1
|
Wu Z, Lv S, Xiao P, Yin X, Cheng H, Li H, Sun J, Ye X, Huang M, Zheng F, Sun B. Optimisation and characterisation of KOH-activated carbon obtained from Baijiu spent grains for the mitigation of risk factors in alcoholic beverages. Food Chem 2024; 452:139604. [PMID: 38749139 DOI: 10.1016/j.foodchem.2024.139604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
This study aims to repurpose waste grain from the Baijiu brewing process into activated carbon for mitigating risk factors in alcoholic beverages, enhancing quality and ensuring safety. For attaining the most effective activated carbon, tailored carbon synthesis conditions were identified for diverse alcoholic beverages, optimising strategies. For beverages with low flavour compound content, optimal conditions include 900 °C calcination, 16-hour activation and a 1:2 activation ratio. In contrast, for those with abundant flavour compounds, 800 °C calcination, 16-hour activation and a 1:1 activation ratio are recommended. Post-synthesis analyses, employing nitrogen physisorption-desorption isotherms, FT-IR and SEM, validated a significant BET surface area of 244.871 m2/g for the KOH-activated carbon. Critical to adsorption efficiency, calcination temperature showcased noteworthy micro-porosity (0.8-1 nm), selectively adsorbing higher alcohols (C3-C6) and acetaldehyde while minimising acid and ester adsorption. Sensory evaluations refined optimal parameters, ensuring efficient spent grain management and heightened beverage safety without compromising aroma.
Collapse
Affiliation(s)
- Ziyang Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China; Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| | - Silei Lv
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China
| | - Peng Xiao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China
| | - Xiuxiu Yin
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Hehe Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China.
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China.
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Mingquan Huang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China
| | - Fuping Zheng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Khadka N, Acharya DR, Dangal A, Rai K, Gurung G, Sherma G, Khatri SB, Gautam N. Study on the changes during the fermentation of the wine prepared from palm ( Phoenix sylvestris) sap. Heliyon 2024; 10:e35799. [PMID: 39170192 PMCID: PMC11337016 DOI: 10.1016/j.heliyon.2024.e35799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
The sugary sap of different palm trees is fermented to create palm wine, an alcoholic beverage. This work was aimed at studying the changes that occur during the fermentation process of wine made from the sap of the wild date palm species Phoenix sylvestris. At first, the best age of the palm tree was determined by observing total soluble solid and sap yield for 24 h and was found to be middle-aged palm plants (15-40 years old). Pure wine yeast (Saccharomyces cerevisiae SC22) and a natural starter culture were added to the palm saps, adjusting the total soluble solid (TSS) to 21.5° brix (°Bx). Total titratable acidity, pH, volatile acidity, reducing sugar, non-reducing sugar, total sugar, alcohol content, ester content, and aldehyde contents were the parameters under investigation. The statistical analysis showed significant (p ≤ 0.05) changes in the physico-chemical and volatile constituents of palm sap during the fermentation process in both systems. Sensory evaluation revealed that palm wine fermented with pure yeast culture was significantly superior to natural, spontaneously fermented wine. The acceptability test showed that the ideal characteristics of palm wine are cloudy in appearance, fruity in aroma, and sweet in taste.
Collapse
Affiliation(s)
- Nabin Khadka
- Central Department of Food Technology, Tribhuvan University, Dharan, 56700, Nepal
| | - Dev Raj Acharya
- Central Department of Food Technology, Tribhuvan University, Dharan, 56700, Nepal
| | - Anish Dangal
- Department of Food Technology, Nilgiri College, Tribhuvan University, Itahari, 56705, Nepal
| | - Kishor Rai
- Department of Management, Mahendra Multiple Campus, Tribhuvan University, Dharan, 56700, Nepal
| | - Gaurav Gurung
- Central Department of Food Technology, Tribhuvan University, Dharan, 56700, Nepal
| | - Girija Sherma
- Central Department of Food Technology, Tribhuvan University, Dharan, 56700, Nepal
| | - Sabin Bahadur Khatri
- Department of Food Technology, Central Campus of Technology, Tribhuvan University, Dharan, 56700, Nepal
| | - Navin Gautam
- Department of Food Technology, Central Campus of Technology, Tribhuvan University, Dharan, 56700, Nepal
| |
Collapse
|
3
|
Lapierre C, Erlandson LW, Stoneroad II R, Rhiner A, Gosnell R, Barber J, Pham L. Substances of health concern in home-distilled and commercial alcohols from Texas. Heliyon 2024; 10:e32317. [PMID: 38912503 PMCID: PMC11190660 DOI: 10.1016/j.heliyon.2024.e32317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
Objective Poor distillation practices in the production of spirits have historically resulted in many instances of adverse health outcomes including death. Concern has focused on lead and copper contamination as well as unhealthy levels of methanol and glyphosate. This study assesses home-distilled and commercially distilled alcohols from Texas for these substances of concern, highlighting their potential risks to public health. Methods Atomic absorption spectroscopy, gas chromatography, and enzyme-linked immunosorbent assay were employed to determine lead and copper, methanol, and glyphosate levels in 12 commercial and 36 home-distilled alcohol samples. Results Our findings showed that 11 % of the home-distilled alcohols exceeded the U.S. Alcohol and Tobacco Tax and Trade Bureau's copper safety limits of 0.5 mg/L for wine. Additionally, 36 % of these samples surpassed the European Commission (EC)'s lead legal threshold of 0.15 mg/L set for wine products. Results from commercial alcohols indicated that no samples exceeded the same safety limits for copper, and 33 % exceeded the same legal threshold for lead. Both commercial and home-distilled alcohols exhibited methanol concentrations remarkably below the 0.35 % limit for brandy set by the U.S. Food and Drug Administration. Only two home-distilled samples contained detectable glyphosate concentrations well below 100 μg/L, the maximum residue level in beer and wine established by the EC. Conclusions Our findings suggested that consumption of alcohol in Texas may pose potential health risks associated with the elevated content of lead and copper. There is a need for increased focus on alcohol as a potential source of exposure to heavy metals.
Collapse
Affiliation(s)
- Coady Lapierre
- Department of Counseling and Psychology, Texas A&M University-Central Texas, Texas, USA
| | | | - Randy Stoneroad II
- Department of Mathematics and Sciences, Texas A&M University-Central Texas, Texas, USA
| | - Andrew Rhiner
- Department of Mathematics and Sciences, Texas A&M University-Central Texas, Texas, USA
| | - Renae Gosnell
- Department of Mathematics and Sciences, Texas A&M University-Central Texas, Texas, USA
| | - John Barber
- Department of Mathematics and Sciences, Texas A&M University-Central Texas, Texas, USA
| | - Linh Pham
- Department of Mathematics and Sciences, Texas A&M University-Central Texas, Texas, USA
| |
Collapse
|
4
|
Al-Kharousi ZS, Al-Ramadhani Z, Al-Malki FA, Al-Habsi N. Date Vinegar: First Isolation of Acetobacter and Formulation of a Starter Culture. Foods 2024; 13:1389. [PMID: 38731760 PMCID: PMC11083709 DOI: 10.3390/foods13091389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
There is a lack of scientific analysis and control over the production of date vinegar in Oman, despite its growing demand in the worldwide market. Traditional production of date vinegar may lead to elevated amounts of ethanol (≥0.5%) and reduced content of acetic acid (<4%) compared to the standard acceptable levels. This study aimed to isolate non-Gluconobacter species from date vinegar produced by spontaneous fermentation and formulate starter cultures for quick and efficient production of date vinegar. In spontaneous fermentation date vinegar samples, the highest concentration of acetic acid was 10.42% on day 50. Acetobacter malorum (5 isolates), A. persici (3 isolates), and A. tropicalis (3 isolates) were identified based on 16S rRNA gene sequences for the first time in date vinegar. For date vinegar prepared with a starter culture of Acetobacter and yeast, the highest concentration of acetic acid was 4.67%. In conclusion, spontaneous fermentation resulted in the production of date vinegar with a high concentration of acetic acid, acceptable concentrations of ethanol and methanol, and the first isolation of three Acetobacter species. The formulated starter culture produced acceptable amounts of acetic acid and the time of fermentation was reduced 10 times (from 40 days to 4 days). This can provide the basis for producing a personalized or commercial product that ensures the production of good-quality date vinegar in an easier, faster, safer, and more efficient way from low-quality and surplus dates.
