1
|
Veldhuizen J, Mann HF, Karamanova N, Van Horn WD, Migrino RQ, Brafman D, Nikkhah M. Modeling long QT syndrome type 2 on-a-chip via in-depth assessment of isogenic gene-edited 3D cardiac tissues. SCIENCE ADVANCES 2022; 8:eabq6720. [PMID: 36525500 PMCID: PMC9757749 DOI: 10.1126/sciadv.abq6720] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/16/2022] [Indexed: 06/09/2023]
Abstract
Long QT syndrome (LQTS) is a cardiovascular disease characterized by QT interval prolongation that can lead to sudden cardiac death. Many mutations with heterogeneous mechanisms have been identified in KCNH2, the gene that encodes for hERG (Kv11.1), which lead to onset of LQTS type 2 (LQTS2). In this work, we developed a LQTS2-diseased tissue-on-a-chip model, using 3D coculture of isogenic stem cell-derived cardiomyocytes (CMs) and cardiac fibroblasts (CFs) within an organotypic microfluidic chip technology. Primarily, we created a hiPSC line with R531W mutation in KCNH2 using CRISPR-Cas9 gene-editing technique and characterized the resultant differentiated CMs and CFs. A deficiency in hERG trafficking was identified in KCNH2-edited hiPSC-CMs, revealing a possible mechanism of R531W mutation in LQTS2 pathophysiology. Following creation of a 3D LQTS2 tissue-on-a-chip, the tissues were extensively characterized, through analysis of calcium handling and response to β-agonist. Furthermore, attempted phenotypic rescue via pharmacological intervention of LQTS2 on a chip was investigated.
Collapse
Affiliation(s)
- Jaimeson Veldhuizen
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ 85287, USA
| | - Helen F. Mann
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Nina Karamanova
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
| | - Wade D. Van Horn
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, AZ 85287, USA
| | - Raymond Q. Migrino
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
- University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - David Brafman
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ 85287, USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
2
|
Zou X, Wu X, Sampson KJ, Colecraft HM, Larsson HP, Kass RS. Pharmacological rescue of specific long QT variants of KCNQ1/KCNE1 channels. Front Physiol 2022; 13:902224. [PMID: 36505078 PMCID: PMC9726718 DOI: 10.3389/fphys.2022.902224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022] Open
Abstract
The congenital Long QT Syndrome (LQTS) is an inherited disorder in which cardiac ventricular repolarization is delayed and predisposes patients to cardiac arrhythmias and sudden cardiac death. LQT1 and LQT5 are LQTS variants caused by mutations in KCNQ1 or KCNE1 genes respectively. KCNQ1 and KCNE1 co-assemble to form critical IKS potassium channels. Beta-blockers are the standard of care for the treatment of LQT1, however, doing so based on mechanisms other than correcting the loss-of-function of K+ channels. ML277 and R-L3 are compounds that enhance IKS channels and slow channel deactivation in a manner that is dependent on the stoichiometry of KCNE1 subunits in the assembled channels. In this paper, we used expression of IKS channels in Chinese hamster ovary (CHO) cells and Xenopus oocytes to study the potential of these two drugs (ML277 and R-L3) for the rescue of LQT1 and LQT5 mutant channels. We focused on the LQT1 mutation KCNQ1-S546L, and two LQT5 mutations, KCNE1-L51H and KCNE1-G52R. We found ML277 and R-L3 potentiated homozygote LQTS mutations in the IKS complexes-KCNE1-G52R and KCNE1-L51H and in heterogeneous IKS channel complexes which mimic heterogeneous expression of mutations in patients. ML277 and R-L3 increased the mutant IKS current amplitude and slowed current deactivation, but not in wild type (WT) IKS. We obtained similar results in the LQT1 mutant (KCNQ1 S546L/KCNE1) with ML277 and R-L3. ML277 and R-L3 had a similar effect on the LQT1 and LQT5 mutants, however, ML277 was more effective than R-L3 in this modulation. Importantly we found that not all LQT5 mutants expressed with KCNQ1 resulted in channels that are potentiated by these drugs as the KCNE1 mutant D76N inhibited drug action when expressed with KCNQ1. Thus, our work shows that by directly studying the treatment of LQT1 and LQT5 mutations with ML277 and R-L3, we will understand the potential utility of these activators as options in specific LQTS therapeutics.
