1
|
Lan X, Huang W, Sun B, Waiho K, Song H, Hu M, Khalid M, Wang Y. Combined effects of pentachlorophenol and nano-TiO 2 with different sizes on antioxidant, digestive, and immune responses of the swimming crab Portunus trituberculatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106900. [PMID: 38537436 DOI: 10.1016/j.aquatox.2024.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
Marine nano-titanium dioxide (nano-TiO2) and pentachlorophenol (PCP) pollution are escalating concerns in coastal areas. This study investigated the combined effects of continuous exposure to nano-TiO2 (25 nm, 100 nm) and PCP (0, 1, 10 μg/L) for 28 days on the antioxidant, digestive, and immune abilities of the swimming crab Portunus trituberculatus. Compared with the control group, the interaction between nano-TiO2 and PCP was significantly higher than exposure to a single stressor, with a pronounced decrease in amylase activity observed due to the reducing nano-TiO2 particle sizes. Resulting in increased MDA and SOD activity. The expression levels of Toll4, CSP3, and SER genes in crab hemolymph showed perturbations following exposure to nano-TiO2 and PCP. In summary, according to the results of CAT, GPX, PES and AMS enzyme activities, it was concluded that compared to the larger particle size (100 nm), the single stress of nano-TiO2 at a smaller particle size (25 nm) and co-stress with PCP have more significant impacts on P. trituberculatus. However, the potential physiological regulation mechanism of the interaction between these pollutants remains elusive and requires further study.
Collapse
Affiliation(s)
- Xukai Lan
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Bingyan Sun
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Khor Waiho
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Terengganu, Terengganu 20000, Malaysia
| | - Hanting Song
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mansoor Khalid
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| |
Collapse
|
2
|
Frías-Espericueta MG, Bautista-Covarrubias JC, Osuna-Martínez CC, Delgado-Alvarez C, Bojórquez C, Aguilar-Juárez M, Roos-Muñoz S, Osuna-López I, Páez-Osuna F. Metals and oxidative stress in aquatic decapod crustaceans: A review with special reference to shrimp and crabs. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106024. [PMID: 34808539 DOI: 10.1016/j.aquatox.2021.106024] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The objective of this review is to synthetize knowledge of the relationship between metals and oxidative stress in aquatic crustaceans (mainly shrimp and crabs) to analyze antioxidant responses when organisms are exposed to metals because the direct metal binding to the active site of enzymes inactivates most of the antioxidant systems. This study reviewed over 150 works, which evidenced that: (i) antioxidant defense strategies used by aquatic decapod crustaceans vary among species; (ii) antioxidant enzymes could be induced or inhibited by metals depending on species, concentration, and exposure time; and (iii) some antioxidant enzymes, as superoxide dismutase increase their activity in low metal levels and time exposures, but their activities are inhibited with higher metal concentrations and exposure time.
Collapse
Affiliation(s)
| | - Juan Carlos Bautista-Covarrubias
- Unidad Académica Escuela Nacional de Ingeniería Pesquera, Universidad Autónoma de Nayarit, Bahía de Matanchén, San Blas Nayarit C.P. 63740, Mexico
| | | | - Carolina Delgado-Alvarez
- Universidad Politécnica de Sinaloa, Carretera Municipal Libre Km. 3 Mazatlán-Higueras Colonia Genaro Estrada, Mazatlán, Sinaloa C.P. 82199, Mexico
| | - Carolina Bojórquez
- Universidad Politécnica de Sinaloa, Carretera Municipal Libre Km. 3 Mazatlán-Higueras Colonia Genaro Estrada, Mazatlán, Sinaloa C.P. 82199, Mexico
| | - Marisela Aguilar-Juárez
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, Mazatlán Sinaloa C.P. 82000, Mexico
| | - Sarahí Roos-Muñoz
- Tecnológico Nacional de México/Instituto Tecnológico de Mazatlán. Corsario 1 No. 203, Col. Urías, Mazatlán, Sinaloa C.P. 82070, Mexico
| | - Isidro Osuna-López
- Universidad Autónoma de Occidente, Blvd. Lola Beltrán s/n, Culiacán Sinaloa C.P. 80020, Mexico
| | - Federico Páez-Osuna
- Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Joel Montes Camarena s/n, Mazatlán, Sinaloa C.P. 82040, Mexico; Miembro de El Colegio de Sinaloa, Antonio Rosales 435 Poniente, Culiacán, Sinaloa, Mexico
| |
Collapse
|
3
|
