1
|
Czech A, Woś K, Pachciński K, Muszyński S, Świetlicki M, Tomaszewska E. Fermented Rapeseed Meal as a Dietary Intervention to Improve Mineral Utilization and Bone Health in Weaned Piglets. Animals (Basel) 2024; 14:2727. [PMID: 39335316 PMCID: PMC11428520 DOI: 10.3390/ani14182727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
This study examined the effects of incorporating fermented rapeseed meal (FRSM) into the diet of newly weaned piglets on mineral digestibility and bone health. Experimental diets containing varying levels of FRSM (8%, 12%, 15%, and 25%) were introduced to the piglets at 18 days of age, prior to weaning at 28 days. These diets were continued until the piglets were euthanized at 42 days of age. Mineral absorption was assessed using the apparent total tract digestibility (ATTD) method and blood plasma element analysis, while bone mineral content and mechanical properties were evaluated through densitometry and three-point bending tests. The results showed that intermediate levels of FRSM (12-15%) significantly enhanced the digestibility of key minerals, including phosphorus, calcium, magnesium, copper, zinc, and iron. This improvement was linked to increased femoral mineral content and bone stiffness, as well as a higher yield point, likely due to enhanced collagen synthesis. Additionally, there was an increase in bone fracture load and fracture stress, potentially due to changes in the organization of the bone mineral phase, as no changes in bone mid-shaft mineral density or geometry were observed. These findings suggest FRSM as a promising dietary component for improving mineral bioavailability and bone health in piglets.
Collapse
Affiliation(s)
- Anna Czech
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Katarzyna Woś
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Karol Pachciński
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Michał Świetlicki
- Department of Applied Physics, Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
2
|
Miao Z, Sun Y, Feng Z, Wu Q, Yang X, Wang L, Jiang Z, Li Y, Yi H. CAMKK2-AMPK axis endows dietary calcium and phosphorus levels with regulatory effects on lipid metabolism in weaned piglets. J Anim Sci Biotechnol 2024; 15:105. [PMID: 39098913 PMCID: PMC11299266 DOI: 10.1186/s40104-024-01061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/11/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND In the realm of swine production, optimizing body composition and reducing excessive fat accumulation is critical for enhancing both economic efficiency and meat quality. Despite the acknowledged impact of dietary calcium (Ca) and phosphorus (P) on lipid metabolism, the precise mechanisms behind their synergistic effects on fat metabolism remain elusive. RESULTS Research observations have shown a decreasing trend in the percentage of crude fat in carcasses with increased calcium and phosphorus content in feed. Concurrently, serum glucose concentrations significantly decreased, though differences in other lipid metabolism-related indicators were not significant across groups. Under conditions of low calcium and phosphorus, there is a significant suppression in the expression of FABPs, CD36 and PPARγ in the jejunum and ileum, leading to inhibited intestinal lipid absorption. Concurrently, this results in a marked increase in lipid accumulation in the liver. Conversely, higher levels of dietary calcium and phosphorus promoted intestinal lipid absorption and reduced liver lipid accumulation, with these changes being facilitated through the activation of the CAMKK2/AMPK signaling pathway by high-calcium-phosphorus diets. Additionally, the levels of calcium and phosphorus in the diet significantly altered the composition of liver lipids and the gut microbiota, increasing α-diversity and affecting the abundance of specific bacterial families related to lipid metabolism. CONCLUSION The evidence we provide indicates that the levels of calcium and phosphorus in the diet alter body fat content and lipid metabolism by modulating the response of the gut-liver axis to lipids. These effects are closely associated with the activation of the CAMKK2/AMPK signaling pathway.
Collapse
Affiliation(s)
- Zhenyan Miao
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yanjie Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Zhangjian Feng
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwen Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Xuefen Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Li Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Zongyong Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China.
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hongbo Yi
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Floradin P, Pomar C, Létourneau-Montminy MP, Schlegel P. Development of the mineralisation of individual bones and bone regions in replacement gilts according to dietary calcium and phosphorus. Animal 2024; 18:101241. [PMID: 39096597 DOI: 10.1016/j.animal.2024.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 08/05/2024] Open
Abstract
Skeleton bones, distinguished by trabecular and cortical bone tissue content, exhibit varied growth and composition, in response to modified dietary calcium and phosphorus levels. The study investigated how gilts adapt their individual bone and bone region mineralisation kinetics in response to changing intake of Ca and P. A total of 24 gilts were fed according to a two-phase (Depletion (D) 60-95 and Repletion (R) 95-140 kg BW, respectively). During the D phase, gilts were fed either 60% (D60) or 100% (D100) of the estimated P requirement. Subsequently, during the R phase, half of the gilts from each D diet were fed either 100% (R100) or 160% (R160) of the estimated P requirement according to a 2 × 2 factorial arrangement. Bone mineral content (BMC) was assessed in the whole body, individual bones (femur and lumbar spine L2-L4), and bone regions (head, front legs, trunk, pelvis, femur, and hind legs) every 2 weeks using dual-energy X-ray absorptiometry (DXA). At 95 kg BW, gilts fed D60 showed reduced BMC and BMC/BW ratio in all studied sites compared to those fed D100 (P < 0.001). During the depletion phase, the allometric BW-dependent regressions slopes for BMC of D100 gilts remained close to 1 for all sites and did not differ from each other. In contrast, the slopes were lower in D60 gilts (P < 0.05), with an 18% reduction in the whole body, except for the front and hind legs, femur, and pelvis, which exhibited higher reductions (P < 0.05). At 140 kg BW, BMC and BMC/BW ratio of all studied sites were similar in gilts previously fed D60 and D100, but higher in R160 than in R100 gilts (P < 0.05), except for front and hind legs. During the repletion phase, the allometric BW dependent regressions slopes for BMC were lower (P < 0.05) in R100 than in R160 gilts (for whole body -10%; P < 0.01) except for front and hind legs, femur, and pelvis. In conclusion, bone demineralisation and recovery followed similar trends for all measured body sites. However, the lumbar spine region was most sensitive whereas the hind legs were least sensitive. These data suggest that using bone regions such as the head and forelegs that can be collected easily at the slaughterhouse may be a viable alternative to whole body DXA measurement.
