; 11:2687. [PMID: 38004699 PMCID: PMC10673103 DOI: 10.3390/microorganisms11112687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Pseudomonas aeruginosa is among the most ubiquitous bacteria in the natural world, exhibiting metabolic and physiological versatility, which makes it highly adaptable. Imipenem + cilastatin and tetracycline are antibiotic combinations commonly used to treat infections caused by P. aeruginosa, including serious infections such as sepsis. In the context of bacterial infections, biofilm, formed by bacterial cells surrounded by extracellular substances forming a matrix, plays a pivotal role in the resistance of P. aeruginosa to antibiotics. This study aimed to characterize a representative panel of P. aeruginosa isolates from septicemias, assessing their susceptibility to various antibiotics, specifically, imipenem + cilastatin and tetracycline, and the impact of these treatments on biofilm formation. Results from antibiotic susceptibility tests revealed sensitivity in most isolates to six antibiotics, with four showing near or equal to 100% sensitivity. However, resistance was observed in some antibiotics, albeit at minimal levels. Notably, tetracycline showed a 100% resistance phenotype, while imipenem + cilastatin predominantly displayed an intermediate phenotype (85.72%), with some resistance (38.1%). Microdilution susceptibility testing identified effective combinations against different isolates. Regarding biofilm formation, P. aeruginosa demonstrated the ability to produce biofilms. The staining of microtiter plates confirmed that specific concentrations of imipenem + cilastatin and tetracycline could inhibit biofilm production. A significant proportion of isolates exhibited resistance to aminoglycoside antibiotics because of the presence of modifying genes (aac(3)-II and aac(3)-III), reducing their effectiveness. This study also explored various resistance genes, unveiling diverse resistance mechanisms among P. aeruginosa isolates. Several virulence genes were detected, including the las quorum-sensing system genes (lasI and lasR) in a significant proportion of isolates, contributing to virulence factor activation. However, genes related to the type IV pili (T4P) system (pilB and pilA) were found in limited isolates. In conclusion, this comprehensive study sheds light on the intricate dynamics of P. aeruginosa, a remarkably adaptable bacterium with a widespread presence in the natural world. Our findings provide valuable insights into the ongoing battle against P. aeruginosa infections, highlighting the need for tailored antibiotic therapies and innovative approaches to combat biofilm-related resistance.
Collapse
Affiliation(s)
- Telma de Sousa
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.d.S.); (C.S.); (P.P.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Catarina Silva
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.d.S.); (C.S.); (P.P.)
| | - Olimpia Alves
- Hospital Centre of Trás-os-Montes and Alto Douro, Clinical Pathology Department, 5000-801 Vila Real, Portugal; (O.A.); (E.C.)
| | - Eliana Costa
- Hospital Centre of Trás-os-Montes and Alto Douro, Clinical Pathology Department, 5000-801 Vila Real, Portugal; (O.A.); (E.C.)
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Patricia Poeta
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.d.S.); (C.S.); (P.P.)