Catalpol Inhibits Homocysteine-induced Oxidation and Inflammation via Inhibiting Nox4/NF-κB and GRP78/PERK Pathways in Human Aorta Endothelial Cells. Inflammation 2019; 42:64-80. [PMID: 30315526 PMCID: PMC6394570 DOI: 10.1007/s10753-018-0873-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hyperhomocysteinemia (HHCY) has been recognized as an independent risk factor for atherosclerosis and plays a vital role in the development of atherosclerosis. Catalpol, an iridoid glucoside extracted from the root of Rehmannia glutinosa, can produce anti-inflammatory, anti-oxidant, anti-tumor, and dopaminergic neurons protecting effects. This study aimed to determine the protecting effects of catalpol against homocysteine (HCY)-induced injuries in human aortic endothelial cells (HAECs) and uncover the underlying mechanisms: 1. HAECs were cultured with different concentrations of HCY (3 mM) and catalpol (7.5 μΜ, 15 μΜ, 30 μΜ) for 24 h. (1) The level of MDA and GSH as well as LDH release was measured with colorimetric assay. (2) Reactive oxygen species (ROS) were detected by flow cytometry analysis. (3) Western blotting analysis was performed to detect the expression of Nox4, p22phox, ICAM-1, MCP-1, VCAM-1, IκB, nucleus p65, p65 phosphorylation, caspase-3, −9, bax, bcl-2, and ER stress-related proteins. (4) The expressions of CHOP, ATF4 were measured by qRT-PCR. (5) Mitochondrial membrane potential in HCY-treated HAECs was measured by rhodamine 123 staining, and the samples were observed by confocal laser scanning microscopy. 2. DPI, PDTC, and TUDCA were used to determine the interaction among Nox4/ROS, NF-κB, and endoplasmic reticulum stress. 3. TUDCA or Nox4 siRNA were used to investigate whether the effect of catalpol inhibiting the over-production of ROS were associated with inhibiting ER stress and Nox4 expression. Catalpol significantly suppressed LDH release, MDA level, and the reduction of GSH. Catalpol reduced HCY-stimulated ROS over-generation, inhibited the NF-κB transcriptional activation as well as the protein over-expressions of Nox4, ICAM-1, VCAM-1, and MCP-1. Catalpol elevated bcl-2 protein expression and reduced bax, caspase-3, −9 protein expressions in the HCY-treated HAECs. Simultaneously, catalpol could also inhibit the activation of ER stress-associated sensors GRP78, IRE1α, ATF6, P-PERK, P-eIF2α, CHOP, and ATF4 induced by HCY. In addition, the extent of catalpol inhibiting ROS over-generation and NF-κB signaling pathway was reduced after inhibiting Nox4 or ER stress with DPI or TUDCA. The inhibitor of NF-κB PDTC also reduced the effects of catalpol inhibiting the expressions of Nox4 and GRP78. Furthermore, the effect of catalpol inhibiting the over-generation of ROS was reduced by Nox4 siRNA. Catalpol could ameliorate HCY-induced oxidation, cells apoptosis and inflammation in HAECs possibly by inhibiting Nox4/NF-κB and ER stress.
Collapse
|
4
|
Chen X, Chen J, Shen Y, Bi Y, Hou W, Pan G, Wu X. Transcriptional responses to low-salinity stress in the gills of adult female Portunus trituberculatus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 29:86-94. [PMID: 30463042 DOI: 10.1016/j.cbd.2018.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 11/03/2018] [Indexed: 01/22/2023]
Abstract
The swimming crab (Portunus trituberculatus, Portunus) can tolerate low salinity, but the mechanism of its varied salinity adaptation at the molecular level remains unclear. In this study, we prepared four mRNA and microRNA (miRNA) libraries using the gills collected from four salinity groups and performed RNA-sequencing (RNA-Seq) to identify the genes related to the low salinity. We set 25 ppt as the control group. A total of 659 genes were differentially expressed in at least one of the six comparison groups (25 ppt vs. 20 ppt, 25 ppt vs. 15 ppt, 25 ppt vs. 10 ppt, 20 ppt vs. 15 ppt, 20 ppt vs. 10 ppt and 15 ppt vs. 10 ppt). A total of 15 and 9 unigenes were downregulated and upregulated under low salinity compared with that in 25 ppt, respectively. Six genes, namely, aminopeptidase, centromere protein, cytochrome b5 reductase, bone morphogenetic protein, and two carbonic anhydrases, were selected for verification through quantitative real-time PCR. The results were consistent with the RNA-Seq results. Furthermore, 95 conserved miRNAs and 16 novel miRNAs were differentially expressed in at least one of the six comparison groups. Analysis of the miRNA-mRNA interaction showed that miR-2 and miR-317 regulated >50 mRNA targets. In addition, let-7c was downregulated in all groups under low salinity compared with that in the control group. This study helped elucidate the adaptation mechanism of the swimming crab in low-saline environments.