Collapse
Affiliation(s)
- P Floradin
- Agroscope, Swine Research Group, 1725 Posieux, Switzerland; Department of Animal Sciences, Laval University, Quebec G1V 1A6, Canada
| | - C Pomar
- Department of Animal Sciences, Laval University, Quebec G1V 1A6, Canada; Agriculture and Agri-Food Canada, Sherbrooke, Quebec J1M 1Z3, Canada
| | | | - P Schlegel
- Agroscope, Swine Research Group, 1725 Posieux, Switzerland.
| |
Collapse
|
4
|
Stein HH. Review: Aspects of digestibility and requirements for minerals and vitamin D by growing pigs and sows. Animal 2024; 18 Suppl 1:101125. [PMID: 38575402 DOI: 10.1016/j.animal.2024.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
Abstract
Some of the biggest changes in mineral nutrition for pigs that have occurred due to recent research were caused by the understanding that there is a loss of endogenous Ca and P into the intestinal tract of pigs. This resulted in development of the concept of formulating diets based on standardized total tract digestibility (STTD) rather than apparent total tract digestibility because the values for STTD of these minerals are additive in mixed diets. There are, however, no recent summaries of research on digestibility and requirements of macro- and microminerals and vitamin D for pigs. Therefore, the objective of this review was to summarize selected results of research conducted over the last few decades to determine the digestibility and requirements of some minerals and vitamin D fed to sows and growing pigs. Benefits of microbial phytase in terms of increasing the digestibility of most minerals have been demonstrated. Negative effects on the growth performance of pigs of over-feeding Ca have also been demonstrated, and frequent analysis of Ca in complete diets and raw materials is, therefore, recommended. There is no evidence that current requirements for vitamin D for weanling or growing-finishing pigs are not accurate, but it is possible that gestating and lactating sows need more vitamin D than currently recommended. Vitamin D analogs and metabolites such as 1(OH)D3 and 25(OH)D3 have beneficial effects when added to diets for sows in combination with vitamin D3. Recent research on requirements for macrominerals other than Ca and P is scarce, but it is possible that Mg in diets containing low levels of soybean meal is marginal. Some of the chelated microminerals have increased digestibility compared with sulfate forms, and hydroxylated forms of Cu and Zn appear to be superior to sulfate or oxide forms. Likewise, dicopper oxide and Cu methionine hydroxy analog have a greater positive effect on the growth performance of growing pigs than copper sulfate. The requirement for Mn may need to be increased whereas there appears to be no benefits of providing Fe above current requirements. In conclusion, diets for pigs should be formulated based on values for STTD of Ca and P and there are negative effects of providing excess Ca in diets. It is possible vitamin D analogs and metabolites offer benefits over vitamin D3 in diets for sows. Likewise, chelated forms of microminerals or chemical forms of minerals other than sulfates or oxides may result in improved pig performance.
Collapse
Affiliation(s)
- H H Stein
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
5
|
Sauvé B, Guay F, Létourneau Montminy MP. Impact of deoxynivalenol in a calcium depletion and repletion nutritional strategy in piglets. J Anim Sci 2024; 102:skae099. [PMID: 38613476 PMCID: PMC11056887 DOI: 10.1093/jas/skae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/12/2024] [Indexed: 04/15/2024] Open
Abstract
This study evaluated the effect of dietary calcium (Ca) levels and deoxynivalenol (DON) contamination on Ca and phosphorus (P) utilization and bone mineralization in piglets. During an initial 13-d depletion phase, 64 piglets (15.7 ± 0.7 kg) received a control (DON-) or DON-contaminated treatment (DON+, 2.7 mg DON/kg) with either a low Ca (Ca-, 0.39%) or normal Ca level (Ca+, 0.65%) with a constant digestible P level (0.40%). A second group of 16 piglets received DON- or DON+ treatments for 9 d for gene expression analysis. During the subsequent 14-d repletion phase, all piglets were fed a Ca+ DON- diet containing 0.65% Ca and 0.35% digestible P without DON. After 5 d of the depletion phase, the absorption of P (DON × Ca; P < 0.05) and Ca was increased by the Ca- (P < 0.01) and DON+ (P < 0.01) diet. After 13 d, feed conversion ratio (P < 0.01) and average daily feed intake (P = 0.06) tended to decrease with the Ca- diet. The bone mineral content (BMC) gain was decreased by Ca, especially with Ca- DON + (DON × Ca, P < 0.05). The P absorption was increased by Ca- DON + (DON × Ca, P < 0.01), although the P retention efficiency was only increased by Ca+ DON + (DON × Ca, P < 0.001). The absorption of Ca was increased by DON+ (P < 0.001), and the Ca efficiency was increased by Ca- DON- (DON × Ca, P < 0.01). After 9 d, the gene expression of intestinal claudin 12 (P < 0.01) and CYP24A1 (P < 0.05), femur cortical RANKL (P < 0.05) and OPG (P = 0.06), and renal calbindin D9K (P < 0.05) and Klotho (P = 0.07) were decreased by DON+. The Ca (P = 0.06) and magnesium (P < 0.01) concentrations were decreased by DON+, and the Ca (P = 0.06) and P digestibility (P < 0.01) were increased. After the repletion phase, Ca- piglets recovered their BMC deficit, but not those receiving DON+ (DON × Ca; P = 0.06). The Ca (P < 0.05) and P (P = 0.06) retention efficiency tended to increase with Ca-. The absorption of Ca and P was increased by Ca- and DON+ (DON × Ca, P < 0.05). The results show that piglets increased their Ca and P utilization efficiency, allowing them to recover the BMC deficit caused by Ca-, but not when the piglets were exposed to DON. Pigs previously receiving Ca-deficient diet with DON still have lower body Ca and P, leading to elevated calcitriol concentrations and enhanced Ca and P intestinal absorption. The fact that DON decreased the expression of genes implicated in Ca intestinal and renal transport and P excretion after 9 d can potentially explain the reduced plasma Ca concentration.