Collapse
Affiliation(s)
- Zahra S. Al-Kharousi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khod 123, Oman; (Z.A.-R.); (F.A.A.-M.); (N.A.-H.)
| | | | | | | |
Collapse
|
5
|
Parsy A, Ficara E, Mezzanotte V, Guerreschi A, Guyoneaud R, Monlau F, Sambusiti C. Incorporating saline microalgae biomass in anaerobic digester treating sewage sludge: Impact on performance and microbial populations. BIORESOURCE TECHNOLOGY 2024; 397:130444. [PMID: 38360220 DOI: 10.1016/j.biortech.2024.130444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
The aim of this study was to acclimate anaerobic prokaryotes to saline microalgae biomass. Semi-continuous experiments were conducted using two 1.5 L mesophilic reactors for 10 weeks, (hydraulic retention time of 21 days). The first reactor was solely fed with sewage sludge (control), while the second received a mixture of sewage sludge and microalgal biomass (80/20 %w/w) cultivated at 70 g·L-1 salinity. The in-reactor salinity reached after the acclimation phase was 14 g·L-1. Biomethane production was comparable between the control and acclimated reactors (205 ± 29 NmLMethane·gVolatileSolids-1). Salinity tolerance assessment of methanogenic archaea revealed that salinity causing 50% inhibition of methane production increased from 10 to 27 g·L-1 after acclimation. Microbial diversity analyses revealed notable changes in methanogenic archaea populations during co-digestion of saline microalgae biomass, particularly methylotrophic (+27%) and acetotrophic (-26%) methanogens. This study has highlighted the possibility of treating efficiently saline microalgae in co-digestion with sewage sludge in future industrial biogas plants.
Collapse
Affiliation(s)
- Aurélien Parsy
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Environmental Microbiology and Chemistry, UMR 5254, 64000 Pau, France; TotalEnergies, OneTech, PERL ESD - Pôle D'Etudes et de Recherche de Lacq, Pôle Economique 2, BP 47 - RD 817, 64170 Lacq, France
| | - Elena Ficara
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci, 32, 20133 Milan, Italy
| | - Valeria Mezzanotte
- Università Degli Studi di Milano-Bicocca, Department of Earth and Environmental Sciences (DISAT), P.zza della Scienza 1, 20126 Milan, Italy
| | - Arianna Guerreschi
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci, 32, 20133 Milan, Italy
| | - Rémy Guyoneaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Environmental Microbiology and Chemistry, UMR 5254, 64000 Pau, France
| | - Florian Monlau
- TotalEnergies, OneTech, PERL ESD - Pôle D'Etudes et de Recherche de Lacq, Pôle Economique 2, BP 47 - RD 817, 64170 Lacq, France
| | | |
Collapse
|
6
|
Pilliol V, Morsli M, Terlier L, Hassani Y, Malat I, Guindo CO, Davoust B, Lamglait B, Drancourt M, Aboudharam G, Grine G, Terrer E. Candidatus Methanosphaera massiliense sp. nov., a methanogenic archaeal species found in a human fecal sample and prevalent in pigs and red kangaroos. Microbiol Spectr 2024; 12:e0514122. [PMID: 38189277 PMCID: PMC10845953 DOI: 10.1128/spectrum.05141-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/24/2023] [Indexed: 01/09/2024] Open
Abstract
Methanosphaera stadtmanae was the sole Methanosphaera representative to be cultured and detected by molecular methods in the human gut microbiota, further associated with digestive and respiratory diseases, leaving unknown the actual diversity of human-associated Methanosphaera species. Here, a novel Methanosphaera species, Candidatus Methanosphaera massiliense (Ca. M. massiliense) sp. nov. was isolated by culture using a hydrogen- and carbon dioxide-free medium from one human feces sample. Ca. M. massiliense is a non-motile, 850 nm Gram-positive coccus autofluorescent at 420 nm. Whole-genome sequencing yielded a 29.7% GC content, gapless 1,785,773 bp genome sequence with an 84.5% coding ratio, encoding for alcohol and aldehyde dehydrogenases promoting the growth of Ca. M. massiliense without hydrogen. Screening additional mammal and human feces using a specific genome sequence-derived DNA-polymerase RT-PCR system yielded a prevalence of 22% in pigs, 12% in red kangaroos, and no detection in 149 other human samples. This study, extending the diversity of Methanosphaera in human microbiota, questions the zoonotic sources of Ca. M. massiliense and possible transfer between hosts.IMPORTANCEMethanogens are constant inhabitants in the human gut microbiota in which Methanosphaera stadtmanae was the only cultivated Methanosphaera representative. We grew Candidatus Methanosphaera massiliense sp. nov. from one human feces sample in a novel culture medium under a nitrogen atmosphere. Systematic research for methanogens in human and animal fecal samples detected Ca. M. massiliense in pig and red kangaroo feces, raising the possibility of its zoonotic acquisition. Host specificity, source of acquisition, and adaptation of methanogens should be further investigated.
Collapse
Affiliation(s)
- Virginie Pilliol
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Ecole de Médecine Dentaire, Marseille, France
| | - Madjid Morsli
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Laureline Terlier
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Yasmine Hassani
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Ihab Malat
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Cheick Oumar Guindo
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Bernard Davoust
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | | | - Michel Drancourt
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Gérard Aboudharam
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Ecole de Médecine Dentaire, Marseille, France
| | | | - Elodie Terrer
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
7
|
Kolobaric A, Orrell-Trigg R, Orloff S, Fraser V, Chapman J, Cozzolino D. The Use of a Droplet Collar Accessory Attached to a Portable near Infrared Instrument to Identify Methanol Contamination in Whisky. SENSORS (BASEL, SWITZERLAND) 2023; 23:8969. [PMID: 37960668 PMCID: PMC10647224 DOI: 10.3390/s23218969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
The aim of this study was to evaluate the ability of a droplet collar accessory attached to a portable near-infrared (NIR) instrument to characterize the artificial contamination of methanol in commercial whisky samples. Unadulterated samples (n = 12) were purchased from local bottle shops where adulterated samples were created by adding methanol (99% pure methanol) at six levels (0.5%, 1%, 2%, 3%, 4% and 5% v/v) to the commercial whisky samples (controls). Samples were analyzed using a drop collar accessory attached to a MicroNIR Onsite instrument (900-1650 nm). Partial least squares (PLS) cross-validation statistics obtained for the prediction of all levels of methanol (from 0 to 5%) addition were considered adequate when the whole adulteration range was used, coefficient of determination in cross-validation (R2cv: 0.95) and standard error in cross of validation (SECV: 0.35% v/v). The cross-validation statistics were R2cv: 0.97, SECV: 0.28% v/v after the 0.5% and 1% v/v methanol addition was removed. These results showed the ability of using a new sample presentation attachment to a portable NIR instrument to analyze the adulteration of whisky with methanol. However, the low levels of methanol adulteration (0.5 and 1%) were not well predicted using the NIR method evaluated.
