1
|
Summers N, Fragoso GM, Johnsen G. Photophysiologically active green, red, and brown macroalgae living in the Arctic Polar Night. Sci Rep 2023; 13:17971. [PMID: 37863949 PMCID: PMC10589289 DOI: 10.1038/s41598-023-44026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023] Open
Abstract
Arctic macroalgae species have developed different growth strategies to survive extreme seasonal changes in irradiance in polar regions. We compared photophysiological parameters such as the light saturation parameter (Ek) and pigment composition of green, red, and brown macroalgae collected in January (Polar Night) and October 2020 (end of the light season). Macroalgae in January appeared healthier (morphologically) and had longer lamina (new growth) than those in October. EK values for red, and brown algae were higher with lower maximum quantum yield of PS II fluorescence (Fv/Fm) in January versus October. Furthermore, in January, new tissues in kelp species had higher EK than the older tissue. Higher EK and lower Fv/Fm during the Polar Night indicates that the photosynthetic apparatus is active but slow. Furthermore, we discuss Chlorophyll (Chl) a emission spectra under blue and green excitation light to determine the ratio of Chl a in photosystem II (PS II) vs photosystem I (PS I). Absorbance spectra of P. palmata was used to interpret the emission spectra. The observed spectral shifts in the absorbance and reflectance spectra of different macroalgae is discussed. Photophysiological methods provide health information complementary to future mapping and monitoring of macroalgae. These results reveal that macroalgae grow new tissue in darkness.
Collapse
Affiliation(s)
- Natalie Summers
- Centre for Autonomous Marine Operations and Systems (AMOS), Trondheim Biological Station, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Glaucia M Fragoso
- Centre for Autonomous Marine Operations and Systems (AMOS), Trondheim Biological Station, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Geir Johnsen
- Centre for Autonomous Marine Operations and Systems (AMOS), Trondheim Biological Station, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- University Centre in Svalbard (UNIS), Longyearbyen, Norway
| |
Collapse
|
2
|
Environmental nitrogen and phosphorus nutrient variability triggers intracellular resource reallocation in Gracilariopsis lemaneiformis (Rhodophyta). ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
3
|
Effective and Low-Maintenance IMTA System as Effluent Treatment Unit for Promoting Sustainability in Coastal Aquaculture. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Integrated multitrophic aquaculture (IMTA) is a versatile technology emerging as an ecological and sustainable solution for traditional monoculture aquacultures in terms of effluent treatment. Nevertheless, IMTA is still poorly applied in aquaculture industry due to, among other reasons, the lack of effective, low-investment and low-maintenance solutions. In this study, one has developed a practical and low maintenance IMTA-pilot system, settled in a semi-intensive coastal aquaculture. The optimisation and performance of the system was validated using Ulva spp., a macroalgae that naturally grows in the fishponds of the local aquaculture. Several cultivation experiments were performed at lab-scale and in the IMTA-pilot system, in static mode. The specific growth rate (SGR), yield, nutrient removal, N and C enrichment, protein and pigment content were monitored. Ulva spp. successfully thrived in effluent from the fish species sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) production tanks and significantly reduced inorganic nutrient load in the effluent, particularly, NH4+, PO43− and NO3−. The enrichment of nitrogen in Ulva spp.’s tissues indicated nitrogen assimilation by the algae, though, the cultivated Ulva spp. showed lower amounts of protein and pigments in comparison to the wild type. This study indicates that the designed IMTA-pilot system is an efficient solution for fish effluent treatment and Ulva spp., a suitable effluent remediator.