Collapse
Affiliation(s)
- Béatrice Sauvé
- Department of Animal Sciences, Université Laval, Québec (QC), CanadaG1V 0A6
| | - Frédéric Guay
- Department of Animal Sciences, Université Laval, Québec (QC), CanadaG1V 0A6
| | | |
Collapse
|
6
|
David LS, Abdollahi MR, Bedford MR, Ravindran V. Requirement of digestible calcium at different dietary concentrations of digestible phosphorus for broiler chickens 3. Broiler finishers (d 25 to 35 post-hatch). Poult Sci 2023; 102:102492. [PMID: 36738562 PMCID: PMC9932104 DOI: 10.1016/j.psj.2023.102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
An experiment was conducted to determine the digestible calcium (Ca) and digestible phosphorous (P) requirements of 25 to 35-day-old broiler chickens. Fifteen corn-soybean meal-based diets containing 2.0, 2.5, 3.0, 3.5, and 4.0 g/kg standardized ileal digestible (SID) Ca and 2.5, 3.5, and 4.5 g/kg SID P were fed to broilers from d 25 to 35 post-hatch. Each experimental diet was randomly allocated to 6 replicate cages (8 birds per cage). Body weight and feed intake were recorded, and the feed conversion ratio was calculated. On d 35, birds were euthanized to collect the ileal digesta, tibia, and carcass for the determination of ileal Ca, and P digestibility, concentrations of ash, Ca, and P in tibia and the retention of Ca and P in the carcass. Titanium dioxide (5.0 g/kg) was included in all diets as an indigestible indicator for the ileal digestibility measurement. Feed intake and total excreta output were measured during the last 4 d of the experimental period for the measurement of apparent total tract retention of Ca and P. Fixed effects of the experiment were dietary concentrations of SID Ca and SID P and their interaction. If the interaction or main effects were significant (P < 0.05), the parameter estimates for second-order response surface model (RSM) were determined using General Linear Model procedure of SAS. The maximum response was not predicted for most of the parameters (including growth performance and tibia) as the Ca effect was linear which indicated that the highest level of Ca employed in the study may have not been high enough. The requirement of dietary SID Ca for maximization of these parameters, therefore, depends on the dietary SID P concentration when the dietary SID Ca is within 2.0 to 4.0 g/kg. However, based on the factorial analysis, the highest weight gain was observed at 3.5 g/kg SID P and 3.5 g/kg SID Ca concentrations. Tibia ash was higher in birds fed 4.5 g/kg SID P and was unaffected by dietary SID Ca concentrations. However, based on overall findings, a combination of 3.5 g/kg SID P and 3.0-3.5 g/kg SID Ca may be recommended for the optimum tibia ash. The recommended SID Ca requirements (at 3.5 g/kg SID P) for weight gain (3.5 g/kg or 6.4 g/kg total Ca) and tibia ash (3.0-3.5 g/kg or 5.5-6.4 g/kg total Ca) are lower than the current Ca recommendations (7.8 g/kg total Ca equivalent to 4.25 g/kg SID Ca; Ross, 2019) for broiler finishers, suggesting possible excess of Ca in diets formulated based on the current recommendation.
Collapse
Affiliation(s)
- L S David
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand.
| | - M R Abdollahi
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - M R Bedford
- AB Vista, Marlborough, Wiltshire SN8 4AN, UK
| | - V Ravindran
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
7
|
Lee SA, Lagos LV, Merriman LA, Stein HH. Digestibility of calcium in calcium-containing ingredients and requirements for digestible calcium by growing pigs. J Anim Sci 2023; 101:skad328. [PMID: 37758207 PMCID: PMC10629445 DOI: 10.1093/jas/skad328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023] Open
Abstract
The concentration of Ca in plant feed ingredients is low compared with the requirement for pigs and most Ca in diets for pigs is provided by limestone and Ca phosphate. To determine digestibility values for Ca that are additive in mixed diets, the standardized total tract digestibility (STTD) of Ca needs to be calculated, and the STTD of Ca by growing pigs in most Ca-containing ingredients has been reported. Although Ca is an inexpensive nutrient compared with P and amino acids, excess Ca needs to be avoided because excess dietary Ca results in reduced P digestibility, reduced feed intake, and reduced growth performance of pigs. Recent data indicate that most diets produced for pigs in the United States and Europe contain ~0.20 percentage units more Ca than formulated, which likely is because of the use of limestone as a carrier in feed additives or as a flow agent in other ingredients. An excess of this magnitude without a corresponding excess of P will result in a reduction in daily gain of growing pigs by 50 to 100 g. Greater emphasis, therefore, needs to be placed on determining the concentration of Ca in diets for pigs. Microbial phytase increases the digestibility of both Ca and P and it is, therefore, important that the release of both Ca and P by phytase is considered in diet formulation. However, due to the relationship between Ca and P in postabsorptive metabolism, diets need to be formulated based on a ratio between digestible Ca and digestible P. To maximize average daily gain, this ratio needs to be less than 1.40:1.0 in diets for weanling pigs, and the ratio needs to be reduced as the body weight of pigs increases. In contrast, to maximize bone ash, the digestible Ca to digestible P ratio needs to increase from 1.67:1.0 in 11 to 25 kg pigs to 2.33:1.0 in finishing pigs. Gestating sows have reduced STTD and retention of Ca and P compared with growing pigs and formulation of diets for sows based on digestibility values obtained in growing pigs will result in inaccuracies in the provision of Ca and P. There is, however, a lack of data for the digestibility of Ca and P by gestating and lactating sows, and responses to microbial phytase by sows are not fully understood. There is, therefore, a need for research to generate more data in this area. In the present review, a summary of data for the digestibility of Ca in feed ingredients for pigs and estimates for the requirement for digestible Ca by growing and finishing pigs are provided.
Collapse
Affiliation(s)
- Su A Lee
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - L Vanessa Lagos
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Laura A Merriman
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Hans H Stein
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA
| |
Collapse
|
8
|
Williams HR, Chin TE, Tokach MD, Woodworth JC, DeRouchey JM, Goodband RD, Bergstrom JR, Rahe MC, Siepker CL, Sitthicharoenchai P, Radke SL, Ensley SM, Gebhardt JT. The effect of bone and analytical methods on the assessment of bone mineralization response to dietary phosphorus, phytase, and vitamin D in nursery pigs. J Anim Sci 2023; 101:skad353. [PMID: 37837391 PMCID: PMC10635674 DOI: 10.1093/jas/skad353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023] Open
Abstract
A total of 360 pigs (DNA 600 × 241, DNA; initially 11.9 ± 0.56 kg) were used in a 28-d trial to evaluate the effects of different bones and analytical methods on the assessment of bone mineralization response to dietary P, vitamin D, and phytase in nursery pigs. Pens of pigs (six pigs per pen) were randomized to six dietary treatments in a randomized complete block design with 10 pens per treatment. Dietary treatments were designed to create differences in bone mineralization and included: (1) 0.19% standardized total tract digestibility (STTD) P (deficient), (2) 0.33% STTD P (NRC [2012] requirement) using monocalcium phosphate, (3) 0.33% STTD P including 0.14% release from phytase (Ronozyme HiPhos 2700, DSM Nutritional Products, Parsippany, NJ), (4) 0.44% STTD P using monocalcium phosphate, phytase, and no vitamin D, (5) diet 4 with vitamin D (1,653 IU/kg), and (6) diet 5 with an additional 50 µg/kg of 25(OH)D3 (HyD, DSM Nutritional Products, Parsippany, NJ) estimated to provide an additional 2,000 IU/kg of vitamin D3. After 28 d on feed, eight pigs per treatment were euthanized for bone (metacarpal, 2nd rib, 10th rib, and fibula), blood, and urine analysis. The response to treatment for bone density and ash was dependent upon the bone analyzed (treatment × bone interaction for bone density, P = 0.044; non-defatted bone ash, P = 0.060; defatted bone ash, P = 0.068). Thus, the response related to dietary treatment differed depending on which bone (metacarpal, fibula, 2nd rib, or 10th rib) was measured. Pigs fed 0.19% STTD P had decreased (P < 0.05) bone density and ash (non-defatted and defatted) for all bones compared to 0.44% STTD P, with 0.33% STTD P generally intermediate or similar to 0.44% STTD P. Pigs fed 0.44% STTD P with no vitamin D had greater (P < 0.05) non-defatted fibula ash compared to all treatments other than 0.44% STTD P with added 25(OH)D3. Pigs fed diets with 0.44% STTD P had greater (P < 0.05) defatted second rib ash compared to pigs fed 0.19% STTD P or 0.33% STTD P with no phytase. In summary, bone density and ash responses varied depending on bone analyzed. Differences in bone density and ash in response to P and vitamin D were most apparent with fibulas and second ribs. There were apparent differences in the bone ash percentage between defatted and non-defatted bone. However, differences between the treatments remain consistent regardless of the analytic procedure. For histopathology, 10th ribs were more sensitive than 2nd ribs or fibulas for the detection of lesions.