Collapse
Affiliation(s)
- Xiaowu Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, No 999 Huchenghuan Road, Lingang New District, Shanghai 201306, China
| | - Jianpeng Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, No 999 Huchenghuan Road, Lingang New District, Shanghai 201306, China
| | - Yawei Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, No 999 Huchenghuan Road, Lingang New District, Shanghai 201306, China
| | - Yanhui Bi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, No 999 Huchenghuan Road, Lingang New District, Shanghai 201306, China
| | - Wenjie Hou
- Shanghai Fisheries Research Institute and Shanghai Fisheries Technical Extension Station, Shanghai 200433, China
| | - Guiping Pan
- Shanghai Fisheries Research Institute and Shanghai Fisheries Technical Extension Station, Shanghai 200433, China
| | - Xugan Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, No 999 Huchenghuan Road, Lingang New District, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation Center for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
5
|
Fellous A, Andrade S, Vidal-Ramirez F, Calderón R, Beltran J, Correa JA. Modulatory effect of the exudates released by the brown kelp Lessonia spicata on the toxicity of copper in early developmental stages of ecologically related organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3900-3911. [PMID: 27905044 PMCID: PMC5348571 DOI: 10.1007/s11356-016-8120-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
Lessonia spicata is a key dominant species along the Pacific coast of South America, providing a habitat for many organisms. However, this role can be affected by abiotic stress, such as metals. To counteract the toxic effect, L. spicata, among other seaweeds, releases exudates that bind metals. In this study, tolerances to copper of organisms related to the kelp forest (spores of Ulva lactuca (Chlorophyceae) and L. spicata (Phaeophyceae) and Zoea I of Taliepus dentatus (Milne-Edwards, Crustacea)) were studied; then, exudates are assessed by their protective effect. Exudates increase the 48-h 50% effective concentration (EC50) of the germination of spores from 8 to 23 μg Cu L-1 for U. lactuca and from 119 to 213 μg Cu L-1 for L. spicata and the survival of the larvae Zoea I 48-h 50% of lethal concentration (LC50) from 144 to 249 μg Cu L-1. Results indicated that exudates had a protective effect. Each species is specifically sensitive to copper. Crab larvae Zoea I were able to support higher doses, and exposure before hatching increased their tolerance.
Collapse
Affiliation(s)
- Alexandre Fellous
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Lib. B. O'Higgins 340, Santiago, Chile.
- Université Pierre et Marie Curie (Sorbonne-Universités, Paris VI), 4 Place Jussieu, 75005, Paris, France.