Collapse
Affiliation(s)
- Adam Kolobaric
- School of Science, RMIT University, Melbourne 3000, Australia; (A.K.); (R.O.-T.); (S.O.); (V.F.)
| | - Rebecca Orrell-Trigg
- School of Science, RMIT University, Melbourne 3000, Australia; (A.K.); (R.O.-T.); (S.O.); (V.F.)
| | - Seth Orloff
- School of Science, RMIT University, Melbourne 3000, Australia; (A.K.); (R.O.-T.); (S.O.); (V.F.)
| | - Vanessa Fraser
- School of Science, RMIT University, Melbourne 3000, Australia; (A.K.); (R.O.-T.); (S.O.); (V.F.)
| | - James Chapman
- Faculty of Science, University of Queensland, Brisbane 4072, Australia;
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation(QAAFI), University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
8
|
Jangjou A, Moqadas M, Mohsenian L, Kamyab H, Chelliapan S, Alshehery S, Ali MA, Dehbozorgi F, Yadav KK, Khorami M, Zarei Jelyani N. Awareness raising and dealing with methanol poisoning based on effective strategies. ENVIRONMENTAL RESEARCH 2023; 228:115886. [PMID: 37072082 DOI: 10.1016/j.envres.2023.115886] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023]
Abstract
Intoxication with methanol most commonly occurs as a consequence of ingesting, inhaling, or coming into contact with formulations that include methanol as a base. Clinical manifestations of methanol poisoning include suppression of the central nervous system, gastrointestinal symptoms, and decompensated metabolic acidosis, which is associated with impaired vision and either early or late blindness within 0.5-4 h after ingestion. After ingestion, methanol concentrations in the blood that are greater than 50 mg/dl should raise some concern. Ingested methanol is typically digested by alcohol dehydrogenase (ADH), and it is subsequently redistributed to the body's water to attain a volume distribution that is about equivalent to 0.77 L/kg. Moreover, it is removed from the body as its natural, unchanged parent molecules. Due to the fact that methanol poisoning is relatively uncommon but frequently involves a large number of victims at the same time, this type of incident occupies a special position in the field of clinical toxicology. The beginning of the COVID-19 pandemic has resulted in an increase in erroneous assumptions regarding the preventative capability of methanol in comparison to viral infection. More than 1000 Iranians fell ill, and more than 300 of them passed away in March of this year after they consumed methanol in the expectation that it would protect them from a new coronavirus. The Atlanta epidemic, which involved 323 individuals and resulted in the deaths of 41, is one example of mass poisoning. Another example is the Kristiansand outbreak, which involved 70 people and resulted in the deaths of three. In 2003, the AAPCC received reports of more than one thousand pediatric exposures. Since methanol poisoning is associated with high mortality rates, it is vital that the condition be addressed seriously and managed as quickly as feasible. The objective of this review was to raise awareness about the mechanism and metabolism of methanol toxicity, the introduction of therapeutic interventions such as gastrointestinal decontamination and methanol metabolism inhibition, the correction of metabolic disturbances, and the establishment of novel diagnostic/screening nanoparticle-based strategies for methanol poisoning such as the discovery of ADH inhibitors as well as the detection of the adulteration of alcoholic drinks by nanoparticles in order to prevent methanol poisoning. In conclusion, increasing warnings and knowledge about clinical manifestations, medical interventions, and novel strategies for methanol poisoning probably results in a decrease in the death load.
Collapse
Affiliation(s)
- Ali Jangjou
- Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran; Emergency Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Moqadas
- Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran; Emergency Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Mohsenian
- Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran; Emergency Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jln Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Sultan Alshehery
- Department of Mechanical Engineering King Khalid University, zip code - 62217, Saudi Arabia
| | - Mohammed Azam Ali
- Department of Mechanical Engineering King Khalid University, zip code - 62217, Saudi Arabia
| | - Farbod Dehbozorgi
- Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran; Emergency Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Masoud Khorami
- Department of Civil Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Najmeh Zarei Jelyani
- Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran; Emergency Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Gasiński A, Kawa-Rygielska J, Kita A, Kucharska A. Physicochemical parameters, sensory profile and concentration of volatile compounds and anthocyanins in beers brewed using potato variety with purple flesh. Sci Rep 2023; 13:10094. [PMID: 37344549 DOI: 10.1038/s41598-023-37284-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023] Open
Abstract
In the recent years, beer brewers are experimenting with using various substrates, other than traditional barley malt, water, hops, and yeast for beer production, because new adjuncts to the beer brewing can add new sensory and functional properties to this beverage. Novel potatoes with purple or red-colour flesh are a good and cheap starch source and are rich in bioactive components, which could increase the nutritive value of the produced beer. The aim of the study was to determine whether some part of barley malt can be replaced by the potatoes of purple-colour flesh and assessment of properties of such beer. Beer samples showed increased antioxidant activity, higher concentration of anthocyanins and polyphenol compounds, as well as modified composition of volatiles and lower ethanol content. Beer produced with the addition of 30% of purple potatoes showed acceptable organoleptic qualities in the sensory analysis.
Collapse
Affiliation(s)
- Alan Gasiński
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Sciences, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland.
| | - Joanna Kawa-Rygielska
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Sciences, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Agnieszka Kita
- Department of Food Storage and Technology, Faculty of Biotechnology and Food Sciences, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Alicja Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Sciences, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| |
Collapse
|
10
|
Olean-Oliveira A, Trevizan HF, Cardoso CX, Teixeira MF. Impedimetric study of the electrocatalytic oxidation of alcohols by nickel-Schiff base metallopolymer: Potential application for forensic identification of alcoholic beverage contaminants by multivariate data analysis. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Chen X, Liu S, Yuan J, Zhu Y, Yuan C, Ren Y. Application of different pre-fermentation techniques in the winemaking using Guankou table grape (Vitis vinifera × Vitis labrusca). FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
12
|
Agbley E, Kpodo F, Kortei N, Agbenorhevi J, Kaba G, Nyasordzi J. Consumption pattern, heavy metal content and risk assessment of Akpeteshie-local gin in Ho municipality of Ghana. SCIENTIFIC AFRICAN 2023. [DOI: 10.1016/j.sciaf.2023.e01564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
13
|
Comprehensive Review on Potential Contamination in Fuel Ethanol Production with Proposed Specific Guideline Criteria. ENERGIES 2022. [DOI: 10.3390/en15092986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ethanol is a promising biofuel that can replace fossil fuel, mitigate greenhouse gas (GHG) emissions, and represent a renewable building block for biochemical production. Ethanol can be produced from various feedstocks. First-generation ethanol is mainly produced from sugar- and starch-containing feedstocks. For second-generation ethanol, lignocellulosic biomass is used as a feedstock. Typically, ethanol production contains four major steps, including the conversion of feedstock, fermentation, ethanol recovery, and ethanol storage. Each feedstock requires different procedures for its conversion to fermentable sugar. Lignocellulosic biomass requires extra pretreatment compared to sugar and starch feedstocks to disrupt the structure and improve enzymatic hydrolysis efficiency. Many pretreatment methods are available such as physical, chemical, physicochemical, and biological methods. However, the greatest concern regarding the pretreatment process is inhibitor formation, which might retard enzymatic hydrolysis and fermentation. The main inhibitors are furan derivatives, aromatic compounds, and organic acids. Actions to minimize the effects of inhibitors, detoxification, changing fermentation strategies, and metabolic engineering can subsequently be conducted. In addition to the inhibitors from pretreatment, chemicals used during the pretreatment and fermentation of byproducts may remain in the final product if they are not removed by ethanol distillation and dehydration. Maintaining the quality of ethanol during storage is another concerning issue. Initial impurities of ethanol being stored and its nature, including hygroscopic, high oxygen and carbon dioxide solubility, influence chemical reactions during the storage period and change ethanol’s characteristics (e.g., water content, ethanol content, acidity, pH, and electrical conductivity). During ethanol storage periods, nitrogen blanketing and corrosion inhibitors can be applied to reduce the quality degradation rate, the selection of which depends on several factors, such as cost and storage duration. This review article sheds light on the techniques of control used in ethanol fuel production, and also includes specific guidelines to control ethanol quality during production and the storage period in order to preserve ethanol production from first-generation to second-generation feedstock. Finally, the understanding of impurity/inhibitor formation and controlled strategies is crucial. These need to be considered when driving higher ethanol blending mandates in the short term, utilizing ethanol as a renewable building block for chemicals, or adopting ethanol as a hydrogen carrier for the long-term future, as has been recommended.