Collapse
|
4
|
Bakpa EP, Xie J, Zhang J, Han K, Ma Y, Liu T. Influence of soil amendment of different concentrations of amino acid water-soluble fertilizer on physiological characteristics, yield and quality of "Hangjiao No.2" Chili Pepper. PeerJ 2021; 9:e12472. [PMID: 34909271 PMCID: PMC8638573 DOI: 10.7717/peerj.12472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/20/2021] [Indexed: 11/20/2022] Open
Abstract
Amino acids are well known as natural stimulators of plant growth and are widely used to promote crop yield and quality. Several studies have been conducted to investigate the effects of amino acid (s) as a foliar spray on a variety of plant species. However, the effects of soil amendment of different concentrations of amino acid water-soluble fertilizer on the physiological characteristics, yield, and quality of pepper remain unclear. Following this, three experimental sets of amino acid water-soluble fertilizer in the ratio 1.8: 2.7: 3.6 kg including control (CK) were conducted in Lintao county, Gansu province. The treatments were applied through furrow method at 6 weeks after planting. The results showed that physiological characteristics of the pepper plants, such as chlorophyll a (1.35 mg g−1), and b (0.67 mg g−1), total chlorophyll (2.02 mg g−1), carotenoid (0.63 mg g−1), ETR (26.25 µmol m−2s−1), Fv/Fm (0.75), Qp (0.92) contents of the leaves were increased by the 1.8 kg treatment while NPQ (71.37%) and root activity (2185.52 µg g−1 h−1) were improved by the 3.6 kg treatment compared to the control. Fertilization with 2.7 kg of amino acid water-soluble fertilizer also had a significant influence on fruit length (25.50 cm), and yield of pepper (37.92 t ha−1) while fruit diameter (24.51 mm), firmness (5.30 kg cm−2), fresh (48.10 g) and dry (4.71 g) weights were higher in the 1.8 kg treatment compared to the control. The lowest rate of fertilizer (1.8 kg) applied again resulted in a significant increase in soluble protein (79.79%), capsaicin (5.80 mg g−1), dihydrocapsaicin (1.08 mg g−1), vitamin C (72.33%) and the essential and non-essential amino acid contents of the pepper which ranged from (235.15 to 11.16 µg g−1) and (1,605.10 to 16.63 µg g−1) respectively, while soluble sugar (9.02%) was enhanced by 3.6 kg treatment compared to the control. The findings suggest that soil amendment with low concentration of amino acid water-soluble fertilizer (1.8 kg) could be successfully used to improve the physiological characteristics and fruit quality of peppers in vegetable production.
Collapse
Affiliation(s)
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Kangning Han
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yufeng Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Tiandong Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Moreno Osorio JH, Pollio A, Frunzo L, Lens PNL, Esposito G. A Review of Microalgal Biofilm Technologies: Definition, Applications, Settings and Analysis. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.737710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Biofilm-based algal cultivation has many advantages over the conventional suspended growth methods and has received increased attention as a potential platform for algal production, wastewater treatment (nutrient removal), and a potential pathway to supply feedstock for microalgae-based biorefinery attempts. However, the attached cultivation by definition and application is a result of a complex interaction between the biotic and abiotic components involved. Therefore, the entire understanding of the biofilm nature is still a research challenge due to the need for real-time analysis of the system. In this review, the state of the art of biofilm definition, its life cycle, the proposed designs of bioreactors, screening of carrier materials, and non-destructive techniques for the study of biofilm formation and performance are summarized. Perspectives for future research needs are also discussed to provide a primary reference for the further development of microalgal biofilm systems.
Collapse
|
6
|
Keng FSL, Phang SM, Abd Rahman N, Yeong HY, Malin G, Leedham Elvidge E, Sturges W. Halocarbon emissions by selected tropical seaweeds exposed to different temperatures. PHYTOCHEMISTRY 2021; 190:112869. [PMID: 34274551 DOI: 10.1016/j.phytochem.2021.112869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Four tropical seaweeds, Gracilaria manilaensis Yamamoto & Trono, Ulva reticulata Forsskål, Kappaphycus alvarezii (Doty) L.M.Liao and Turbinaria conoides (J.Agardh) Kützing, collected from various habitats throughout Malaysia, were subjected to temperatures of 40, 35, 30, 25 and 20 °C in the laboratory. An exposure range of 21-38 °C is reported for Malaysian waters. The effect of the temperature exposures on the halocarbon emissions of the seaweeds were determined 4 and 28 h after treatment. The emission rates for a suite of six halocarbons commonly emitted by seaweeds, bromoform (CHBr3), dibromomethane (CH2Br2), diiodomethane (CH2I2), iodomethane (CH3I), dibromochloromethane (CHBr2Cl) and dichlorobromomethane (CHBrCl2), were measured using a cryogenic purge-and-trap sample preparation system coupled to a gas chromatography-mass spectrometry. The emission rate of CHBr3 was the highest of the six halocarbons for all the seaweeds under all the temperatures tested, followed by CH2Br2, and CH2I2. The emission rates were affected by temperature change and exposure duration, but overall responses were unique to each seaweed species. Larger decreases in the emissions of CHBr3, CH2Br2, CH2I2 and CHBr2Cl were found for K. alvarezii and T. conoides after 4 h at 40 °C. In both cases there was a >90% (p < 0.05) reduction in the Fv/Fm value suggesting that photosynthetic actitivity was severely compromised. After a 28 h exposure period, strong negative correlations (r = -0.69 to -0.95; p < 0.01) were observed between temperature and the emission of CHBr3, CH2Br2 and CH2I2 for U. reticulata, K. alvarezii and T. conoides. This suggests a potential decrease in the halocarbon emissions from these tropical seaweeds, especially where the temperature increase is a prolonged event. Strong correlations were also seen between seaweed chlorophyll and carotenoid pigment contents and the emission rates for CHBr3, CH2Br2 and CH2I2 (r = 0.48 to 0.96 and -0.49 to -0.96; p < 0.05). These results suggest that the regulation of halocarbon production versus reactive oxygen species production in seaweeds is an area worthy of further exploration.