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Michel Hébraud
- INRAE, Université Clermont Auvergne, UMR Microbiologie Environnement Digestif Santé (MEDiS), 63122 Saint-Genès-Champanelle, France
| |
Collapse
|
2
|
Periodically Disturbing the Spatial Structure of Biofilms Can Affect the Production of an Essential Virulence Factor in Pseudomonas aeruginosa. mSystems 2021; 6:e0096121. [PMID: 34581603 PMCID: PMC8547473 DOI: 10.1128/msystems.00961-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Understanding the environmental factors that affect the production of virulence factors has major implications in evolution and medicine. While spatial structure is important in virulence factor production, observations of this relationship have occurred in undisturbed or continuously disturbed environments. However, natural environments are subject to periodic fluctuations, including changes in physical forces, which could alter the spatial structure of bacterial populations and impact virulence factor production. Using Pseudomonas aeruginosa PA14, we periodically applied a physical force to biofilms and examined production of pyoverdine. Intermediate frequencies of disturbance reduced the amount of pyoverdine produced compared to undisturbed or frequently disturbed conditions. To explore the generality of this finding, we examined how an intermediate disturbance frequency affected pyoverdine production in 21 different strains of P. aeruginosa. Periodic disturbance increased, decreased, or did not change the amount of pyoverdine produced relative to undisturbed populations. Mathematical modeling predicts that interactions between pyoverdine synthesis rate and biofilm density determine the amount of pyoverdine synthesized. When the pyoverdine synthesis rates are high, depletion of the biofilm due to disturbance reduces the accumulation of pyoverdine. At intermediate synthesis rates, production of pyoverdine increases during disturbance as bacteria dispersed into the planktonic state enjoy increased growth and pyoverdine production rates. At low synthesis rates, disturbance does not alter the amount of pyoverdine produced since disturbance-driven access to nutrients does not augment pyoverdine synthesis. Our results suggest that environmental conditions shape robustness in the production of virulence factors and may lead to novel approaches to treat infections. IMPORTANCE Virulence factors are required to cause infections. Previous work has shown that the spatial organization of a population, such as a biofilm, can increase the production of some virulence factors, including pyoverdine, which is produced by Pseudomonas aeruginosa. Pyoverdine is essential for the infection process, and reducing its production can limit infections. We have discovered that periodically changing the spatial structure of a biofilm of P. aeruginosa strain PA14 using a physical force can reduce the production of pyoverdine. A mathematical model suggests that this is due to the disruption of spatial organization. Using additional strains of P. aeruginosa isolated from patients and the environment, we use experiments and modeling to show that this reduction in pyoverdine is due to interactions between biofilm density and the synthesis rate of pyoverdine. Our results identify conditions where pyoverdine production is reduced and may lead to novel ways to treat infections.
Collapse
|
3
|
Streptomycin mediated biofilm inhibition and suppression of virulence properties in Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol 2019; 104:799-816. [PMID: 31820066 DOI: 10.1007/s00253-019-10190-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/09/2019] [Accepted: 10/07/2019] [Indexed: 12/15/2022]
Abstract
Pseudomonas aeruginosa is known as an opportunistic pathogen whose one of the antibiotic resistance mechanisms includes biofilm formation and virulence factor production. The present study showed that the sub-minimum inhibitory concentration (sub-MIC) of streptomycin inhibited the formation of biofilm and eradicated the established mature biofilm. Streptomycin at sub-MIC was also capable of inhibiting biofilm formation on the urinary catheters. In addition, the sub-MIC of streptomycin attenuated the bacterial virulence properties as confirmed by both phenotypic and gene expression studies. The optimal conditions for streptomycin to perform anti-biofilm and anti-virulence activities were proposed as alkaline TSB media (pH 7.9) at 35 °C. However, sub-MIC of streptomycin also exhibited a comparative anti-biofilm efficacy in LB media at similar pH level and temperature. Furthermore, this condition also improved the biofilm inhibition and eradication properties of streptomycin, tobramycin and tetracycline towards the biofilm formed by a clinical isolate of P. aeruginosa. Findings from the present study provide an important insight for further studies on the mechanisms of biofilm inhibition and dispersion of pre-existing biofilm by streptomycin as well as tobramycin and tetracycline under a specific culture environment.
Collapse
|
4
|
Ibekwe AM, Murinda SE. Linking Microbial Community Composition in Treated Wastewater with Water Quality in Distribution Systems and Subsequent Health Effects. Microorganisms 2019; 7:microorganisms7120660. [PMID: 31817873 PMCID: PMC6955928 DOI: 10.3390/microorganisms7120660] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
The increases in per capita water consumption, coupled in part with global climate change have resulted in increased demands on available freshwater resources. Therefore, the availability of safe, pathogen-free drinking water is vital to public health. This need has resulted in global initiatives to develop sustainable urban water infrastructure for the treatment of wastewater for different purposes such as reuse water for irrigation, and advanced waste water purification systems for domestic water supply. In developed countries, most of the water goes through primary, secondary, and tertiary treatments combined with disinfectant, microfiltration (MF), reverse osmosis (RO), etc. to produce potable water. During this process the total bacterial load of the water at different stages of the treatment will decrease significantly from the source water. Microbial diversity and load may decrease by several orders of magnitude after microfiltration and reverse osmosis treatment and falling to almost non-detectable levels in some of the most managed wastewater treatment facilities. However, one thing in common with the different end users is that the water goes through massive distribution systems, and the pipes in the distribution lines may be contaminated with diverse microbes that inhabit these systems. In the main distribution lines, microbes survive within biofilms which may contain opportunistic pathogens. This review highlights the role of microbial community composition in the final effluent treated wastewater, biofilms formation in the distribution systems as the treated water goes through, and the subsequent health effects from potential pathogens associated with poorly treated water. We conclude by pointing out some basic steps that may be taken to reduce the accumulation of biofilms in the water distribution systems.