Collapse
|
14
|
Qin B, Wang X, Tang L, Wang S, Shi Y, Zhao L, Jiang H. Comparative study of headspace and headspace single drop microextraction combined with GC for the determination of methanol in wine. J Chromatogr A 2022; 1673:463079. [DOI: 10.1016/j.chroma.2022.463079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/05/2022] [Accepted: 04/19/2022] [Indexed: 11/28/2022]
|
15
|
Galabova M, Stoyanov N, Mitev P. Primary studies of the composition of distillate beverages produced from Sorbus Domestica fruits. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224501012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
S. domestica are valuable plants which have been used for both nutritional purposes and in traditional medicine. Recent studies reveal that in the fruits of S. domestica the sugar content and total acidity is similar to quantities in apples (Malus spp.) and pears (Pyrus spp.). Despite the sufficient data obtained S. domestica is not yet so strongly represented in the production of distilled beverages. For the purpose of this study, we obtained beverages by means of three different methods - distillation of fermented juice (A), distillation of fermented crushed fruit mixture (B) and distillation of ethanol-water extract (C). The different fractions obtained during the distillation process were studied and correspondently used to determine the quantities of Alcohol, Esters, Aldehydes, Higher alcohols and Methanol. Concentration of Esters in the fractions is between 3688.0 mg/L to 29.0 mg/L. The quantity of Esters in fractions of Series A and B is three times higher than in Series C. Regarding the Aldehyde and Higher alcohols content is ten times higher in both A and B Series in comparison to Series C.
Collapse
|
16
|
Han Y, Wang Y, Li J, Du J, Su Z. Evaluating the effect of bentonite, malic acid on pectin methyl esterase, methanol in fermented apple juice. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
The Influence of Delayed Sealing and Repeated Air Ingress during the Storage of Maize Silage on Fermentation Patterns, Yeast Development and Aerobic Stability. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8020048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study investigates the effects of delayed sealing and repeated air ingress on the formation of primary fermentation products and other volatile organic compounds (VOC), the development of yeasts and the aerobic stability (ASTA) of maize (26.8% dry matter, DM). After packing, the silos were sealed either promptly or with a delay of 24 h, with repeated air ingress after 27, 55 and 135 days of storage. Losses of DM, fermentation pattern, including VOC, yeast numbers and aerobic stability, were determined 6 times during storage for 142 days. Yeast numbers markedly increased during the first three fermentation days, with the effect being much stronger in silage sealed with a delay than in promptly sealed silage (log10 cfu/g FM 7.27 vs. 5.88, p < 0.002). Simultaneously, the concentrations of ethanol and ethyl esters and DM losses increased. The DM losses were closely correlated with the total concentrations of alcohols and acetic acid (delay: R2 = 0.71, p < 0.001; prompt: R2 = 0.91, p < 0.001, respectively). The repeated air ingress for 24 h during storage after completion of the main fermentation phase had only a minor effect on fermentation pattern, VOC formation and DM losses. The relationship between the counts of total yeasts and lactate-assimilating yeasts (LAY) was very strong (R2 = 0.995, p < 0.001), and LAY numbers were shown to be largely responsible for aerobic instability (R2 = 0.752, p < 0.001). This trial proved the detrimental effects of air on silage fermentation with delayed sealing to be much more deleterious than repeated short-term air ingress after about one month of storage.
Collapse
|
18
|
Han Y, Du J, Wang Y. Effect of bentonite and calcium chloride on apple wine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:425-433. [PMID: 34143901 DOI: 10.1002/jsfa.11373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/23/2021] [Accepted: 06/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Apple wine is a popular alcoholic beverage for its nutrition and fresh taste. However, the methanol existing in apple wine restricts its quality. Unfortunately, there are no methods to reduce the methanol content in fruit wine. To this end, bentonite (B), calcium chloride (CC) and their combination (B&CC) were added into apple juice in this study. The treated juice (0) and supernatant obtained by standing the juice at 25 °C for 24 h were fermented at 25 °C and 10 °C, respectively. RESULTS Bentonite was an excellent methanol interrupter, a pectin retainer and a wine quality defender both at 25 and 10 °C. The lowest methanol content of 1.41 mg L-1 and higher pectin content of 84.74 mg L-1 were reached in the finished wine by B0 at 10 °C. Calcium chloride decreased pectin content, elevated methanol content and changed the profile of individual organic acids. In fact, the wine by B&CC0 at 25 °C showed dramatic changes in individual organic acids. The content of l-malic acid and succinic acid was only 2.22% and 6.29% of the control, respectively, while the lactic acid content was 17.72 times that of the control. CONCLUSIONS It is suggested that B0 and fermented at 10 °C was the most effective way to decrease methanol content, retain pectin content and defend wine quality. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yingying Han
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jinhua Du
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yan Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
19
|
Muhollari T, Szűcs S, Ádány R, Sándor J, McKee M, Pál L. Methanol in unrecorded fruit spirits. Does it pose a health risk to consumers in the European Union? A probabilistic toxicological approach. Toxicol Lett 2022; 357:43-56. [PMID: 34990791 DOI: 10.1016/j.toxlet.2021.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/17/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022]
Abstract
Methanol is present at high concentrations in unrecorded fruit spirits, placing consumers of these beverages at risk of exposure at high levels. When assessing any health risk it is necessary to consider blood methanol levels (BMLs), reference dose (RfD), and maximum tolerable blood methanol level (MTBML). The aim of our study was to estimate daily methanol intake and related BMLs attributable to drinking unrecorded fruit spirits in the European population using a probabilistic Monte Carlo simulation. Data on the concentration of methanol in unrecorded fruit spirits in European Union member states were collected and the health risk posed by consumption of unrecorded fruit spirits was estimated. We found that drinking unrecorded fruit spirits containing methanol at a concentration higher than 8598.1 mg/litre of pure alcohol (p.a.) or 6382.1 mg/litre of p.a. and also at least 10 g ethanol can result in a methanol intake above the RfD by men and women, respectively. We confirmed that consumption of unrecorded fruit spirits containing methanol does not result in BMLs higher than the MTBML. Further studies are required to assess whether there is any health risk from chronic exposure to methanol above the RfD from unrecorded fruit spirits.
Collapse
Affiliation(s)
- Teuta Muhollari
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Sándor Szűcs
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Róza Ádány
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - János Sándor
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Martin McKee
- European Centre on Health of Societies in Transition, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | - László Pál
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
20
|
Dandapat K, Kumar I, Tripathi SM. Ultrahigh sensitive long-period fiber grating-based sensor for detection of adulterators in biofuel. APPLIED OPTICS 2021; 60:7206-7213. [PMID: 34613008 DOI: 10.1364/ao.427495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
An ultra-sensitive sensor based on dual resonance long-period fiber gratings has been fabricated for the detection of methanol and water content in ethanol. The developed sensor is compact in size and light weight and employs a highly accurate spectral interrogation technique for adulterant detection, increasing its applicability compared to conventional surface plasmon resonance based sensors, which are generally expensive, as they require metal film deposition. We demonstrate that the sensor is capable of achieving sensitivity of 802.66 pm/V% methanol and 749.06 pm/V% water in the ethanol solution. The estimated detection limit using the experimental data and spectral resolution of the interrogator is found to be ∼1.3×10-3V% in the 1300-1700 nm wavelength range. We also present the sensor's theoretical study, and good agreement is found between theoretical and experimental results.