Collapse
Affiliation(s)
- Fiona Seh-Lin Keng
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603, Kuala Lumpur, Malaysia; Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siew-Moi Phang
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603, Kuala Lumpur, Malaysia; Faculty of Applied Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia.
| | - Noorsaadah Abd Rahman
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hui-Yin Yeong
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Gill Malin
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Emma Leedham Elvidge
- Faculty of Science, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - William Sturges
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| |
Collapse
|
7
|
Estimation of the Chlorophyll-A Concentration of Algae Species Using Electrical Impedance Spectroscopy. WATER 2021. [DOI: 10.3390/w13091223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Algae are a significant component of a biological monitoring program in an aquatic ecosystem. They are ideally suited for water quality assessments because of their nutrient requirements, rapid reproduction rate, and very short life cycle. Algae composition and temporal variation in abundances are important in determining the trophic level of lakes, and those can be estimated by the Chlorophyll-a (Chl-a) concentration of the species. In this work, a non-destructive method was employed to estimate the Chlorophyll-a concentration of multiple algae species using electrical impedance spectroscopy (EIS). The proposed EIS method is rapid, cheaper, and suitable for in situ measurements compared with the other available non-destructive methods, such as spectrophotometry and hyperspectral or multispectral imaging. The electrical impedances in different frequencies ranging from 1 to 100 kHz were observed using an impedance converter system. Significant observations were identified within 3.5 kHz for multiple algae species and therefore reported in the results. A positive correlation was found between the Chlorophyll-a and the measured impedance of algae species at different frequencies. Later, EIS models were developed for the species in 1–3.5 kHz. A correlation of 90% was found by employing a least squares method and multiple linear regression. The corresponding coefficients of determination were obtained as 0.9, 0.885, and 0.915, respectively for 49 samples of Spirulina, 41 samples of Chlorella, and 26 samples of mixed algae species. The models were later validated using a new and separate set of samples of algae species.
Collapse
|
8
|
Ahmed H, Pathak J, Rajneesh, Sonkar PK, Ganesan V, Häder DP, Sinha RP. Responses of a hot spring cyanobacterium under ultraviolet and photosynthetically active radiation: photosynthetic performance, antioxidative enzymes, mycosporine-like amino acid profiling and its antioxidative potentials. 3 Biotech 2021; 11:10. [PMID: 33442509 PMCID: PMC7778668 DOI: 10.1007/s13205-020-02562-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/19/2020] [Indexed: 01/24/2023] Open
Abstract
This study summarizes the response of a hot spring cyanobacterium Fischerella sp. strain HKAR-14, under simulated light conditions of ultraviolet radiation (UVR), photosynthetically active radiation (PAR), PAR + UV-A (PA) and PAR + UV-A + UV-B (PAB). Exposure to UVR caused a decline in growth and Chl a while total carotene content increased under PA and PAB. Maximum photochemical efficiency of photosystem II (F v /F m) and relative electron transport rate decreased significantly in PA and PAB exposure. Higher non-photochemical quenching and lower photochemical quenching values were observed in UVR-exposed samples as compared to the control. Levels of intracellular reactive oxygen species (ROS) increased significantly in PAB and PA. Fluorescence microscopic images showed an increase in green fluorescence, indicating the generation of ROS in UVR. The antioxidant machinery including superoxide dismutase, catalase and peroxidase showed an increase of 1.76-fold and 2.5-fold superoxide dismutase, 2.4-fold and 3.7-fold catalase, 1.83-fold and 2.5-fold peroxidase activities under PA and PAB, respectively. High-performance liquid chromatography equipped with photodiode array detector, electrospray ionization mass spectrometry, Fourier-transform infrared spectroscopy and nuclear magnetic resonance spectroscopy analyses reveal the occurrence of a single mycosporine-like amino acid, shinorine (λ max 332.3 ± 2 nm, m/z 333.1), with a retention time of 1.157 min. The electrochemical characterization of shinorine was determined by cyclic voltammetry. The shinorine molecule possesses electrochemical activity and represents diffusion-controlled process in 0.1 M (pH 7.0) phosphate buffer. An antioxidant assay of shinorine showed its efficient activity as antioxidant which increased in a dose-dependent manner.