Collapse
Affiliation(s)
- Hadley R Williams
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Taylor E Chin
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | | | - Michael C Rahe
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Christopher L Siepker
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Panchan Sitthicharoenchai
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Scott L Radke
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Steve M Ensley
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0201, USA
| |
Collapse
|
9
|
Vanessa Lagos L, Woodworth JC, Woo Kim S, Stein HH. Short communication: commercial diets for pigs in the United States contain more calcium than formulated. J Anim Sci 2023; 101:skad102. [PMID: 37707374 PMCID: PMC10500971 DOI: 10.1093/jas/skad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/31/2023] [Indexed: 09/15/2023] Open
Abstract
Data from Europe indicate that commercial diets for pigs and poultry contain significantly more Ca than formulated. Therefore, a survey of commercial pig diets used in the United States was conducted to test the hypothesis that the analyzed concentrations of total Ca and total P in commercial pig diets in the United States are not greater than formulated values. A total of 103 diet samples from the commercial swine industry in the United States were collected between 2019 and 2021. Diet samples were provided by feed mills, feed companies, or swine farms located in major swine-producing states in the United States including NC, TN, IA, IN, KS, MN, NE, and IL. Diets were formulated for nursery pigs, growing-finishing pigs, or sows. Each company provided formulated values for total Ca and P in all samples. Samples were sent to the University of Illinois where they were ground and analyzed for Ca and P by inductively coupled plasma-optical emission spectrometry. The formulated values for Ca and P were regressed against analyzed values, and the intercept was considered the estimated under- or over-supply of each mineral. Results indicated that there was an average of 0.19 percentage units more Ca (model; P < 0.001) in the diets than formulated, whereas, for total P, the average oversupply was only 0.06 percentage units (model; P < 0.001). In conclusion, diets used in the U.S. swine industry contain more total Ca than formulated, whereas total P is close to formulated values, which indicates that greater importance is given to P than to Ca in formulation. However, the current data indicate that more attention should be given to the actual concentration of Ca in all Ca-containing feed ingredients to avoid Ca oversupply and its detrimental effect on P digestibility and growth performance of pigs fed diets that do not contain excess P.
Collapse
Affiliation(s)
- L Vanessa Lagos
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, IL, USA
- Schothorst Feed Research, Lelystad, The Netherlands
| | - Jason C Woodworth
- North Central Coordinating Committee on Swine Nutrition (NCCC-42), USA
| | - Sung Woo Kim
- North Central Coordinating Committee on Swine Nutrition (NCCC-42), USA
| | - Hans H Stein
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, IL, USA
- North Central Coordinating Committee on Swine Nutrition (NCCC-42), USA
| |
Collapse
|
10
|
Williams HR, Tokach MD, Woodworth JC, DeRouchey JM, Goodband RD, Gebhardt JT, Vier CM, Lu N, Navales R, Spindler M, Orlando U, Zaragoza L, Betlach AM. Impact of dietary analyzed calcium to phosphorus ratios and standardized total tract digestible phosphorus to net energy ratios on growth performance, bone, and carcass characteristics of pigs. J Anim Sci 2023; 101:skad168. [PMID: 37226633 PMCID: PMC10462398 DOI: 10.1093/jas/skad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023] Open
Abstract
A total of 2,184 pigs (337 × 1,050, PIC; initially 12.4 ± 0.17 kg) were used in a 143-d study to evaluate the effects of feeding varying analyzed calcium to phosphorus ratios (Ca:P) at two standardized total tract digestible (STTD) phosphorus to net energy ratios (STTD P:NE). Pens of pigs (26 pigs per pen) were assigned to 1 of the 6 dietary treatments in a 2 × 3 factorial with main effects of STTD P:NE and Ca:P ratio. Diets consisted of two levels of STTD P:NE; High (1.80, 1.62, 1.43, 1.25, 1.10, and 0.99 g STTD P/Mcal NE from 11 to 22, 22 to 40, 40 to 58, 58 to 81, 81 to 104, and 104 to 129 kg, respectively); or Low (75% of the High levels), and three analyzed Ca:P ratios (0.90:1, 1.30:1, and 1.75:1). There were 14 pens per treatment. Diets were corn-soybean meal-based and contained a constant phytase concentration within each dietary phase with levels decreasing throughout the trial (phases 1 through 3, 500 FTU/kg, assumed release of 0.13% STTD P; phase 4, 400 FTU/kg, assumed release of 0.11% STTD P; phase 5, 290 FTU/kg, assumed release of 0.09% STTD P; and phase 6, 210 FTU/kg, assumed release of 0.07% STTD P). Overall, there was a Ca:P × STTD P:NE interaction (P < 0.05) observed for average daily gain (ADG), feed efficiency (G:F), final body weight (BW), hot carcass weight (HCW), bone mineral density, bone mineral content, and bone-breaking strength. When feeding Low STTD P:NE levels, increasing the analyzed Ca:P ratio decreased (linear, P < 0.001) ADG final BW, HCW, and tended to worsen G:F, bone mineral density, and bone mineral content (linear, P < 0.10). However, when feeding High STTD P:NE levels, increasing the analyzed Ca:P ratio significantly improved bone mineral content and bone mineral density (linear, P < 0.05), and tended to improve ADG and final BW (linear, P < 0.10) and G:F (quadratic P < 0.10). Additionally, increasing the analyzed Ca:P ratio worsened ADG, G:F, and bone mineralization with Low STTD P:NE but had marginal impacts when adequate STTD P:NE was fed.