Collapse
|
21
|
Atter A, Diaz M, Tano-Debrah K, Kunadu APH, Mayer MJ, Colquhoun IJ, Nielsen DS, Baker D, Narbad A, Amoa-Awua W. Microbial Diversity and Metabolite Profile of Fermenting Millet in the Production of Hausa koko, a Ghanaian Fermented Cereal Porridge. Front Microbiol 2021; 12:681983. [PMID: 34421842 PMCID: PMC8371397 DOI: 10.3389/fmicb.2021.681983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
Hausa koko is an indigenous porridge processed from millet in Ghana. The process involves fermentation stages, giving the characteristic organoleptic properties of the product that is produced largely at a small-scale household level and sold as a street food. Like many other indigenous foods, quality control is problematic and depends on the skills of the processor. In order to improve the quality of the product and standardize the process for large-scale production, we need a deeper understanding of the microbial processes. The aim of this study is to investigate the microbial community involved in the production of this traditional millet porridge and the metabolites produced during processing. High-throughput amplicon sequencing was used to identify the bacterial (16S rRNA V4 hypervariable region) and fungal [Intergenic Transcribed Spacer (ITS)] communities associated with the fermentation, while nuclear magnetic resonance (NMR) was used for metabolite profiling. The bacterial community diversity was reduced during the fermentation processes with an increase and predominance of lactobacilli. Other dominant bacteria in the fermentation included Pediococcus, Weissella, Lactococcus, Streptococcus, Leuconostoc, and Acetobacter. The species Limosilactobacillus fermentum and Ligilactobacillus salivarius accounted for some of the diversities within and between fermentation time points and processors. The fungal community was dominated by the genus Saccharomyces. Other genera such as Pichia, Candida, Kluyveromyces, Nakaseomyces, Torulaspora, and Cyberlindnera were also classified. The species Saccharomyces cerevisiae, Stachybotrys sansevieriae, Malassezia restricta, Cyberlindnera fabianii, and Kluyveromyces marxianus accounted for some of the diversities within some fermentation time points. The species S. sansevieria and M. restricta may have been reported for the first time in cereal fermentation. This is the most diverse microbial community reported in Hausa koko. In this study, we could identify and quantify 33 key different metabolites produced by the interactions of the microbial communities with the millet, composed of organic compounds, sugars, amino acids and intermediary compounds, and other key fermentation compounds. An increase in the concentration of organic acids in parallel with the reduction of sugars occurred during the fermentation process while an initial increase of amino acids followed by a decrease in later fermentation steps was observed.
Collapse
Affiliation(s)
- Amy Atter
- Food Microbiology and Mushroom Research Division, CSIR-Food Research Institute, Accra, Ghana
- Department of Nutrition and Food Science, University of Ghana, Accra, Ghana
- Food and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Maria Diaz
- Food and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Kwaku Tano-Debrah
- Department of Nutrition and Food Science, University of Ghana, Accra, Ghana
| | | | - Melinda J. Mayer
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Ian J. Colquhoun
- Analytical Sciences Unit, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Dennis Sandris Nielsen
- Department of Food Science, Section for Food Microbiology and Fermentation, University of Copenhagen, Copenhagen, Denmark
| | - David Baker
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Arjan Narbad
- Food and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Wisdom Amoa-Awua
- Food Microbiology and Mushroom Research Division, CSIR-Food Research Institute, Accra, Ghana
- Department of Agro-Processing Technology and Food Bio-Sciences, CSIR College of Science and Technology, Accra, Ghana
| |
Collapse
|
22
|
|
23
|
Gasiński A, Kawa-Rygielska J, Mikulski D, Kłosowski G, Głowacki A. Application of white grape pomace in the brewing technology and its impact on the concentration of esters and alcohols, physicochemical parameteres and antioxidative properties of the beer. Food Chem 2021; 367:130646. [PMID: 34364146 DOI: 10.1016/j.foodchem.2021.130646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 11/24/2022]
Abstract
Main by-product of white wine production is white grape pomace (WGP). It has attracted attention of food scientists, because it possesses high concentration of nutrients and bioactive substances. In this study, WGP was added to the beer after primary fermentation in two different concentrations (10% w/w and 20% w/w) and two different pretreatments (pasteurised and unpasteurised) to determine, whether the most abundant waste from white wine industry could be used to modify the volatilome and phenolic content of the beer. The addition of white grape pomace increased the concentration of phenolic compounds in all of the tested beers (from 321.584 mg gallic acid equivalent (GAE)/dm3 to 501.459 mg GAE/dm3). Antioxidant activity of the beers with addition of WGP (tested with the ABTS+•, DPPH• and FRAP assays) also increased. The composition of volatiles in beers changed as WGP was added. The most significant difference was in the concentration of acetaldehyde - beers with WGP added had 4-7 times lower acetaldehyde content (17.425-31.425 mg/dm3) than the control sample (134.050 mg/dm3).
Collapse
Affiliation(s)
- Alan Gasiński
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Science, Chełmońskiego 37 Street, 51-630 Wrocław, Poland.
| | - Joanna Kawa-Rygielska
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Science, Chełmońskiego 37 Street, 51-630 Wrocław, Poland
| | - Dawid Mikulski
- Department of Biotechnology, Kazimierz Wielki University, ul. K. J. Poniatowskiego 12, 85-671 Bydgoszcz, Poland
| | - Grzegorz Kłosowski
- Department of Biotechnology, Kazimierz Wielki University, ul. K. J. Poniatowskiego 12, 85-671 Bydgoszcz, Poland
| | - Adam Głowacki
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Science, Chełmońskiego 37 Street, 51-630 Wrocław, Poland
| |
Collapse
|
24
|
Manning L, Kowalska A. Illicit Alcohol: Public Health Risk of Methanol Poisoning and Policy Mitigation Strategies. Foods 2021; 10:1625. [PMID: 34359495 PMCID: PMC8303512 DOI: 10.3390/foods10071625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022] Open
Abstract
Illicit (unrecorded) alcohol is a critical global public health issue because it is produced without regulatory and market oversight with increased risk of safety, quality and adulteration issues. Undertaking iterative research to draw together academic, contemporary and historic evidence, this paper reviews one specific toxicological issue, methanol, in order to identify the policy mitigation strategies of interest. A typology of illicit alcohol products, including legal products, illegal products and surrogate products, is created. A policy landscape matrix is produced that synthesizes the drivers of illicit alcohol production, distribution, sale and consumption, policy measures and activity related signals in order to inform policy development. The matrix illustrates the interaction between capabilities, motivations and opportunities and factors such as access, culture, community norms and behavior, economic drivers and knowledge and information and gives insight into mitigation strategies against illicit alcohol sale and consumption, which may prove of value for policymakers in various parts of the world.
Collapse
Affiliation(s)
- Louise Manning
- School of Agriculture, Food and the Environment, Royal Agricultural University, Stroud Road, Cirencester GL7 6JS, UK
| | - Aleksandra Kowalska
- Institute of Economics and Finance, Maria Curie-Skłodowska University, pl. Marii Curie-Skłodowskiej 5, 20-031 Lublin, Poland;
| |
Collapse
|
25
|
Methanol Mitigation during Manufacturing of Fruit Spirits with Special Consideration of Novel Coffee Cherry Spirits. Molecules 2021; 26:molecules26092585. [PMID: 33925245 PMCID: PMC8125215 DOI: 10.3390/molecules26092585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
Methanol is a natural ingredient with major occurrence in fruit spirits, such as apple, pear, plum or cherry spirits, but also in spirits made from coffee pulp. The compound is formed during fermentation and the following mash storage by enzymatic hydrolysis of naturally present pectins. Methanol is toxic above certain threshold levels and legal limits have been set in most jurisdictions. Therefore, the methanol content needs to be mitigated and its level must be controlled. This article will review the several factors that influence the methanol content including the pH value of the mash, the addition of various yeast and enzyme preparations, fermentation temperature, mash storage, and most importantly the raw material quality and hygiene. From all these mitigation possibilities, lowering the pH value and the use of cultured yeasts when mashing fruit substances is already common as best practice today. Also a controlled yeast fermentation at acidic pH facilitates not only reduced methanol formation, but ultimately also leads to quality benefits of the distillate. Special care has to be observed in the case of spirits made from coffee by-products which are prone to spoilage with very high methanol contents reported in past studies.