Collapse
Affiliation(s)
- Haseen Ahmed
- Laboratory of Photobiology and Molecular Microbiology, Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
- Department of Botany, Government Girls P.G. College, Satna, MP 485001 India
| | - Jainendra Pathak
- Department of Botany, Pt. Jawaharlal Nehru College, Banda, 210001 India
| | - Rajneesh
- Laboratory of Photobiology and Molecular Microbiology, Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Piyush K. Sonkar
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi, India
| | - Vellaichamy Ganesan
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Donat-P. Häder
- Department of Biology, Emeritus of Friedrich-Alexander University, Neue Str. 9, 91096 Möhrendorf, Germany
| | - Rajeshwar P. Sinha
- Laboratory of Photobiology and Molecular Microbiology, Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
9
|
X-ray Fluorescence Techniques in Determining the Habitat Preferences of Species- Ulva pilifera (Ulvales, Chlorophyta) from Montenegro Case Study. Molecules 2020; 25:molecules25215022. [PMID: 33138231 PMCID: PMC7663147 DOI: 10.3390/molecules25215022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022] Open
Abstract
The paper presents four new sites where bright green Ulva thalli were found inhabiting freshwater (a river, a ditch, the Milet Canal) and marine (on the rocky shore of the Adriatic Sea) habitats in Montenegro. The aims of this study were to determine, for the first time, whether specimens of Ulva pilifera collected in Montenegro are phylogenetically and morphologically the same species as the one occurring in Europe. Using total reflection X-ray fluorescence (TXRF) and wavelength dispersive X-ray fluorescence (WDXRF) techniques it assessed the elemental composition of their thalli and its influence to colonise new habitats. Elements: Al, As, Ba, Br, Ca, Cl, Cr, Cu, Fe, Hf, I, K, Mg, Mn, Na, Ni, P, Pb, Rb, S, Si, Sr, Ti, V, and Zn were determined. The highest elemental concentrations were found for Ca = 16.3% (using WDXRF) and for Sr = 292 ppm (using TXRF) in the Ulva thalli. Ulva pilifera analysed from Montenegro, based on classical morphological methods and molecular techniques, are closely related to the same species from inland and coastal waters throughout Europe. The analysis of trace elements showed that the metal content in Ulva thalli is correlated with the trace elements in water and sediments. Ulva pilifera fits numerous features that make it one of the bioindicators of marine pollution, thanks to its worldwide distribution and capacity to accumulate trace elements.
Collapse
|
10
|
Osorio JHM, Benettoni P, Schmidt M, Stryhanyuk H, Schmitt-Jansen M, Pinto G, Pollio A, Frunzo L, Lens PNL, Richnow HH, Esposito G, Musat N. Investigation of architecture development and phosphate distribution in Chlorella biofilm by complementary microscopy techniques. FEMS Microbiol Ecol 2020; 95:5372415. [PMID: 30848779 DOI: 10.1093/femsec/fiz029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Microalgae biofilms may play an important role in the mitigation and prevention of eutrophication caused by domestic, agricultural and industrial wastewater effluents. Despite their potential, the biofilm development and role in nutrient removal are not well understood. Its clarification requires comprehensive studies of the complex three-dimensional architecture of the biofilm. In this study, we established a multimodal imaging approach to provide key information regarding architecture development and nutrient distribution in the biofilm of two green algae organisms: Chlorella pyrenoidosa and Chlorella vulgaris. Helium ion microscopy (HIM), scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM-EDX) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed for i) elucidation of spatial arrangement, ii) elemental mapping and iii) 3D chemical imaging of the biofilm. The fine structure of the algal biofilm was resolved by HIM, the evidence of the accumulation of phosphate in hot spots was provided by SEM-EDX and the localization of phosphate oxides granules throughout the whole sample was clarified by ToF-SIMS. The reported results shed light on the phosphorus distribution during Chlorella's biofilm formation and highlight the potential of such correlative approach to solve fundamental question in algal biotechnology research.