Collapse
Affiliation(s)
- Xinle Zou
- Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians & Surgeons of Columbia University Irving Medical Center, New York, NY, United States
| | - Xiaoan Wu
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Kevin J. Sampson
- Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians & Surgeons of Columbia University Irving Medical Center, New York, NY, United States
| | - Henry M. Colecraft
- Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians & Surgeons of Columbia University Irving Medical Center, New York, NY, United States
| | - H. Peter Larsson
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Robert S. Kass
- Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians & Surgeons of Columbia University Irving Medical Center, New York, NY, United States,*Correspondence: Robert S. Kass,
| |
Collapse
|
3
|
Iachetta G, Colistra N, Melle G, Deleye L, Tantussi F, De Angelis F, Dipalo M. Improving reliability and reducing costs of cardiotoxicity assessments using laser-induced cell poration on microelectrode arrays. Toxicol Appl Pharmacol 2021; 418:115480. [PMID: 33689843 DOI: 10.1016/j.taap.2021.115480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/07/2021] [Accepted: 03/02/2021] [Indexed: 10/22/2022]
Abstract
Drug-induced cardiotoxicity is a major barrier to drug development and a main cause of withdrawal of marketed drugs. Drugs can strongly alter the spontaneous functioning of the heart by interacting with the cardiac membrane ion channels. If these effects only surface during in vivo preclinical tests, clinical trials or worse after commercialization, the societal and economic burden will be significant and seriously hinder the efficient drug development process. Hence, cardiac safety pharmacology requires in vitro electrophysiological screening assays of all drug candidates to predict cardiotoxic effects before clinical trials. In the past 10 years, microelectrode array (MEA) technology began to be considered a valuable approach in pharmaceutical applications. However, an effective tool for high-throughput intracellular measurements, compatible with pharmaceutical standards, is not yet available. Here, we propose laser-induced optoacoustic poration combined with CMOS-MEA technology as a reliable and effective platform to detect cardiotoxicity. This approach enables the acquisition of high-quality action potential recordings from large numbers of cardiomyocytes within the same culture well, providing reliable data using single-well MEA devices and single cardiac syncytia per each drug. Thus, this technology could be applied in drug safety screening platforms reducing times and costs of cardiotoxicity assessments, while simultaneously improving the data reliability.
Collapse
Affiliation(s)
| | - Nicolò Colistra
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giovanni Melle
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Lieselot Deleye
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | | | - Michele Dipalo
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
4
|
Visone R, Ugolini GS, Cruz-Moreira D, Marzorati S, Piazza S, Pesenti E, Redaelli A, Moretti M, Occhetta P, Rasponi M. Micro-electrode channel guide (µECG) technology: an online method for continuous electrical recording in a human beating heart-on-chip. Biofabrication 2021; 13. [PMID: 33561845 DOI: 10.1088/1758-5090/abe4c4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022]
Abstract
Cardiac toxicity still represents a common adverse outcome causing drug attrition and post-marketing withdrawal. The development of relevant in vitro models resembling the human heart recently opened the path towards a more accurate detection of drug-induced human cardiac toxicity early in the drug development process. Organs-on-chip (OoC) have been proposed as promising tools to recapitulate in vitro the key aspects of the in vivo cardiac physiology and to provide a means to directly analyze functional readouts. In this scenario, a new device capable of continuous monitoring of electrophysiological signals from functional in vitro human hearts-on-chip is here presented. The development of cardiac microtissues was achieved through a recently published method to control the mechanical environment, while the introduction of a technology consisting in micro-electrode coaxial guides (µECG) allowed to conduct direct and non-destructive electrophysiology studies. The generated human cardiac microtissues exhibited synchronous spontaneous beating, as demonstrated by multi-point and continuous acquisition of cardiac field potential, and expression of relevant genes encoding for cardiac ion-channels. A proof-of-concept pharmacological validation on 3 drugs proved the proposed model to potentially be a powerful tool to evaluate functional cardiac toxicity.