Collapse
|
26
|
Tse TJ, Purdy SK, Shen J, Nelson FB, Mustafa R, Wiens DJ, Reaney MJ. Toxicology of alcohol-based hand rubs formulated with technical-grade ethanol. Toxicol Rep 2021; 8:785-792. [PMID: 33850733 PMCID: PMC8038936 DOI: 10.1016/j.toxrep.2021.03.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/23/2022] Open
Abstract
Alcohol-based hand rubs (ABHRs) formulated with technical-grade ethanol were temporarily permitted in Canada and the U.S beginning April 2020 to meet the current demand due to COVID-19. ABHRs formulated with technical-grade ethanol are low risk for general use. In this review, we discuss the toxicity of common contaminants found in technical-grade ethanol, as well as contaminants that may have been introduced into the products during formulation and packaging of ABHRs. Although primary route of exposure is via dermal absorption and inhalation, there have been reported elevated concerns regarding to ingestion of ABHRs. Overall, the highest risks were associated with methanol (for its toxicity), ethyl acetate (skin defattening), and acetaldehyde (carcinogenic and teratogenic). For these reasons Health Canada and the United States Food and Drug Administration have issued recalls on products containing some of these contaminants. More vigilant policing by regulatory agencies and general product users are required to ensure compliance, safety, and efficacy of these new products, as demand continue to rise during this unprecedented pandemic.
Collapse
Affiliation(s)
- Timothy J. Tse
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Sarah K. Purdy
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Jianheng Shen
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Fina B. Nelson
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Rana Mustafa
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
- Prairie Tide Diversified Inc., 102 Melville Street, Saskatoon, SK S7J 0R1, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Daniel J. Wiens
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Martin J.T. Reaney
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
- Prairie Tide Diversified Inc., 102 Melville Street, Saskatoon, SK S7J 0R1, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| |
Collapse
|
27
|
Gürler M, Martz W, Taştekin B, Najafova T, Dettmeyer RB. Estimates of Non-Alcoholic Food-Derived Ethanol and Methanol Exposure in Human. J Anal Toxicol 2020; 46:bkaa198. [PMID: 33382066 DOI: 10.1093/jat/bkaa198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/02/2020] [Accepted: 12/30/2020] [Indexed: 11/14/2022] Open
Abstract
Food-derived alcohol is almost not in question due to its low concentration. Nevertheless, could it pose a problem for some risk groups and forensic cases? To answer this, we aimed to simultaneously evaluate ethanol and methanol ingredients of a variety of non-alcoholic foods in two different countries and estimate their possible health and forensic consequences. Alcohols in foods were analysed by headspace gas chromatography (HS-GC). Human average acute daily food consumptions and food-derived blood alcohol concentrations (BAC) were determined by using the data of the EFSA Nutrition Survey. Methanol and ethanol ingredients of similar foods varied between the two cities. Most foods produce higher methanol concentrations than the Maximum Allowable Dose Level (23 mg). Especially fruit juices lead to the critical level of ethanol for children (6.0 mg/kg bw). Based on the results, adult daily intake of selected food groups does not bear ethanol that exceeds the legal limit of BAC or the limit not allowed by the religious and does not lead to acute alcohol toxicity. But these low levels of ethanol and methanol consumed via non-alcoholic foods for life can raise the vulnerability to chronic health problems (cancer, liver cirrhosis, Alzheimer's disease, autism, ocular toxicity, alterations in fetal development), and may lead to positive ethanol metabolite results (e. g. Ethyl glucuronide) when a low cut-off level is used. Therefore, studies on the alcohol contents of various natural and processed non-alcoholic foods along with their effects on humans, and new regulations on labeling the food products and conscious food consumption are in particular importance. It would also be important to consider unintentional alcohol consumption via non-alcoholic foods in the evaluation of clinical and forensic cases.
Collapse
Affiliation(s)
- Mukaddes Gürler
- Department of Medical Biochemistry, and Alcohol and Substance Research Center, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Walter Martz
- Institute of Forensic Medicine, FB11 Medicine, Justus-Liebig-University, Giessen, Germany
| | - Burak Taştekin
- Department of Forensic Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Tahmina Najafova
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Reinhard B Dettmeyer
- Institute of Forensic Medicine, FB11 Medicine, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
28
|
Methanol in Grape Derived, Fruit and Honey Spirits: A Critical Review on Source, Quality Control, and Legal Limits. Processes (Basel) 2020. [DOI: 10.3390/pr8121609] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Spirits are alcoholic beverages commonly consumed in European countries. Their raw materials are diverse and include fruits, cereals, honey, sugar cane, or grape pomace. The main aim of this work is to present and discuss the source, quality control, and legal limits of methanol in spirits produced using fruit and honey spirits. The impact of the raw material, alcoholic fermentation, and the distillation process and aging process on the characteristics and quality of the final distilled beverage are discussed. In addition, a critical view of the legal aspects related to the volatile composition of these distillates, the origin and presence of methanol, and the techniques used for quantification are also described. The methanol levels found in the different types of spirits are those expected based on the specific raw materials of each and, almost in all studies, respect the legal limits.
Collapse
|
29
|
Li Q, Li C, Baryshnikov G, Ding Y, Zhao C, Gu T, Sha F, Liang X, Zhu W, Wu X, Ågren H, Sessler JL, Xie Y. Twisted-Planar-Twisted expanded porphyrinoid dimer as a rudimentary reaction-based methanol indicator. Nat Commun 2020; 11:5289. [PMID: 33082348 PMCID: PMC7576827 DOI: 10.1038/s41467-020-19118-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/24/2020] [Indexed: 12/23/2022] Open
Abstract
Directly linked porphyrin dimers have attracted considerable attention because of their intriguing electronic features. Most emphasis has been placed on either dimers with large dihedral angles between the constituent planar monomeric subunits or those with overall planarity, referred to as "Planar-Twisted-Planar" and "Planar-Planar-Planar", respectively. Herein, we report a "Twisted-Planar-Twisted" framework, the hexaphyrin dimer D that exists in a trans configuration. Treatment of D with MeOH affords two isomeric dimers, MD1 and MD2, both of which incorporate a methoxy moiety and exist in cis orientations with respect to the tethering linkage. The methanol-promoted conversion is accompanied by a readily discernible color change from green to brown and is not induced to an appreciable level by other alcohols. Dimer D thus acts as a rudimentary, albeit highly selective, reaction-based methanol indicator. This work provides a promising approach for constructing reaction-based chemosensors using porphyrinoid dimers of nonplanar subunits with biased reactivity.
Collapse
Affiliation(s)
- Qizhao Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Chengjie Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Glib Baryshnikov
- School of Biotechnology, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - Yubin Ding
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Chengxi Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Tingting Gu
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013, Zhenjiang, China
| | - Feng Sha
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Xu Liang
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013, Zhenjiang, China
| | - Weihua Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013, Zhenjiang, China
| | - Xinyan Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Hans Ågren
- School of Biotechnology, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712-1224, USA.
| | - Yongshu Xie
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, 200237, Shanghai, China.
| |
Collapse
|
30
|
Abstract
Ethanol is a chemoattractant for Bacillus subtilis even though it is not metabolized and inhibits growth. B. subtilis likely uses ethanol to find ethanol-fermenting microorganisms to utilize as prey. Two chemoreceptors sense ethanol: HemAT and McpB. HemAT’s myoglobin-like sensing domain directly binds ethanol, but the heme group is not involved. McpB is a transmembrane receptor consisting of an extracellular sensing domain and a cytoplasmic signaling domain. While most attractants bind the extracellular sensing domain, we found that ethanol directly binds between intermonomer helices of the cytoplasmic signaling domain of McpB, using a mechanism akin to those identified in many mammalian ethanol-binding proteins. Our results indicate that the sensory repertoire of chemoreceptors extends beyond the sensing domain and can directly involve the signaling domain. Motile bacteria sense chemical gradients using chemoreceptors, which consist of distinct sensing and signaling domains. The general model is that the sensing domain binds the chemical and the signaling domain induces the tactic response. Here, we investigated the unconventional sensing mechanism for ethanol taxis in Bacillus subtilis. Ethanol and other short-chain alcohols are attractants for B. subtilis. Two chemoreceptors, McpB and HemAT, sense these alcohols. In the case of McpB, the signaling domain directly binds ethanol. We were further able to identify a single amino acid residue, Ala431, on the cytoplasmic signaling domain of McpB that, when mutated to serine, reduces taxis to alcohols. Molecular dynamics simulations suggest that the conversion of Ala431 to serine increases coiled-coil packing within the signaling domain, thereby reducing the ability of ethanol to bind between the helices of the signaling domain. In the case of HemAT, the myoglobin-like sensing domain binds ethanol, likely between the helices encapsulating the heme group. Aside from being sensed by an unconventional mechanism, ethanol also differs from many other chemoattractants because it is not metabolized by B. subtilis and is toxic. We propose that B. subtilis uses ethanol and other short-chain alcohols to locate prey, namely, alcohol-producing microorganisms.