Collapse
Affiliation(s)
- Jairo H Moreno Osorio
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio, 43 - 03043 Cassino, Italy.,Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig
| | - Pietro Benettoni
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig
| | - Matthias Schmidt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig
| | - Mechthild Schmitt-Jansen
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig
| | - Gabriele Pinto
- Department of Biology, University of Naples "Federico II", via Cintia - Complex Monte S. Angelo, 26. 80126 Naples, Italy
| | - Antonino Pollio
- Department of Biology, University of Naples "Federico II", via Cintia - Complex Monte S. Angelo, 26. 80126 Naples, Italy
| | - Luigi Frunzo
- Department of Mathematics and Applications Renato Caccioppoli, University of Naples "Federico II" via Cintia, Monte S. Angelo, 80126 Naples, Italy
| | - Piet N L Lens
- UNESCO-IHE institute for water education, Westvest 7, 2611AX Delft, The Netherlands.,National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples "Federico II" via Claudio 21, 80125 Naples, Italy
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig
| |
Collapse
|
11
|
Rincon SM, Urrego NF, Avila KJ, Romero HM, Beyenal H. Photosynthetic activity assessment in mixotrophically cultured Chlorella vulgaris biofilms at various developmental stages. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101408] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Mendoza W, Mendola D, Kim J, Yarish C, Velloze A, Mitchell BG. Land-based drip-irrigated culture of Ulva compressa: The effect of culture platform design and nutrient concentration on biomass production and protein content. PLoS One 2018; 13:e0199287. [PMID: 29949617 PMCID: PMC6021086 DOI: 10.1371/journal.pone.0199287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/05/2018] [Indexed: 11/19/2022] Open
Abstract
This work developed a laboratory prototype methodology for cost-effective, water-sparing drip-irrigation of seaweeds, as a model for larger-scale, on-land commercial units, which we envision as semi-automated, inexpensive polyethylene sheet-covered bow-framed greenhouses with sloping plastic covered floors, water-collecting sumps, and pumped recycling of culture media into overhead low-pressure drip emitters. Water droplets form on the continually wetted interior plastic surfaces of these types of greenhouses scattering incoming solar radiation to illuminate around and within the vertically-stacked culture platforms. Concentrated media formulations applied through foliar application optimize nutrient uptake by the seaweeds to improve growth and protein content of the cultured biomass. An additional attribute is that seaweed growth can be accelerated by addition of anthropogenic CO2-containing industrial flue gases piped into the head-space of the greenhouse to reuse and recycle CO2 into useful algal biomass. This demonstration tested three different drip culture platform designs (horizontal, vertical and slanted) and four increasing fertilizer media concentrations (in seawater) for growth, areal productivity, and thallus protein content of wild-collected Ulva compressa biomass, against fully-submerged controls. Cool White fluorescent lights provided 150–200 μmol photon m-2 s-1 illumination on a 12/12 hr day/night cycle. Interactive effects we tested using a four-level single factorial randomized block framework (p<0.05). Growth rates and biomass of the drip irrigation designs were 3–9% day-1 and 5–18 g m-2 day-1 (d.w.) respectively, whereas the fully-submerged control group grew better at 8–11% per day with of 20–30 g m-2 day-1, indicating further optimization of the drip irrigation methodology is needed to improve growth and biomass production. Results demonstrated that protein content of Ulva biomass grown using the vertically-oriented drip culture platform and 2x fertilizer concentrations (42:16:36 N:P:K) was 27% d.w., approximating the similarly-fertilized control group. The drip methodology was found to significantly improve gas and nutrient mass transfer through the seaweed thalli, and overall, the labor- and-energy-saving methodology would use a calculated 20% of the seawater required for conventional on-land tank-based tumble culture.