| | - Santiago Andrade
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Lib. B. O'Higgins 340, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Lib. B. O'Higgins 340, Santiago, Chile
| | - Francisco Vidal-Ramirez
- Estación Costera de Investigaciones Marinas La Cruces, Pontificia Universidad Católica de Chile, Osvaldo Marín 1672, Las Cruces, Comuna El Tabo, Región de Valparaíso, Chile
- School of Biological Sciences and Australian Research Council Centre for Excellence in Coral Reef Studies, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Ricardo Calderón
- Estación Costera de Investigaciones Marinas La Cruces, Pontificia Universidad Católica de Chile, Osvaldo Marín 1672, Las Cruces, Comuna El Tabo, Región de Valparaíso, Chile
| | - Jessica Beltran
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Lib. B. O'Higgins 340, Santiago, Chile
| | - Juan A Correa
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Lib. B. O'Higgins 340, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Lib. B. O'Higgins 340, Santiago, Chile
| |
Collapse
|
6
|
Gong X, Liu Y, Huang D, Zeng G, Liu S, Tang H, Zhou L, Hu X, Zhou Y, Tan X. Effects of exogenous calcium and spermidine on cadmium stress moderation and metal accumulation in Boehmeria nivea (L.) Gaudich. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016. [PMID: 26801927 DOI: 10.1007/s11356-016-6122-6126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cadmium (Cd) is a detrimental metal in the environment and it is easily taken up by plants, thus entering the food chain and posing a severe threat to human health. Phytoremediation being low cost, highly stable, and environmentally friendly has been considered as a promising green technology for Cd remediation. The addition of exogenous substances to the culture media has been recognized as an efficient strategy to improve plant phytoremediation capability. Pot trials were conducted to investigate the combined effects of exogenous calcium (Ca) and spermidine (Spd) on Cd-induced toxicity in Boehmeria nivea (L.) Gaudich. (ramie). Results showed that the application of 5-mM exogenous Ca significantly alleviated Cd toxicity in ramie by reducing Cd accumulation, depressing H2O2 and malondialdehyde contents, increasing plants dry weights and chlorophyll concentrations, as well as altering the activities of total superoxide dismutase and guaiacol peroxidase. Furthermore, as a non-Cd hyperaccumulator plant, ramie hyperaccumulated Cd and suffered more severe toxic effects of Cd by the treatment of 1 mM Ca/Cd. The aggravated Cd toxicity could be compensated by the addition of exogenous Spd via the promotion of plant growth and the reduction of the oxidative stress. Overall, the combination effects of 1 mM Ca and Spd appeared to be more superior compared to other treatments in the plants under Cd stress with a higher Cd accumulation ability and the evaluated Cd stress tolerance.
Collapse
Affiliation(s)
- Xiaomin Gong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Yunguo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Shaobo Liu
- College of Metallurgy and Environmental Research, Central South University, Changsha, 410004, People's Republic of China
| | - Hui Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Lu Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Xi Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Yaoyu Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| |
Collapse
|
7
|
Hu H, Wang C, Jin Y, Meng Q, Liu Q, Liu K, Sun H. Alpha-lipoic acid defends homocysteine-induced endoplasmic reticulum and oxidative stress in HAECs. Biomed Pharmacother 2016; 80:63-72. [DOI: 10.1016/j.biopha.2016.02.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/24/2016] [Indexed: 01/27/2023] Open
|
8
|
Gong X, Liu Y, Huang D, Zeng G, Liu S, Tang H, Zhou L, Hu X, Zhou Y, Tan X. Effects of exogenous calcium and spermidine on cadmium stress moderation and metal accumulation in Boehmeria nivea (L.) Gaudich. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8699-8708. [PMID: 26801927 DOI: 10.1007/s11356-016-6122-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/14/2016] [Indexed: 05/29/2023]
Abstract
Cadmium (Cd) is a detrimental metal in the environment and it is easily taken up by plants, thus entering the food chain and posing a severe threat to human health. Phytoremediation being low cost, highly stable, and environmentally friendly has been considered as a promising green technology for Cd remediation. The addition of exogenous substances to the culture media has been recognized as an efficient strategy to improve plant phytoremediation capability. Pot trials were conducted to investigate the combined effects of exogenous calcium (Ca) and spermidine (Spd) on Cd-induced toxicity in Boehmeria nivea (L.) Gaudich. (ramie). Results showed that the application of 5-mM exogenous Ca significantly alleviated Cd toxicity in ramie by reducing Cd accumulation, depressing H2O2 and malondialdehyde contents, increasing plants dry weights and chlorophyll concentrations, as well as altering the activities of total superoxide dismutase and guaiacol peroxidase. Furthermore, as a non-Cd hyperaccumulator plant, ramie hyperaccumulated Cd and suffered more severe toxic effects of Cd by the treatment of 1 mM Ca/Cd. The aggravated Cd toxicity could be compensated by the addition of exogenous Spd via the promotion of plant growth and the reduction of the oxidative stress. Overall, the combination effects of 1 mM Ca and Spd appeared to be more superior compared to other treatments in the plants under Cd stress with a higher Cd accumulation ability and the evaluated Cd stress tolerance.
Collapse
Affiliation(s)
- Xiaomin Gong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Yunguo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Shaobo Liu
- College of Metallurgy and Environmental Research, Central South University, Changsha, 410004, People's Republic of China
| | - Hui Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Lu Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Xi Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Yaoyu Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| |
Collapse
|