Collapse
|
31
|
Traditional and Artisanal Beverages in Nigeria: Microbial Diversity and Safety Issues. BEVERAGES 2020. [DOI: 10.3390/beverages6030053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A review of up to 90 articles on the microorganisms associated with important artisanal or traditional beverages in Nigeria was carried out. This resulted in an overview of the prevalent microorganisms associated with soymilk, nono (fermented cow milk), tiger nut milk, yoghurt, kunu, zobo, palm wine and the local beers pito and brukutu. The bacteria genera, namely Bacillus, Escherichia, Lactobacillus, Staphylococcus, and Streptococcus, were detected in all nine beverages. On the contrary, this survey resulted in finding that the genera Saccharomyces, Aspergillus, Candida, and Penicillium were the eukaryotic microorganisms isolated in all beverages. The occurrence of fungal isolates, which can be responsible for producing mycotoxins, is a concern and shows the need for post-production tests. Overall, there is a low prevalence of bacteria associated with hygiene, especially the Escherichia genus in alcoholic beverages such as palm wine, pito and burukutu, which may be due both to a low acidity and high ethanol content. However, the prevalence of hygiene indicator genera was higher in nonalcoholic drinks, probably because of incorrect practices during processing. The magnitude of the production and sales of unregulated local beverages in Nigeria has reached the stage where significant regulation and food safety standards are required to safeguard public health. An opportunity exists to monitor and characterize the microbial flora of the artisanal beverages using molecular methods at all stages of production and storage.
Collapse
|
32
|
Latha M, Aruna-Devi R, Bogireddy NKR, Rios SES, Mochan WL, Castrellon-Uribe J, Agarwal V. N-doped oxidized carbon dots for methanol sensing in alcoholic beverages. RSC Adv 2020; 10:22522-22532. [PMID: 35514557 PMCID: PMC9054716 DOI: 10.1039/d0ra02694h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
Methanol (MeOH) adulteration in alcoholic beverages resulting in irreparable health damage demands highly sensitive and cost-effective sensors for its quantification. As carbon dots are emerging as new biocompatible and sustainable light-emitting detectors, this work demonstrates the hydrothermally prepared nitrogen-doped oxidized carbon dots (NOCDs) as on-off fluorescent nanoprobes to detect MeOH traces in water and alcoholic beverages. The presence of 1% of MeOH in distilled water is found to decrease the NOCD fluorescent emission intensity by more than 90% whereas up to 70% ethanol (EtOH) content changes the signal to within 20% of its initial value. HR-TEM analysis reveals the agglomeration of the nanoprobes suspended in MeOH. Due to their selectivity towards MeOH, the fluorescent nanoprobes were successfully tested using a few MeOH spiked branded and unbranded Mexican alcoholic beverages. Varying degrees of signal quenching is observed from the fluorescent nanoprobes dispersed in different pristine beverages with a detection limit of less than 0.11 v%. Herein, we establish a new perspective towards economically viable non-toxic fluorescent probes as a potential alternative for the detection of MeOH in alcoholic beverages. Herein, we establish a new perspective towards economically viable non-toxic fluorescent probes as a potential substitute of expensive alternative for the detection of MeOH in alcoholic beverages.![]()
Collapse
Affiliation(s)
- M. Latha
- Centro de Investigacion en Ingenieria y Ciencias Aplicadas
- UAEM
- Cuernavaca
- Mexico
| | - R. Aruna-Devi
- Centro de Investigacion en Ingenieria y Ciencias Aplicadas
- UAEM
- Cuernavaca
- Mexico
| | - N. K. R. Bogireddy
- Centro de Investigacion en Ingenieria y Ciencias Aplicadas
- UAEM
- Cuernavaca
- Mexico
| | - Sergio E. S. Rios
- Centro de Investigacion en Ingenieria y Ciencias Aplicadas
- UAEM
- Cuernavaca
- Mexico
| | - W. L. Mochan
- Instituto de Ciencias Físicas
- Universidad Nacional Autónoma de México
- Cuernavaca
- Mexico
| | - J. Castrellon-Uribe
- Centro de Investigacion en Ingenieria y Ciencias Aplicadas
- UAEM
- Cuernavaca
- Mexico
| | - V. Agarwal
- Centro de Investigacion en Ingenieria y Ciencias Aplicadas
- UAEM
- Cuernavaca
- Mexico
| |
Collapse
|
33
|
Lao Y, Pham BD, Le HT, Nguyen Van H, Hovda KE. Methanol content in homemade alcohol from a province in North Vietnam. Drug Alcohol Rev 2019; 38:537-542. [PMID: 31095796 DOI: 10.1111/dar.12937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/03/2019] [Accepted: 04/22/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION AND AIMS Methanol poisonings pose a major risk especially where illegal alcohol is consumed. The source of the methanol in the drinks are debated. We aimed to evaluate whether home distillation of alcohol made from rice was capable of producing toxic amounts of methanol. DESIGN AND METHODS Twenty households with homemade alcohol production in Phu Tho province in Vietnam were included in this pilot study. We followed the whole production process and an alcohol sample from each household was analysed for methanol content. RESULTS 17 (85%) of the samples contained detectable levels of methanol. The median concentration was 9 mg/L (range 2-37 mg/L). To develop clinical symptoms of methanol poisoning from the sample with the highest concentration would require drinking more than 424 L. DISCUSSION AND CONCLUSIONS Homemade alcohol from rice did not contain sufficient amount of methanol to cause toxicity in our study. This supports the theory of methanol being added to ethanol post production for economical purposes as the main source of mass poisonings.
Collapse
Affiliation(s)
- Yvonne Lao
- Norwegian National Unit for CBRNE Medicine, Department of Acute Medicine, Oslo University Hospital, Oslo, Norway
| | - Bich Diep Pham
- Institute for Preventive medicine and Public health, Hanoi Medical University, Hanoi, Vietnam
| | - Huong Thi Le
- Institute for Preventive medicine and Public health, Hanoi Medical University, Hanoi, Vietnam
| | - Hien Nguyen Van
- Institute for Preventive medicine and Public health, Hanoi Medical University, Hanoi, Vietnam
| | - Knut Erik Hovda
- Norwegian National Unit for CBRNE Medicine, Department of Acute Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
34
|
Chang CK, Ko WC, Chen YA, Chan YJ, Cheng KC, Lai PS, Hsieh CW. Evaluation of using high-pressure homogenization technology in enhancing the aroma synthesis of sorghum spirits. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Consumption of illegal home-made alcohol in Malawi: A neglected public health threat. Alcohol 2019; 75:99-103. [PMID: 30640075 DOI: 10.1016/j.alcohol.2018.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/08/2018] [Accepted: 08/07/2018] [Indexed: 12/19/2022]
Abstract
This study assessed the ethanol and methanol contents of homemade spirit (Kachasu) sold in Blantyre, Malawi. The likelihood of ethanol and methanol toxicity, respectively, was determined through Monte Carlo simulations using reported Kachasu intake volumes of 21 consumers and the determined methanol and ethanol contents. Ethanol concentration, in samples from 20 different distillers, ranged from 11 to 55% v/v. Methanol was detected in 10 of the 20 samples (0.01-0.28% v/v). The likely mean ethanol intake of drinkers in Blantyre was found to be 214 ± 93 mL per day (90% CI, 68.9-373.4 mL), and mean methanol intake was 0.44 ± 0.37 mL (90% CI, 0.03-1.17 mL). The intake values translated to mean blood ethanol and methanol concentrations of 38 ± 16 mg/mL and 0.05 ± 0.04 mg/mL, respectively. Therefore, the risk of methanol toxicity was considered as negligible. However, there was a high risk of ethanol toxicity. Since production and selling of Kachasu are already illegal in Malawi, enforcement of regulations should be strengthened to reverse the current situation where Kachasu is being distilled and sold openly even within cities. Consumers should also be sensitized about the likely risks associated with consumption of Kachasu in Malawi so that they can make informed choices.