Collapse
Affiliation(s)
- Wilson Mendoza
- Scripps Institution of Oceanography, Integrative Oceanography Division, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Dominick Mendola
- Scripps Institution of Oceanography, Integrative Oceanography Division, University of California, San Diego, La Jolla, California, United States of America
| | - Jang Kim
- Department of Ecology & Evolutionary Biology, University of Connecticut, Stamford, Connecticut, United States of America
| | - Charles Yarish
- Department of Ecology & Evolutionary Biology, University of Connecticut, Stamford, Connecticut, United States of America
| | - Alyssa Velloze
- Scripps Institution of Oceanography, Integrative Oceanography Division, University of California, San Diego, La Jolla, California, United States of America
| | - B. Greg Mitchell
- Scripps Institution of Oceanography, Integrative Oceanography Division, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
13
|
Habiby O, Nahor O, Israel A, Liberzon A, Golberg A. Exergy efficiency of light conversion into biomass in the macroalga Ulva sp. (Chlorophyta) cultivated under the pulsed light in a photobioreactor. Biotechnol Bioeng 2018. [PMID: 29537063 DOI: 10.1002/bit.26588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Marine macroalgae are a potential feedstock for biorefineries that can reduce dependence on fossil fuels and contribute to bioeconomy. New knowledge and technologies for efficient conversion of solar energy into macroalgae biomass are needed to increase biomass yields and energy conversion efficiency. In this work, we show that the green macroalgae from Ulva sp. can grow under the pulsed light in a photobioreactor with higher exergy conversion efficiency in comparison to cultivation under constant light with the same intensity. In the tested frequencies, 1-40 Hz and duty cycles (DC) 1-100%, DC has a stronger impact on the growth rate than frequency. The efficiency of light transformation into biomass increased with decreasing DC. Pulsating with DC 20% led to 60% of the biomass chemical energy yield for the respective constant light (DC 100%). Models of Ulva sp. growth rate and exergy conversion efficiency as a function of pulsating light parameters were developed. These results open new directions to enhance solar to chemical energy conversion through macroalgae by controlling the light distribution in the macroalgal biomass.
Collapse
Affiliation(s)
- Oz Habiby
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Omri Nahor
- Porter School of Environmental Studies, Tel Aviv University, Tel Aviv, Israel
| | - Alvaro Israel
- Israel Oceanographic and Limnological Research, Ltd. The National Institute of Oceanography, Haifa, Israel
| | | | - Alexander Golberg
- Porter School of Environmental Studies, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Rybak AS, Gąbka M. The influence of abiotic factors on the bloom-forming alga Ulva flexuosa (Ulvaceae, Chlorophyta): possibilities for the control of the green tides in freshwater ecosystems. JOURNAL OF APPLIED PHYCOLOGY 2017; 30:1405-1416. [PMID: 29755209 PMCID: PMC5928185 DOI: 10.1007/s10811-017-1301-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/01/2017] [Accepted: 10/01/2017] [Indexed: 06/08/2023]
Abstract
Ulva species are characterised by the capacity to achieve rapid biomass increase, which results in the formation of "green tides", particularly in nutrient-rich seawaters. Over the last decade, formation of large-scale Ulva mats has been increasingly observed in freshwater systems in Central Europe. Mass development of Ulva in freshwater ecosystems presents a growing burden in spite of its economic benefits. This study explores the formation dynamics of Ulva flexuosa mats with respect to habitat conditions, using the examples of a number of water systems located in Poland. Elevated water temperature, pH and high concentration of sulphates are among the most important factors affecting biometric parameters of Ulva blooms. An evident disparity was observed between lotic water ecosystems and lentic water ecosystems, which differed in terms of chemical characteristics of the habitat and mat structure properties. In flowing water, U. flexuosa displays a definitely higher potential for blooms. On the other hand, mass occurrence of U. flexuosa in freshwaters is caused by the inflow of fecund waters, especially following intense precipitation in summertime, as well as by periodic increases in salinity, pH and sulphate levels. The study suggests that potential U. flexuosa blooms in landlocked ecosystems may be controlled by means of reducing the inflow of particularly sulphate-rich waters.
Collapse
Affiliation(s)
- Andrzej Stanisław Rybak
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska st. 89, PL 61-614 Poznań, Poland
| | - Maciej Gąbka
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska st. 89, PL 61-614 Poznań, Poland
| |
Collapse
|