Collapse
Affiliation(s)
- Roberta Visone
- Politecnico di Milano Dipartimento di Elettronica Informazione e Bioingegneria, Via Ponzio 34/5, Milano, Lombardia, 20133, ITALY
| | - Giovanni Stefano Ugolini
- Politecnico di Milano Dipartimento di Elettronica Informazione e Bioingegneria, Via Ponzio 34/5, Milano, Lombardia, 20133, ITALY
| | - Daniela Cruz-Moreira
- Politecnico di Milano Dipartimento di Elettronica Informazione e Bioingegneria, Via Ponzio 34/5, Milano, Lombardia, 20133, ITALY
| | - Simona Marzorati
- Translational Medicine, Accelera Srl, via Pasteur, Nerviano, Nerviano, MI, 20100, ITALY
| | - Stefano Piazza
- BiomimX Srl, Via Giovanni Durando 38/A, Milan, 20158, ITALY
| | | | - Alberto Redaelli
- Politecnico di Milano Dipartimento di Elettronica Informazione e Bioingegneria, Via Ponzio 34/5, Milano, Lombardia, 20133, ITALY
| | - Matteo Moretti
- Cell and Tissue Engineering Lab, IRCCS Galeazzi Orthopaedic Institute, via R Galeazzi 4, Milan, 20161, ITALY
| | - Paola Occhetta
- Politecnico di Milano Dipartimento di Elettronica Informazione e Bioingegneria, Via Ponzio 34/5, Milano, Lombardia, 20133, ITALY
| | - Marco Rasponi
- Politecnico di Milano Dipartimento di Elettronica Informazione e Bioingegneria, Via Ponzio 34/5, Milano, Lombardia, 20133, ITALY
| |
Collapse
|
5
|
Koivisto JT, Gering C, Karvinen J, Maria Cherian R, Belay B, Hyttinen J, Aalto-Setälä K, Kellomäki M, Parraga J. Mechanically Biomimetic Gelatin-Gellan Gum Hydrogels for 3D Culture of Beating Human Cardiomyocytes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20589-20602. [PMID: 31120238 PMCID: PMC6750838 DOI: 10.1021/acsami.8b22343] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/17/2019] [Indexed: 05/07/2023]
Abstract
To promote the transition of cell cultures from 2D to 3D, hydrogels are needed to biomimic the extracellular matrix (ECM). One potential material for this purpose is gellan gum (GG), a biocompatible and mechanically tunable hydrogel. However, GG alone does not provide attachment sites for cells to thrive in 3D. One option for biofunctionalization is the introduction of gelatin, a derivative of the abundant ECM protein collagen. Unfortunately, gelatin lacks cross-linking moieties, making the production of self-standing hydrogels difficult under physiological conditions. Here, we explore the functionalization of GG with gelatin at biologically relevant concentrations using semiorthogonal, cytocompatible, and facile chemistry based on hydrazone reaction. These hydrogels exhibit mechanical behavior, especially elasticity, which resembles the cardiac tissue. The use of optical projection tomography for 3D cell microscopy demonstrates good cytocompatibility and elongation of human fibroblasts (WI-38). In addition, human-induced pluripotent stem cell-derived cardiomyocytes attach to the hydrogels and recover their spontaneous beating in 24 h culture. Beating is studied using in-house-built phase contrast video analysis software, and it is comparable with the beating of control cardiomyocytes under regular culture conditions. These hydrogels provide a promising platform to transition cardiac tissue engineering and disease modeling from 2D to 3D.
Collapse
Affiliation(s)
- Janne T. Koivisto
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Christine Gering
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
| | - Jennika Karvinen
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
| | - Reeja Maria Cherian
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Birhanu Belay
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Jari Hyttinen
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Katriina Aalto-Setälä
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Heart
Hospital, Tampere University Hospital, 33520 Tampere, Finland
| | - Minna Kellomäki
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
| | - Jenny Parraga
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
| |
Collapse
|
6
|
Abstract
Erythromycin is an antibiotic that prolongs the QT-interval and causes Torsade de Pointes (TdP) by blocking the rapid delayed rectifying potassium current (IKr) without affecting either the slow delayed rectifying potassium current (IKs) or inward rectifying potassium current (IK1). Erythromycin exerts this effect in the range of 1.5-100 μM. However, the mechanism of action underlying its cardiotoxic effect and its role in the induction of arrhythmias, especially in multicellular cardiac experimental models, remain unclear. In this study, the re-entry formation, conduction velocity, and maximum capture rate were investigated in a monolayer of human-induced pluripotent stem cell (iPSC)-derived cardiomyocytes from a healthy donor and in a neonatal rat ventricular myocyte (NRVM) monolayer using the optical mapping method under erythromycin concentrations of 15, 30, and 45 μM. In the monolayer of human iPSC-derived cardiomyocytes, the conduction velocity (CV) varied up to 12 ± 9% at concentrations of 15-45 μM as compared with that of the control, whereas the maximum capture rate (MCR) declined substantially up to 28 ± 12% (p < 0.01). In contrast, the tests on the NRVM monolayer showed no significant effect on the MCR. The results of the arrhythmogenicity test provided evidence for a "window" of concentrations of the drug (15-30 μM) at which the probability of re-entry increased.