Collapse
Affiliation(s)
- Abasiofiok Mark Ibekwe
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA
- Correspondence: ; Tel.: +951-369-4828
| | - Shelton E. Murinda
- Animal and Veterinary Sciences Department, Center for Antimicrobial Research and Food Safety, California State Polytechnic University, Pomona, CA 91768, USA;
| |
Collapse
|
5
|
Rivera MLC, Hassimotto NMA, Bueris V, Sircili MP, de Almeida FA, Pinto UM. Effect of Capsicum Frutescens Extract, Capsaicin, and Luteolin on Quorum Sensing Regulated Phenotypes. J Food Sci 2019; 84:1477-1486. [PMID: 31132155 DOI: 10.1111/1750-3841.14648] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 01/04/2023]
Abstract
Capsicum peppers have not been investigated as sources of quorum sensing (QS) inhibitors. This study aimed to identify compounds in pimenta-malagueta (Capsicum frutescens) and red pepper (Capsicum annuum) extracts and to evaluate their effect on violacein production in Chromobacterium violaceum ATCC 12472 and C. violaceum CV026, as well as biofilm formation (BF) in Pseudomonas aeruginosa PAO1 and Serratia marcescens MG1. Among the extracts, pimenta-malagueta methanolic extract (PMME) was chosen because it contained capsaicin, dihydrocapsaicin, and luteolin in greater amount than the other extracts. In general, PMME partially inhibited bacterial growth at 2.5 and 5.0 mg/mL, as well as capsaicin at 100 µg/mL and luteolin at 62.5, 125, and 250 µg/mL. At lower concentrations, PMME and luteolin reduced violacein production in C. violaceum ATCC 12472 without affecting growth, a result that was not observed with capsaicin. We show that violacein inhibition by PMME is likely due to luteolin. In silico docking evaluation showed that luteolin binds to the CviR QS regulator. Crystal violet staining and confocal microscopy revealed that BF was increased by PMME and capsaicin, being remarkably superior for P. aeruginosa PAO1 at 30 °C. Capsaicin is not an effective QS inhibitor, while luteolin should be further investigated for its potential effects in QS regulated phenotypes. PRACTICAL APPLICATION: Quorum sensing (QS) is a form of bacterial communication targeted for studies aiming to inhibit bacterial virulence. QS regulates phenotypes that influence microbial activities across many areas, including Food Science. Capsicum frutescens is a type of chili pepper consumed in Brazil, rich in bioactive compounds such as capsaicin (which gives its pungency) and luteolin (a phenolic compound). We show that C. frutescens extract and luteolin inhibit QS in a model bacterium, along with the possible molecular mechanism of inhibition. Capsaicin did not inhibit QS neither biofilm formation. Luteolin should be further investigated for its QS inhibition properties and biotechnological applications.