Collapse
|
36
|
Destanoğlu O, ATEŞ İ. DETERMINATION AND EVALUATION OF METHANOL, ETHANOL AND HIGHER ALCOHOLS IN LEGALLY AND ILLEGALLY PRODUCED ALCOHOLIC BEVERAGES. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2019. [DOI: 10.18596/jotcsa.481384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
37
|
Lee SM, Lee JY, Cho YJ, Kim MS, Kim YS. Determination of Volatiles and Carotenoid Degradation Compounds in Red Pepper Fermented by Lactobacillus parabuchneri. J Food Sci 2018; 83:2083-2091. [PMID: 30035301 DOI: 10.1111/1750-3841.14221] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 01/27/2023]
Abstract
Red pepper (Capsicum annuum L.) has been used as one of key ingredients in certain fermented foods due to it providing a unique hot and spicy sensation. In this study, volatile compounds-including degradation compounds of carotenoids-in fermented red pepper inoculated with Lactobacillus parabuchneri were investigated. In total, the contents of certain alcohols, benzene and its derivatives, esters, hydrocarbons, lactones, pyrazines, and terpenes were increased in red pepper inoculated with L. parabuchneri, while those of aldehydes, sulfur-containing compounds, and ketones decreased during the fermentation period. The contents of some degradation compounds of carotenoids (β-ionone, β-cyclocitral, α-ionone, and β-damascenone) increased significantly with the fermentation period. In particular, the content of β-damascenone-which could form by the degradation of neoxanthin-increased gradually during fermentation, but this compound was not detected in 0-day samples. These findings indicate that the contents of certain volatiles-including degradation compounds of carotenoids-in fermented red pepper inoculated with L. parabuchneri can change markedly during the fermentation process. PRACTICAL APPLICATION This study investigated the changes of volatiles and carotenoids degradation compounds in fermented red pepper inoculated with Lactobacillus parabuchneri during fermentation. These results could be used to improve the quality of red pepper-based products and in the development of certain fermented foods, including Gochujang (fermented red pepper paste) and kimchi.
Collapse
Affiliation(s)
- Sang Mi Lee
- Dept. of Food Science and Engineering, Ewha Womans Univ., 11-1 Daehyun-dong, Seodaemun-gu, Seoul, 120-750, Republic of Korea
| | - Joo Young Lee
- Dept. of Food Science and Engineering, Ewha Womans Univ., 11-1 Daehyun-dong, Seodaemun-gu, Seoul, 120-750, Republic of Korea
| | - Youn Jeung Cho
- Sempio Foods Company R&D Center, Cheongju, 363-954, Republic of Korea
| | - Moon Seok Kim
- Sempio Foods Company R&D Center, Cheongju, 363-954, Republic of Korea
| | - Young-Suk Kim
- Dept. of Food Science and Engineering, Ewha Womans Univ., 11-1 Daehyun-dong, Seodaemun-gu, Seoul, 120-750, Republic of Korea
| |
Collapse
|
38
|
Son EY, Lee SM, Kim M, Seo JA, Kim YS. Comparison of volatile and non-volatile metabolites in rice wine fermented by Koji inoculated with Saccharomycopsis fibuligera and Aspergillus oryzae. Food Res Int 2018; 109:596-605. [PMID: 29803489 DOI: 10.1016/j.foodres.2018.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/17/2018] [Accepted: 05/04/2018] [Indexed: 10/17/2022]
Abstract
This study investigated volatile and nonvolatile metabolite profiles of makgeolli (a traditional rice wine in Korea) fermented by koji inoculated with Saccharomycopsis fibuligera and/or Aspergillus oryzae. The enzyme activities in koji were also examined to determine their effects on the formation of metabolites. The contents of all 18 amino acids detected were the highest in makgeolli fermented by S. fibuligera CN2601-09, and increased after combining with A. oryzae CN1102-08, unlike the contents of most fatty acids. On the other hand, major volatile metabolites were fusel alcohols, acetate esters, and ethyl esters. The contents of most fusel alcohols and acetate esters were the highest in makgeolli fermented by S. fibuligera CN2601-09, for which the protease activity was the highest, leading to the largest amounts of amino acods. The makgeolli samples fermented only by koji inoculated with S. fibuligera could be discriminated on PCA plots from the makgeolli samples fermented in combination with A. oryzae. In the case of nonvolatile metabolites, all amino acids and some metabolites such as xylose, 2-methylbenzoic acid, and oxalic acid contributed mainly to the characteristics of makgeolli fermented by koji inoculated with S. fibuligera and A. oryzae. These results showed that the formations of volatile and nonvolatile metabolites in makgeolli can be significantly affected by microbial strains with different enzyme activities in koji. To our knowledge, this study is the first report on the effects of S. fibuligera strains on the formation of volatile and non-volatile metabolites in rice wine, facilitating their use in brewing rice wine.
Collapse
Affiliation(s)
- Eun Yeong Son
- Department of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Sang Mi Lee
- Department of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Minjoo Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Jeong-Ah Seo
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea.
| | - Young-Suk Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
39
|
Barroso J, Díez-Buitrago B, Saa L, Möller M, Briz N, Pavlov V. Specific bioanalytical optical and photoelectrochemical assays for detection of methanol in alcoholic beverages. Biosens Bioelectron 2017; 101:116-122. [PMID: 29055193 DOI: 10.1016/j.bios.2017.10.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/29/2022]
Abstract
Methanol is a poison which is frequently discovered in alcoholic beverages. Innovative methods to detect methanol in alcoholic beverages are being constantly developed. We report for the first time a new strategy for the detection of methanol using fluorescence spectroscopy and photoelectrochemical (PEC) analysis. The analytical system is based on the oxidation of cysteine (CSH) with hydrogen peroxide (H2O2) enzymatically generated by alcohol oxidase (AOx). H2O2 oxidizes capping agent CSH, modulating the growth of CSH-stabilized cadmium sulphide quantum dots (CdS QDs). Disposable screen-printed carbon electrodes (SPCEs) modified with a conductive osmium polymer (Os-PVP) complex were employed to quantify resulting CdS QDs. This polymer facilitates the "wiring" of in situ enzymatically generated CdS QDs, which photocatalyze oxidation of 1-thioglycerol (TG), generating photocurrent as the readout signal. Likewise, we proved that our systems did not suffer from interference by ethanol. The PEC assays showed better sensitivity than conventional methods, covering a wide range of potential applications for methanol quantification.
Collapse
Affiliation(s)
- Javier Barroso
- Biosensing Laboratory. CIC biomaGUNE. Paseo Miramón 182, San Sebastián 20014, Spain
| | - Beatriz Díez-Buitrago
- Biosensing Laboratory. CIC biomaGUNE. Paseo Miramón 182, San Sebastián 20014, Spain; Tecnalia, Paseo Mikeletegi, San Sebastián 20009, Spain
| | - Laura Saa
- Biosensing Laboratory. CIC biomaGUNE. Paseo Miramón 182, San Sebastián 20014, Spain
| | - Marco Möller
- Biosensing Laboratory. CIC biomaGUNE. Paseo Miramón 182, San Sebastián 20014, Spain
| | - Nerea Briz
- Tecnalia, Paseo Mikeletegi, San Sebastián 20009, Spain.
| | - Valeri Pavlov
- Biosensing Laboratory. CIC biomaGUNE. Paseo Miramón 182, San Sebastián 20014, Spain.
| |
Collapse
|