Collapse
|
7
|
Scaling and correlation properties of RR and QT intervals at the cellular level. Sci Rep 2019; 9:3651. [PMID: 30842620 PMCID: PMC6403385 DOI: 10.1038/s41598-019-40247-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/06/2019] [Indexed: 02/07/2023] Open
Abstract
We study complex scaling properties of RR and QT intervals of electrocardiograms (ECGs) with their equivalences at the cellular level, that is, inter-beat intervals (IBI) and field potential durations (FPD) of spontaneously beating human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) aggregates. Our detrended fluctuation analysis and Poincaré plots reveal remarkable similarities between the ECG and hiPSC-CM data. In particular, no statistically significant difference was found in the short- and long-term scaling exponents α1 and α2 of RR and QT intervals and their cellular equivalences. Previously unknown scaling properties of FPDs of hiPSC-CM aggregates reveal that the increasing scaling exponent of QT intervals as a function of the time scale, is an intrinsic feature at the cellular level.
Collapse
|
8
|
Deep Learning-Based Proarrhythmia Analysis Using Field Potentials Recorded From Human Pluripotent Stem Cells Derived Cardiomyocytes. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2019. [PMCID: PMC6570462 DOI: 10.1109/jtehm.2019.2907945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
van Mil A, Balk GM, Neef K, Buikema JW, Asselbergs FW, Wu SM, Doevendans PA, Sluijter JPG. Modelling inherited cardiac disease using human induced pluripotent stem cell-derived cardiomyocytes: progress, pitfalls, and potential. Cardiovasc Res 2018; 114:1828-1842. [PMID: 30169602 PMCID: PMC6887927 DOI: 10.1093/cvr/cvy208] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/06/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022] Open
Abstract
In the past few years, the use of specific cell types derived from induced pluripotent stem cells (iPSCs) has developed into a powerful approach to investigate the cellular pathophysiology of numerous diseases. Despite advances in therapy, heart disease continues to be one of the leading causes of death in the developed world. A major difficulty in unravelling the underlying cellular processes of heart disease is the extremely limited availability of viable human cardiac cells reflecting the pathological phenotype of the disease at various stages. Thus, the development of methods for directed differentiation of iPSCs to cardiomyocytes (iPSC-CMs) has provided an intriguing option for the generation of patient-specific cardiac cells. In this review, a comprehensive overview of the currently published iPSC-CM models for hereditary heart disease is compiled and analysed. Besides the major findings of individual studies, detailed methodological information on iPSC generation, iPSC-CM differentiation, characterization, and maturation is included. Both, current advances in the field and challenges yet to overcome emphasize the potential of using patient-derived cell models to mimic genetic cardiac diseases.