Collapse
Affiliation(s)
- Milagros Liseth Castillo Rivera
- Food Research Center, Dept. of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Univ. of Sao Paulo, Av. Prof. Lineu Prestes 580, B.14, 05508-000, Sao Paulo, Brazil
| | - Neuza Mariko Aymoto Hassimotto
- Food Research Center, Dept. of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Univ. of Sao Paulo, Av. Prof. Lineu Prestes 580, B.14, 05508-000, Sao Paulo, Brazil
| | - Vanessa Bueris
- Laboratory of Resistome and Therapeutic Alternatives, Inst. of Biomedical Sciences , Univ. of Sao Paulo, Av. Prof. Lineu Prestes 2415, 05508-900, Sao Paulo, Brazil.,Laboratory of Genetics, Butantan Institute, Av. Vital Brasil 1500, 05503-900, Sao Paulo, Brazil
| | - Marcelo Palma Sircili
- Laboratory of Genetics, Butantan Institute, Av. Vital Brasil 1500, 05503-900, Sao Paulo, Brazil
| | - Felipe Alves de Almeida
- Dept. of Nutrition, Federal Univ. of Juiz de Fora, Rua Manoel Byrro 241, 35032-620, Governador Valadares, Brazil
| | - Uelinton Manoel Pinto
- Food Research Center, Dept. of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Univ. of Sao Paulo, Av. Prof. Lineu Prestes 580, B.14, 05508-000, Sao Paulo, Brazil
| |
Collapse
|
6
|
Ponomareva AL, Buzoleva LS, Bogatyrenko EA. Abiotic Environmental Factors Affecting the Formation of Microbial Biofilms. BIOL BULL+ 2018. [DOI: 10.1134/s106235901805014x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Fourie R, Ells R, Kemp G, Sebolai OM, Albertyn J, Pohl CH. Pseudomonas aeruginosa produces aspirin insensitive eicosanoids and contributes to the eicosanoid profile of polymicrobial biofilms with Candida albicans. Prostaglandins Leukot Essent Fatty Acids 2017; 117:36-46. [PMID: 28237086 DOI: 10.1016/j.plefa.2017.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/16/2016] [Accepted: 01/24/2017] [Indexed: 11/22/2022]
Abstract
The interaction of clinically relevant microorganisms is the focus of various studies, e.g. the interaction between the pathogenic yeast, Candida albicans, and the bacterium, Pseudomonas aeruginosa. During infection both release arachidonic acid, which they can transform into eicosanoids. This study evaluated the production of prostaglandin E2, prostaglandin F2α and 15-hydroxyeicosatetraenoic acid by biofilms of P. aeruginosa and C. albicans. The influence of co-incubation, acetylsalicylic acid and nordihydroguaiaretic acid on biofilm formation and eicosanoid production was evaluated. Acetylsalicylic acid decreased colony forming units of P. aeruginosa, but increased metabolic activity and eicosanoid production of the cells. In contrast to prostaglandin E2, prostaglandin F2a production by C. albicans was insensitive to acetylsalicylic acid, indicating that different enzymes are responsible for their production in this yeast. Nordihydroguaiaretic acid inhibited biofilm formation by P. aeruginosa, however co-incubation provided protection against this inhibitor. Production of these eicosanoids could affect pathogen-clearance and infection dynamics and this previously uncharacterized facet of interaction could facilitate novel therapeutic intervention against polymicrobial infection.
Collapse
Affiliation(s)
- Ruan Fourie
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Ruan Ells
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa; National Control Laboratory for Biological Products, University of the Free State, Bloemfontein, South Africa
| | - Gabré Kemp
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Olihile M Sebolai
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa.
| |
Collapse
|
8
|
Collaco JM, Raraigh KS, Appel LJ, Cutting GR. Respiratory pathogens mediate the association between lung function and temperature in cystic fibrosis. J Cyst Fibros 2016; 15:794-801. [PMID: 27296562 PMCID: PMC5138086 DOI: 10.1016/j.jcf.2016.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/10/2016] [Accepted: 05/26/2016] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Mean annual ambient temperature is a replicated environmental modifier of cystic fibrosis (CF) lung disease with warmer temperatures being associated with lower lung function. The mechanism of this relationship is not completely understood. However, Pseudomonas aeruginosa, a pathogen that infects the lungs of CF individuals and decreases lung function, also has a higher prevalence in individuals living in warmer climates. We therefore investigated the extent to which respiratory pathogens mediated the association between temperature and lung function. METHODS Thirteen respiratory pathogens observed on CF respiratory cultures were assessed in multistep fashion using clustered linear and logistic regression to determine if any mediated the association between temperature and lung function. Analysis was performed in the CF Twin-Sibling Study (n=1730; primary population); key findings were then evaluated in the U.S. CF Foundation Data Registry (n=15,174; replication population). RESULTS In the primary population, three respiratory pathogens (P. aeruginosa, mucoid P. aeruginosa, and methicillin-resistant Staphylococcus aureus) mediated the association between temperature and lung function. P. aeruginosa accounted for 19% of the association (p=0.003), mucoid P. aeruginosa for 31% (p=0.001), and MRSA for 13% (p=0.023). The same three pathogens mediated association in the replication population (7%, p<0.001; 7%, p=0.002; and 4%, (p=0.002), respectively). CONCLUSIONS Three important respiratory pathogens in CF mediate the association between lower lung function and warmer temperatures. These findings have implications for understanding regional variations in clinical outcomes, and interpreting results of epidemiologic studies and clinical trials that encompass regions with different ambient temperatures.