Collapse
Affiliation(s)
- Hadley R Williams
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | | | - Ning Lu
- Genus PIC, Hendersonville, TN, USA
| | | | | | | | | | | |
Collapse
|
11
|
Zhai H, Bergstrom J, Zhang J, Dong W, Wang Z, Stamatopoulos K, Cowieson AJ. The effects of increasing dietary total Ca/total P ratios on growth performance, Ca and P balance, and bone mineralization in nursery pigs fed diets supplemented with phytase. Transl Anim Sci 2023; 7:txad006. [PMID: 36873609 PMCID: PMC9977215 DOI: 10.1093/tas/txad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
The objective of this study was to investigate the effects of increasing dietary total Ca/total P ratios on growth performance, digestibility of Ca and P, bone mineralization, and concentrations of Ca and P in urine and plasma in nursery pigs. There were six diets in a randomized complete block design, including one positive control and five diets corresponding to five total Ca/total P ratios: 0.55, 0.73, 0.90, 1.07, and 1.24 (analyzed as 0.58, 0.75, 0.93, 1.11, and 1.30). These five diets were deficient in P but supplemented with 1,000 phytase units/kg feed. Each diet was fed to six pens of eight pigs (four barrows and four gilts per pen). All diets contained 3 g/kg TiO2, and fecal samples were collected from each pen on days 5-7 of trial. At the end, one pig per pen was sacrificed to collect the right tibia and urine in the bladder. The results showed that increasing dietary Ca/P ratio to 0.93 increased gain:feed but then gain:feed decreased as the Ca/P ratio was increased to 1.30 (linear and quadratic, P < 0.05). Although average daily gain and final BW were unaffected by changing Ca/P ratio in diet, dry bone weight; weights of bone ash, Ca and P; and bone Ca/P ratio increased linearly (P < 0.001) with increasing dietary Ca/P ratio. The percent bone Ca showed a tendency to increase (P = 0.064). Increasing dietary Ca/P ratio decreased apparent total tract digestibility (ATTD) of Ca and P linearly (P < 0.05) and the concentration of digestible P linearly (P < 0.001), but increased the concentration of digestible Ca (linear and quadratic effects: P < 0.01) and the digestible Ca/P ratio (linear effect: P < 0.001). In plasma, the concentration of Ca increased both linearly (P < 0.01) and quadratically (P = 0.051), whereas the concentration of P tended (linear and quadratic, P < 0.10) to decrease with increasing dietary Ca/P ratio. Similarly, in urine, the concentration of Ca increased both linearly and quadratically (P < 0.05), whereas the concentration of P decreased linearly (P < 0.01). In conclusion, increasing the dietary Ca/P ratio reduced feed efficiency but increased bone mass and the amounts of Ca and P deposited in bone of nursery pigs fed diets supplemented with 1,000 FYT/kg phytase. The increases in bone growth led to a reduction of urinary P excretion that exceeded the decreased digestible P supplied in diet with the widening dietary Ca/P ratios.
Collapse
Affiliation(s)
- Hengxiao Zhai
- DSM (China) Animal Nutrition Research Center, Bazhou 065799, China
| | | | - Jingcheng Zhang
- DSM (China) Animal Nutrition Research Center, Bazhou 065799, China
| | - Wei Dong
- DSM (China) Animal Nutrition Research Center, Bazhou 065799, China
| | - Zhenzhen Wang
- DSM (China) Animal Nutrition Research Center, Bazhou 065799, China
| | | | - Aaron J Cowieson
- DSM Nutritional Products, Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| |
Collapse
|
12
|
Warner AJ, DeRouchey JM, Tokach MD, Woodworth JC, Goodband RD, Gebhardt JT. Effect of added calcium carbonate without and with benzoic acid on weanling pig growth performance, fecal dry matter, and blood Ca and P concentrations. Transl Anim Sci 2023; 7:txad055. [PMID: 37415595 PMCID: PMC10319757 DOI: 10.1093/tas/txad055] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
The objective of these studies was to determine the effects of increasing levels of calcium carbonate (CaCO3) with and without benzoic acid on weanling pig growth performance, fecal dry matter (DM), and blood Ca and P concentrations. In experiment 1, 695 pigs (DNA Line 200 × 400, initially 5.9 ± 0.02 kg) were used in a 28 d study. Pigs were weaned at approximately 21 d of age and randomly assigned to pens and then pens were allotted to one of five dietary treatments. Treatment diets were fed from weaning (day 0) to day 14, with a common diet fed from days 14 to 28. Dietary treatments were formulated to provide 0%, 0.45%, 0.90%, 1.35%, and 1.80% added CaCO3 at the expense of ground corn. From days 0 to 14 (treatment period), average daily gain (ADG) and G:F decreased (linear, P ≤ 0.01) as CaCO3 increased. From days 14 to 28 (common period) and for the overall experiment (days 0 to 28), there was no evidence of differences in growth performance between treatments. For fecal DM, there was a trend (quadratic, P = 0.091) where pigs fed with the highest CaCO3 diets had the greatest fecal DM. Experiment 2 used 360 pigs (DNA Line 200 × 400, initially 6.2 ± 0.03 kg) in a 38 d study. Upon arrival to the nursery facility, pigs were randomly assigned to pens and then pens were allotted to one of six dietary treatments. Dietary treatments were fed in three phases with treatment diets fed from days 0 to 10 and days 10 to 24, and a common phase 3 diet fed from days 24 to 38. Dietary treatments were formulated to provide 0.45%, 0.90%, and 1.35% added CaCO3 with or without 0.5% benzoic acid (VevoVitall, DSM Nutritional Products, Parsippany, NJ) added at the expense of ground corn. There was no evidence (P > 0.05) for any CaCO3 by benzoic acid interactions. For the experimental period (days 0 to 24), there was a tendency for benzoic acid to increase ADG (P = 0.056), average daily feed intake (ADFI; P = 0.071), and gain-to-feed ratio (G:F; linear, P = 0.014) as CaCO3 decreased. During the common period (days 24 to 38), pigs previously fed benzoic acid had increased (P = 0.045) ADG and marginally increased (P = 0.091) ADFI. For the overall study, pigs fed benzoic acid had increased ADG (P = 0.011) and ADFI (P = 0.030), marginally increased G:F (P = 0.096) and final body weight (P = 0.059). Serum Ca decreased (linear, P < 0.001) as CaCO3 decreased in the diet. These data show that decreasing the CaCO3 content in the nursery diet immediately after weaning may improve ADG and G:F. Dietary addition of benzoic acid may also provide beneficial effects on ADG and ADFI, regardless of dietary Ca level.