Collapse
Affiliation(s)
- Alain van Mil
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Geerthe Margriet Balk
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Klaus Neef
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jan Willem Buikema
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Folkert W Asselbergs
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London, UK
- Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht, the Netherlands
- Farr Institute of Health Informatics Research and Institute of Health Informatics, University College London, London, UK
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Pieter A Doevendans
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
10
|
Large-Scale Simulation of the Phenotypical Variability Induced by Loss-of-Function Long QT Mutations in Human Induced Pluripotent Stem Cell Cardiomyocytes. Int J Mol Sci 2018; 19:ijms19113583. [PMID: 30428582 PMCID: PMC6274824 DOI: 10.3390/ijms19113583] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 01/06/2023] Open
Abstract
Loss-of-function long QT (LQT) mutations inducing LQT1 and LQT2 syndromes have been successfully translated to human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) used as disease-specific models. However, their in vitro investigation mainly relies on experiments using small numbers of cells. This is especially critical when working with cells as heterogeneous as hiPSC-CMs. We aim (i) to investigate in silico the ionic mechanisms underlying LQT1 and LQT2 hiPSC-CM phenotypic variability, and (ii) to enable massive in silico drug tests on mutant hiPSC-CMs. We combined (i) data of control and mutant slow and rapid delayed rectifying K+ currents, IKr and IKs respectively, (ii) a recent in silico hiPSC-CM model, and (iii) the population of models paradigm to generate control and mutant populations for LQT1 and LQT2 cardiomyocytes. Our four populations contain from 1008 to 3584 models. In line with the experimental in vitro data, mutant in silico hiPSC-CMs showed prolonged action potential (AP) duration (LQT1: +14%, LQT2: +39%) and large electrophysiological variability. Finally, the mutant populations were split into normal-like hiPSC-CMs (with action potential duration similar to control) and at risk hiPSC-CMs (with clearly prolonged action potential duration). At risk mutant hiPSC-CMs carried higher expression of L-type Ca2+, lower expression of IKr and increased sensitivity to quinidine as compared to mutant normal-like hiPSC-CMs, resulting in AP abnormalities. In conclusion, we were able to reproduce the two most common LQT syndromes with large-scale simulations, which enable investigating biophysical mechanisms difficult to assess in vitro, e.g., how variations of ion current expressions in a physiological range can impact on AP properties of mutant hiPSC-CMs.
Collapse
|
11
|
Rehnelt S, Malan D, Juhasz K, Wolters B, Doerr L, Beckler M, Kettenhofen R, Bohlen H, Bruegmann T, Sasse P. Frequency-Dependent Multi-Well Cardiotoxicity Screening Enabled by Optogenetic Stimulation. Int J Mol Sci 2017; 18:E2634. [PMID: 29211031 PMCID: PMC5751237 DOI: 10.3390/ijms18122634] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 11/17/2022] Open
Abstract
Side effects on cardiac ion channels causing lethal arrhythmias are one major reason for drug withdrawals from the market. Field potential (FP) recording from cardiomyocytes, is a well-suited tool to assess such cardiotoxic effects of drug candidates in preclinical drug development, but it is currently limited to the spontaneous beating of the cardiomyocytes and manual analysis. Herein, we present a novel optogenetic cardiotoxicity screening system suited for the parallel automated frequency-dependent analysis of drug effects on FP recorded from human-induced pluripotent stem cell-derived cardiomyocytes. For the expression of the light-sensitive cation channel Channelrhodopsin-2, we optimised protocols using virus transduction or transient mRNA transfection. Optical stimulation was performed with a new light-emitting diode lid for a 96-well FP recording system. This enabled reliable pacing at physiologically relevant heart rates and robust recording of FP. Thereby we detected rate-dependent effects of drugs on Na⁺, Ca2+ and K⁺ channel function indicated by FP prolongation, FP shortening and the slowing of the FP downstroke component, as well as generation of afterdepolarisations. Taken together, we present a scalable approach for preclinical frequency-dependent screening of drug effects on cardiac electrophysiology. Importantly, we show that the recording and analysis can be fully automated and the technology is readily available using commercial products.
Collapse
Affiliation(s)
- Susanne Rehnelt
- Institute of Physiology I, Medical Faculty, University of Bonn, 53127 Bonn, Germany.
| | - Daniela Malan
- Institute of Physiology I, Medical Faculty, University of Bonn, 53127 Bonn, Germany.
| | - Krisztina Juhasz
- Nanion Technologies GmbH, 80636 Munich, Germany.