Collapse
Affiliation(s)
- Joseph M Collaco
- The Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Karen S Raraigh
- The Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Lawrence J Appel
- The Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Garry R Cutting
- The Johns Hopkins Medical Institutions, Baltimore, MD, United States
| |
Collapse
|
9
|
Liu S, Gunawan C, Barraud N, Rice SA, Harry EJ, Amal R. Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8954-8976. [PMID: 27479445 DOI: 10.1021/acs.est.6b00835] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In drinking water distribution systems (DWDS), biofilms are the predominant mode of microbial growth, with the presence of extracellular polymeric substance (EPS) protecting the biomass from environmental and shear stresses. Biofilm formation poses a significant problem to the drinking water industry as a potential source of bacterial contamination, including pathogens, and, in many cases, also affecting the taste and odor of drinking water and promoting the corrosion of pipes. This article critically reviews important research findings on biofilm growth in DWDS, examining the factors affecting their formation and characteristics as well as the various technologies to characterize and monitor and, ultimately, to control their growth. Research indicates that temperature fluctuations potentially affect not only the initial bacteria-to-surface attachment but also the growth rates of biofilms. For the latter, the effect is unique for each type of biofilm-forming bacteria; ammonia-oxidizing bacteria, for example, grow more-developed biofilms at a typical summer temperature of 22 °C compared to 12 °C in fall, and the opposite occurs for the pathogenic Vibrio cholerae. Recent investigations have found the formation of thinner yet denser biofilms under high and turbulent flow regimes of drinking water, in comparison to the more porous and loosely attached biofilms at low flow rates. Furthermore, in addition to the rather well-known tendency of significant biofilm growth on corrosion-prone metal pipes, research efforts also found leaching of growth-promoting organic compounds from the increasingly popular use of polymer-based pipes. Knowledge of the unique microbial members of drinking water biofilms and, importantly, the influence of water characteristics and operational conditions on their growth can be applied to optimize various operational parameters to minimize biofilm accumulation. More-detailed characterizations of the biofilm population size and structure are now feasible with fluorescence microscopy (epifluorescence and CLSM imaging with DNA, RNA, EPS, and protein and lipid stains) and electron microscopy imaging (ESEM). Importantly, thorough identification of microbial fingerprints in drinking water biofilms is achievable with DNA sequencing techniques (the 16S rRNA gene-based identification), which have revealed a prevalence of previously undetected bacterial members. Technologies are now moving toward in situ monitoring of biomass growth in distribution networks, including the development of optical fibers capable of differentiating biomass from chemical deposits. Taken together, management of biofilm growth in water distribution systems requires an integrated approach, starting from the treatment of water prior to entering the networks to the potential implementation of "biofilm-limiting" operational conditions and, finally, ending with the careful selection of available technologies for biofilm monitoring and control. For the latter, conventional practices, including chlorine-chloramine disinfection, flushing of DWDS, nutrient removal, and emerging technologies are discussed with their associated challenges.
Collapse
Affiliation(s)
| | - Cindy Gunawan
- ithree institute, University of Technology Sydney , Sydney, NSW 2007, Australia
| | - Nicolas Barraud
- Department of Microbiology, Genetics of Biofilms Unit, Institut Pasteur , Paris 75015, France
| | - Scott A Rice
- The Singapore Centre for Environmental Life Sciences Engineering and School of Biological Sciences, Nanyang Technological University , 639798, Singapore
| | - Elizabeth J Harry
- ithree institute, University of Technology Sydney , Sydney, NSW 2007, Australia
| | | |
Collapse
|