Collapse
Affiliation(s)
- Alan J Warner
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | | | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0201, USA
| |
Collapse
|
13
|
Lagos LV, Bedford MR, Stein HH. Apparent digestibility of energy and nutrients and efficiency of microbial phytase is influenced by body weight of pigs. J Anim Sci 2022; 100:skac269. [PMID: 35980766 PMCID: PMC9584156 DOI: 10.1093/jas/skac269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
An experiment was conducted to test the hypothesis that regardless of pig body weight (BW), increasing dietary phytase results in increased phytate degradation and improved digestibility of minerals, amino acids (AA), and gross energy (GE). Eighteen pigs were equipped with a T-cannula in the distal ileum and allotted to a triplicated 6 × 3 Youden square design with six diets and three collection periods of 7 d, for a total of nine replicate pigs per diet. This design was repeated four times to simulate four production phases, and there was a 7-d resting period before each collection phase started (BW at start of collections: 29.3, 53.6, 85.1, and 114.4 kg for phases 1, 2, 3, and 4, respectively). Six corn-soybean meal diets were formulated by including 0, 250, 500, 1,000, 2,000, or 4,000 phytase units/kg feed (FTU). The six diets were used throughout the experiment. Samples of feces and ileal digesta were collected in each period. Results indicated that regardless of pig BW, increasing inclusion of phytase increased (quadratic; P < 0.05) apparent ileal digestibility (AID) of crude protein (CP) and most AA, increased apparent total tract digestibility (ATTD) of Ca, P, K, Mg (linear and quadratic; P < 0.05), and Na (linear; P < 0.05), but decreased (linear and quadratic; P < 0.05) AID and ATTD of GE. In all phases, ileal concentrations of inositol phosphate (IP) 6, IP5, IP4, and IP3 decreased (linear and quadratic; P < 0.05), whereas ileal inositol increased (linear and quadratic; P < 0.05) with increasing dietary phytase. However, as pig BW increased, AID of GE, CP, and AA increased (linear, P < 0.05), and the AID of a few AA (Met, Phe, Thr, Trp, Ala, Asp, Gly, and Ser) also increased quadratically (P < 0.05). The ATTD of GE, K, and Mg increased (linear and quadratic; P < 0.05), but ATTD of Ca and Na (linear; P < 0.05) and of P (linear and quadratic; P < 0.05) decreased as pig BW increased. Ileal IP6 and IP3 (linear and quadratic; P < 0.05) and ileal IP5 and IP4 (linear; P < 0.05) increased, whereas ileal inositol decreased (linear; P < 0.05) as pig BW increased. In conclusion, regardless of pig BW, increasing dietary phytase increased phytate degradation and inositol release in the small intestine, and consequently increased mineral and AA digestibility. Older pigs have reduced Ca, P, and Na digestibility, but increased K, Mg, AA, and GE digestibility compared with younger pigs. The efficiency of dietary phytase to degrade phytate appears to decrease as pigs get older.
Collapse
Affiliation(s)
- L Vanessa Lagos
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | - Hans H Stein
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
14
|
Nelson ME, Lee SA, Dersjant-Li Y, Remus J, Stein HH. Microbial phytase reduces basal endogenous loss of calcium in pigs fed diets containing phytate phosphorus at commercial levels. J Anim Sci 2022; 100:skac280. [PMID: 36037529 PMCID: PMC9584146 DOI: 10.1093/jas/skac280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of this experiment was to test the hypothesis that increasing dietary phytase reduces basal endogenous loss of Ca and increases P balance in pigs. Seventy barrows (initial body weight: 17.66 ± 1.69 kg) were allotted to seven Ca-free diets using a randomized complete block design with two blocks and five pigs per diet in each block. All diets were based on corn, potato protein concentrate, and full-fat rice bran. A positive control (PC) diet was formulated to contain P at the requirement for standardized total tract digestible (STTD) P by 11 to 25 kg pigs. Six negative control (NC) diets were formulated by reducing the provision of digestible P by 0.15% and adding 0, 250, 500, 1,000, 2,000, or 4,000 phytase units/kg diet. Pigs were housed individually in metabolism crates that allowed for total, but separate, collection of urine and feces. Daily feed allowance was 3.0 times the maintenance requirement for metabolizable energy and was divided into two equal meals. Diets were fed for 12 d with the first 5 d considered the adaptation period. Urine collections started on day 6 in the morning and ceased on day 10 in the morning. Fecal markers were also included in the morning meals on day 6 and day 10 and feces were collected according to the marker-to-marker procedure. Results indicated that the apparent total tract digestibility of dry matter was not affected by dietary P or phytase levels. The basal endogenous loss of Ca was not affected by dietary P, but exponentially decreased (P = 0.030) as phytase level increased in the diets. Phosphorus retention (g/d) and standardized total tract digestibility of phosphorus were greater (P < 0.05) in pigs fed the PC diet compared with pigs fed the NC diet with no phytase. The STTD of P exponentially (P < 0.001) increased as phytase level increased in the diets, but because of the lack of Ca, retention of P (% of absorbed) linearly decreased (P = 0.006) as phytase increased. In conclusion, basal endogenous loss of Ca decreased as dietary phytase increased demonstrating that endogenous Ca can be bound to phytate in the intestinal tract of pigs. However, STTD of P increased as phytase level in the diets increased.
Collapse
Affiliation(s)
- Megan E Nelson
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Su A Lee
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | - Janet Remus
- Danisco Animal Nutrition & Health – IFF, Wilmington, DE 19803, USA
| | - Hans H Stein
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
15
|
Lee S, Stein H. Apparent ileal digestibility of amino acids by pigs is not affected by increasing dietary calcium from deficient to excess concentrations, but phosphorus digestibility is reduced. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
16
|
Mun J, Lee C, Hosseindoust A, Ha S, Tajudeen H, Kim J. Calcium chloride is a better calcium source rather than calcium carbonate for weanling pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:871-884. [PMID: 36287786 PMCID: PMC9574615 DOI: 10.5187/jast.2022.e53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 11/07/2022]
Abstract
Two experiments were conducted to evaluate the effects of calcium (Ca) levels in weanling pigs (Landrace × Yorkshire × Duroc). In experiment 1, one hundred and eighty weanling pigs were randomly allotted to one of the three treatments. The treatments were low (Ca 0.60% in phase 1 and 0.50% in phase 2), standard (Ca 0.72% in phase 1 and 0.66% in phase 2), and high (Ca 0.84% in phase 1 and 0.72% in phase 2). In experiment 2, hundred and forty weanling pigs were randomly assigned to one of four treatments differing in Ca levels (high and low) and sources (CaCl2 and CaCO3) in a 2 × 2 factorial arrangement. There were 10 pigs per replicate in both experiments, with 6 replicates in each treatment, and they were conducted in two phases (phase 1, days 0-14; phase 2, days 15-28). In experiment 1, body weight (BW), average daily gain (ADG), and growth to feed ratio (G/F) increased as the Ca level decreased (p < 0.05). P digestibility was higher in the low-Ca diet group than in the high-Ca diet group (p <0.05). In experiment 2, the final BW, ADG, and G/F increased in the CaCl2 diet group compared with the case in the CaCO3 diet group (p < 0.05). The digestibility of crude protein (CP), Ca, and P was higher in the CaCl2 diet group than in the CaCO3 diet group (p < 0.05). Cl- levels were higher in the CaCl2 diet group than in the CaCO3 diet group (p < 0.05). The bicarbonate (HCO3 -), base excess (BE), and electrolyte balance (EB) levels were lower in the CaCl2 diet group than in the CaCO3 diet group (p < 0.05). Hematocrit increased as the Ca level decreased (p < 0.05). The HCO3 - interacted with the Ca sources and thus, affected the Ca levels (p < 0.05). Bone ash, Ca, and P were downregulated in the low-Ca diet group compared with the case in the high-Ca diet group. Overall, the low dietary Ca supplementation led to greater growth performance. Furthermore, CaCl2 appeared to be a better Ca source than CaCO3 because of the greater digestibility of CP, Ca, and P, and improved EB.