- Present address: Institute for Nanoelectronics, Department of Electrical Engineering and Information Technology, Technische Universität München, 80339 Munich, Germany.
| | - Benjamin Wolters
- Part of the Ncardia Group, Axiogenesis AG, 50829 Cologne, Germany.
| | - Leo Doerr
- Nanion Technologies GmbH, 80636 Munich, Germany.
| | | | - Ralf Kettenhofen
- Part of the Ncardia Group, Axiogenesis AG, 50829 Cologne, Germany.
| | - Heribert Bohlen
- Part of the Ncardia Group, Axiogenesis AG, 50829 Cologne, Germany.
| | - Tobias Bruegmann
- Institute of Physiology I, Medical Faculty, University of Bonn, 53127 Bonn, Germany.
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany.
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
12
|
The Effects of Pharmacological Compounds on Beat Rate Variations in Human Long QT-Syndrome Cardiomyocytes. Stem Cell Rev Rep 2017; 12:698-707. [PMID: 27646833 PMCID: PMC5106508 DOI: 10.1007/s12015-016-9686-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Healthy human heart rate fluctuates overtime showing long-range fractal correlations. In contrast, various cardiac diseases and normal aging show the breakdown of fractal complexity. Recently, it was shown that human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) intrinsically exhibit fractal behavior as in humans. Here, we investigated the fractal complexity of hiPSC-derived long QT-cardiomyocytes (LQT-CMs). We recorded extracellular field potentials from hiPSC-CMs at baseline and under the effect of various compounds including β-blocker bisoprolol, ML277, a specific and potent IKs current activator, as well as JNJ303, a specific IKs blocker. From the peak-to-peak-intervals, we determined the long-range fractal correlations by using detrended fluctuation analysis. Electrophysiologically, the baseline corrected field potential durations (cFPDs) were more prolonged in LQT-CMs than in wildtype (WT)-CMs. Bisoprolol did not have significant effects to the cFPD in any CMs. ML277 shortened cFPD in a dose-dependent fashion by 11 % and 5–11 % in WT- and LQT-CMs, respectively. JNJ303 prolonged cFPD in a dose-dependent fashion by 22 % and 7–13 % in WT- and LQT-CMs, respectively. At baseline, all CMs showed fractal correlations as determined by short-term scaling exponent α. However, in all CMs, the α was increased when pharmacological compounds were applied indicating of breakdown of fractal complexity. These findings suggest that the intrinsic mechanisms contributing to the fractal complexity are not altered in LQT-CMs. The modulation of IKs channel and β1-adrenoreceptors by pharmacological compounds may affect the fractal complexity of the hiPSC-CMs.
Collapse
|
13
|
Sala L, Bellin M, Mummery CL. Integrating cardiomyocytes from human pluripotent stem cells in safety pharmacology: has the time come? Br J Pharmacol 2017; 174:3749-3765. [PMID: 27641943 PMCID: PMC5647193 DOI: 10.1111/bph.13577] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/27/2016] [Accepted: 08/11/2016] [Indexed: 12/20/2022] Open
Abstract
Cardiotoxicity is a severe side effect of drugs that induce structural or electrophysiological changes in heart muscle cells. As a result, the heart undergoes failure and potentially lethal arrhythmias. It is still a major reason for drug failure in preclinical and clinical phases of drug discovery. Current methods for predicting cardiotoxicity are based on guidelines that combine electrophysiological analysis of cell lines expressing ion channels ectopically in vitro with animal models and clinical trials. Although no new cases of drugs linked to lethal arrhythmias have been reported since the introduction of these guidelines in 2005, their limited predictive power likely means that potentially valuable drugs may not reach clinical practice. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are now emerging as potentially more predictive alternatives, particularly for the early phases of preclinical research. However, these cells are phenotypically immature and culture and assay methods not standardized, which could be a hurdle to the development of predictive computational models and their implementation into the drug discovery pipeline, in contrast to the ambitions of the comprehensive pro-arrhythmia in vitro assay (CiPA) initiative. Here, we review present and future preclinical cardiotoxicity screening and suggest possible hPSC-CM-based strategies that may help to move the field forward. Coordinated efforts by basic scientists, companies and hPSC banks to standardize experimental conditions for generating reliable and reproducible safety indices will be helpful not only for cardiotoxicity prediction but also for precision medicine. LINKED ARTICLES This article is part of a themed section on New Insights into Cardiotoxicity Caused by Chemotherapeutic Agents. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.21/issuetoc.
Collapse
Affiliation(s)
- Luca Sala
- Department of Anatomy and EmbryologyLeiden University Medical CenterLeidenZAThe Netherlands
| | - Milena Bellin
- Department of Anatomy and EmbryologyLeiden University Medical CenterLeidenZAThe Netherlands
| | - Christine L Mummery
- Department of Anatomy and EmbryologyLeiden University Medical CenterLeidenZAThe Netherlands
- Department of Applied Stem Cell TechnologiesUniversity of TwenteEnschedeThe Netherlands
| |
Collapse
|
14
|
Musa H, Murphy NP, Curran J, Higgins JD, Webb TR, Makara MA, Wright P, Lancione PJ, Lubbers ER, Healy JA, Smith SA, Bennett V, Hund TJ, Kline CF, Mohler PJ. Common human ANK2 variant confers in vivo arrhythmia phenotypes. Heart Rhythm 2016; 13:1932-40. [PMID: 27298202 DOI: 10.1016/j.hrthm.2016.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Human ANK2 (ankyrin-B) loss-of-function variants are directly linked with arrhythmia phenotypes. However, in atypical non-ion channel arrhythmia genes such as ANK2 that lack the same degree of robust structure/function and clinical data, it may be more difficult to assign variant disease risk based simply on variant location, minor allele frequency, and/or predictive structural algorithms. The human ankyrin-B p.L1622I variant found in arrhythmia probands displays significant diversity in minor allele frequency across populations. OBJECTIVE The objective of this study was to directly test the in vivo impact of ankyrin-B p.L1622I on cardiac electrical phenotypes and arrhythmia risk using a new animal model. METHODS We tested arrhythmia phenotypes in a new "knock-in" animal model harboring the human ankyrin-B p.L1622I variant. RESULTS Ankyrin-B p.L1622I displays reduced posttranslational expression in vivo, resulting in reduced cardiac ankyrin-B expression and reduced association with binding-partner Na/Ca exchanger. Ankyrin-B(L1622I/L1622I) mice display changes in heart rate, atrioventricular and intraventricular conduction, and alterations in repolarization. Furthermore, ankyrin-B(L1622I/L1622I) mice display catecholamine-dependent arrhythmias. At the cellular level, ankyrin-B(L1622I/L1622I) myocytes display increased action potential duration and severe arrhythmogenic afterdepolarizations that provide a mechanistic rationale for the arrhythmias. CONCLUSION Our findings support in vivo arrhythmogenic phenotypes of an ANK2 variant with unusual frequency in select populations. On the basis of our findings and current clinical data, we support classification of p.L1622I as a "mild" loss-of-function variant that may confer arrhythmia susceptibility in the context of secondary risk factors including environment, medication, and/or additional genetic variation.
Collapse
Affiliation(s)
- Hassan Musa
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Physiology & Cell Biology College of Medicine, The Ohio State University, Columbus, OH
| | - Nathaniel P Murphy
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Physiology & Cell Biology College of Medicine, The Ohio State University, Columbus, OH
| | - Jerry Curran
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Physiology & Cell Biology College of Medicine, The Ohio State University, Columbus, OH
| | - John D Higgins
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Physiology & Cell Biology College of Medicine, The Ohio State University, Columbus, OH
| | - Tyler R Webb
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Physiology & Cell Biology College of Medicine, The Ohio State University, Columbus, OH
| | - Michael A Makara
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Physiology & Cell Biology College of Medicine, The Ohio State University, Columbus, OH
| | - Patrick Wright
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Peter J Lancione
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Physiology & Cell Biology College of Medicine, The Ohio State University, Columbus, OH
| | - Ellen R Lubbers
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Physiology & Cell Biology College of Medicine, The Ohio State University, Columbus, OH
| | - Jane A Healy
- Department of Biochemistry and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC
| | - Sakima A Smith
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Internal Medicine, Division of Cardiovascular Medicine
| | - Vann Bennett
- Department of Biochemistry and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC
| | - Thomas J Hund
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Internal Medicine, Division of Cardiovascular Medicine,; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Crystal F Kline
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Physiology & Cell Biology College of Medicine, The Ohio State University, Columbus, OH
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Physiology & Cell Biology College of Medicine, The Ohio State University, Columbus, OH; Department of Internal Medicine, Division of Cardiovascular Medicine,.
| |
Collapse
|