Collapse
Affiliation(s)
- JunYoung Mun
- Department of Animal Life Science, Kangwon
National University, Chuncheon 24341, Korea
| | - ChangBeon Lee
- Department of Animal Life Science, Kangwon
National University, Chuncheon 24341, Korea
| | | | - SangHun Ha
- Department of Animal Life Science, Kangwon
National University, Chuncheon 24341, Korea
| | - Habeeb Tajudeen
- Department of Animal Life Science, Kangwon
National University, Chuncheon 24341, Korea
| | - JinSoo Kim
- Department of Animal Life Science, Kangwon
National University, Chuncheon 24341, Korea
| |
Collapse
|
17
|
Hu Y, van Baal J, Hendriks WH, Resink JW, Liesegang A, van Krimpen MM, Bikker P. High dietary Ca and microbial phytase reduce expression of Ca transporters while enhancing claudins involved in paracellular Ca absorption in the porcine jejunum and colon. Br J Nutr 2022; 129:1-23. [PMID: 35912696 PMCID: PMC10011584 DOI: 10.1017/s0007114522002239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 11/06/2022]
Abstract
Expression levels of genes (RT-qPCR) related to Ca and P homeostasis (transporters and claudins (CLDN)) were determined in porcine jejunal and colonic mucosa. Forty growing pigs (BW 30.4±1.3 kg) received a low and high Ca content (2.0 and 9.6 g/kg, respectively) diet with or without microbial phytase (500 FTU/kg) for 21 days. Dietary Ca intake enhanced serum Ca and alkaline phosphatase concentration and reduced P, 1,25(OH)2D3, and parathyroid hormone concentration. Jejunal TRPV5 mRNA expression was decreased (32%) with phytase inclusion only, while colonic transient receptor potential vanilloid 5 (TRPV5) mRNA was reduced by dietary Ca (34%) and phytase (44%). Both jejunal and colonic TRPV6 mRNA expression was reduced (30%) with microbial phytase. Calbindin-D9k mRNA expression was lower in colonic but not jejunal mucosa with high dietary Ca (59%) and microbial phytase (37%). None of the mRNAs encoding the Na-P cotransporters (NaPi-IIc, PiT-1, PiT-2) were affected. Jejunal, but not colonic expression of the phosphate transporter XPR1, was slightly downregulated with dietary Ca. Dietary Ca downregulated colonic CLDN-4 (20%) and -10 (40%) expression while CLDN-7 was reduced by phytase inclusion in pigs fed low dietary Ca. Expression of colonic CLDN-12 tended to be increased by phytase. In jejunal mucosa, dietary Ca increased CLDN-2 expression (48%) and decreased CLDN-10 (49%) expression, while phytase slightly upregulated CLDN-12 expression. In conclusion, compared to a Ca deficient phytase-free diet, high dietary Ca and phytase intake in pigs downregulate jejunal and colonic genes related to transcellular Ca absorption and upregulate Ca pore-forming claudins.
Collapse
Affiliation(s)
- Yixin Hu
- Wageningen University and Research, Wageningen Livestock Research, Wageningen, 6700, the Netherlands
- Wageningen University and Research, Animal Nutrition Group, Wageningen, the Netherlands
| | - Jurgen van Baal
- Wageningen University and Research, Animal Nutrition Group, Wageningen, the Netherlands
| | - Wouter H. Hendriks
- Wageningen University and Research, Animal Nutrition Group, Wageningen, the Netherlands
| | | | - Annette Liesegang
- University of Zurich, Institute of Animal Nutrition, Vetsuisse Faculty, Zürich, Switzerland
| | - Marinus M. van Krimpen
- Wageningen University and Research, Wageningen Livestock Research, Wageningen, 6700, the Netherlands
| | - Paul Bikker
- Wageningen University and Research, Wageningen Livestock Research, Wageningen, 6700, the Netherlands
| |
Collapse
|
18
|
Zhai H, Bergstrom JR, Zhang J, Dong W, Wang Z, Stamatopoulos K, Cowieson AJ. Use of fixed calcium to phosphorus ratios in experimental diets may create bias in phytase efficacy responses in swine. Transl Anim Sci 2022; 6:txac124. [PMID: 36172457 PMCID: PMC9512093 DOI: 10.1093/tas/txac124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/29/2022] [Indexed: 11/12/2022] Open
Abstract
The objective of this study was to investigate the effects of two dietary total Ca/P ratios on available P release by phytase, measured using growth performance and bone mineralization with 528 barrows and gilts according to a randomized complete block design. Three were 11 diets in a factorial of 2 by 4 plus 3, including 3 reference diets consisting of 0.25% (control), 0.70%, or 1.15% monocalcium phosphate (MCP) and 8 diets from combining 4 phytase doses (500, 1,000, 2,000, and 3,000 FYT/kg) with 0.25% MCP and 2 dietary Ca/P ratios (1.05 and 1.20). Each diet was fed to 6 pens of 8 pigs. All diets contained 3 g/kg TiO2, and fecal samples were collected from each pen on d 13–15 of trial. At the end of trial, one pig per pen was sacrificed to collect a tibia and urine in the bladder. The results showed that MCP improved growth performance linearly (P < 0.01), whereas both a linear and quadratic response was observed with the addition of phytase. The MCP increased the percent bone ash and weights of bone ash, Ca, and P linearly (P < 0.01). At both Ca/P ratios, increasing supplementation of phytase increased the percent bone ash and weights of bone ash, Ca, and P both linearly and quadratically (P < 0.05). Both MCP and phytase significantly increased digestibility of Ca and P as well as digestible Ca and P in diets and reduced the digestible Ca/P ratio. The dietary Ca/P ratio of 1.20 resulted in poorer feed utilization efficiency, more digestible Ca, greater percent bone ash, Ca, and P and heavier weights of bone Ca and P than the ratio of 1.05 (P < 0.05). The ratio of 1.20 elicited numerically higher available P release values from phytase, with percent bone ash and bone P weight as the response variables, but significantly lower values with gain:feed. The urinary concentration of Ca increased linearly (P < 0.01) with increasing digestible Ca/P ratios whilst urinary concentration of P decreased quadratically (P < 0.01). In conclusion, fixing the same total Ca/total P ratio in diets supplemented with increasing phytase dosing created an imbalance of digestible Ca and P, which could have an adverse effect on bone mineralization and thus compromise the phytase efficacy relative to mineral P.
Collapse
Affiliation(s)
- Hengxiao Zhai
- DSM (China) Animal Nutrition Research Center , Bazhou 065799 , China
| | | | - Jingcheng Zhang
- DSM (China) Animal Nutrition Research Center , Bazhou 065799 , China
| | - Wei Dong
- DSM (China) Animal Nutrition Research Center , Bazhou 065799 , China
| | - Zhenzhen Wang
- DSM (China) Animal Nutrition Research Center , Bazhou 065799 , China
| | | | | |
Collapse
|
19
|
Lagos LV, Bedford MR, Stein HH. Increased microbial phytase increased phytate destruction, plasma inositol, and feed efficiency of weanling pigs, but reduced dietary calcium and phosphorus did not affect gastric pH or fecal score and reduced growth performance and bone ash. J Anim Sci 2021; 99:6423194. [PMID: 34747490 DOI: 10.1093/jas/skab333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/03/2021] [Indexed: 12/28/2022] Open
Abstract
An experiment was conducted to test two hypotheses: 1) reducing dietary Ca and P reduces gastric pH and diarrhea in weanling pigs; 2) negative effects of low Ca and P on pig growth performance may be overcome if phytase is added to the diets. A total of 320 weanling pigs (6.35 ± 0.87 kg) were allotted to eight corn-soybean meal-based diets in a randomized complete block design with five pigs per pen. Two phase 1 (days 1 to 14) control diets containing 100 or 50% of total Ca and digestible P relative to the requirement, and six diets in which 500, 2,000, or 16,000 units of phytase/kg feed (FTU) were added to each control diet were formulated. Phytase was assumed to release 0.16% total Ca and 0.11% digestible P. Common diets were fed in phases 2 (days 15 to 27) and 3 (days 28 to 42). Growth performance data were recorded within each phase. Data for fecal scores and gastrointestinal pH were recorded for phase 1. Colon content (day 14), the right femur (days 14 and 42), and blood samples (days -1, 14, 27, and 42) were collected from one pig per pen. In phase 1, reducing Ca and P did not reduce gastric pH or fecal score, but pigs fed the 50% diets had reduced (P < 0.05) average daily gain (ADG) and average daily feed intake (ADFI) compared with pigs fed the 100% diets. In both 50% and 100% diets, phytase above 500 FTU increased (P < 0.05) gain:feed ratio (G:F) and tended (P < 0.10) to reduce gastric pH of pigs. From days 1 to 42, pigs fed the 50% diets tended (P < 0.10) to have reduced ADG and ADFI compared with pigs fed the 100% diets, but among the 100% diets, pigs tended (P < 0.10) to have a linear increase in G:F as phytase level increased. Pigs fed the 50% diets had reduced (P < 0.05) concentrations of inositol phosphate esters (IP) in the colon and reduced bone ash (days 14 and 42) compared with pigs fed the 100% diets. Phytase did not affect bone ash or most blood metabolites. Concentrations of IP in the colon decreased, whereas plasma inositol increased (d 14; P < 0.05) in pigs fed diets with phytase (≥ 500 FTU). In pigs fed the 100% diets, IP in the colon linearly decreased (P < 0.05), but plasma inositol linearly increased (P < 0.05) with increasing levels of phytase. In conclusion, reducing Ca and P in diets for weanling pigs did not influence gastric pH or fecal score, but compromised growth performance and bone ash. However, regardless of dietary Ca and P, high doses of phytase increased phytate degradation and inositol absorption, which consequently increased G:F of pigs.
Collapse
Affiliation(s)
- L Vanessa Lagos
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | - Hans H Stein
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
20
|
David LS, Abdollahi MR, Bedford MR, Ravindran V. Requirement of digestible calcium at different dietary concentrations of digestible phosphorus for broiler chickens. 1. Broiler starters (d 1 to 10 post-hatch). Poult Sci 2021; 100:101439. [PMID: 34607153 PMCID: PMC8493592 DOI: 10.1016/j.psj.2021.101439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 11/22/2022] Open
Abstract
An experiment was conducted to determine the digestible calcium (Ca) and digestible phosphorous (P) requirements of 10-day-old broiler chickens. Fifteen corn-soybean meal-based diets containing 3.3, 3.9, 4.4, 5.0, and 5.5 g/kg standardized ileal digestible (SID) Ca and 4.0, 5.0, and 6.0 g/kg SID P was fed to broilers from d 1 to 10. Each experimental diet was randomly allocated to 6 replicate cages (12 birds per cage). Body weight and feed intake were recorded at the start and end of the experiment and the feed conversion ratio was calculated. On d 10, birds were euthanized to collect ileal digesta, toes and tibia for the determination of digestible Ca and P, toe ash concentration and the concentrations of ash, Ca, and P in tibia. Titanium dioxide (5 g/kg) was included in all diets as an indigestible indicator for apparent ileal digestibility measurements. Total excreta were collected from d 1 to 10 for the measurement of total tract retention of Ca and P. Fixed effects of the experiment were dietary concentrations of SID Ca and SID P and their interaction. If the interaction or main effects were significant (P < 0.05), the parameter estimates for second-order response surface model were determined using General Linear Model procedure of SAS software. The growth performance, bone mineralization and mineral utilization of broiler starters were found to be optimized at 5 g/kg SID P concentration. Required SID Ca for maximum weight gain and bone mineralization was determined to be 3.32 and 4.36 to 4.78 g/kg, respectively, at 5 g/kg SID P concentration, which correspond to SID Ca to SID P ratios of 0.66 and 0.87 to 0.96, respectively. The estimated SID Ca requirement for weight gain is lower than the current Ca recommendation (9.6 g/kg total Ca or 4.4 g/kg SID Ca) for broiler starters. However, bone mineralization is maximized around the current total Ca recommendation at 8.9 to 9.8 g/kg (4.36-4.78 g/kg SID Ca) and indicates that bone mineralization requires more Ca than growth performance.
Collapse
Affiliation(s)
- L S David
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - M R Abdollahi
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - M R Bedford
- AB Vista, Marlborough, Wiltshire SN8 4AN, UK
| | - V Ravindran
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand.
| |
Collapse
|
21
|
Suliburska J, Harahap IA, Skrypnik K, Bogdański P. The Impact of Multispecies Probiotics on Calcium and Magnesium Status in Healthy Male Rats. Nutrients 2021; 13:nu13103513. [PMID: 34684514 PMCID: PMC8537565 DOI: 10.3390/nu13103513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/21/2021] [Accepted: 10/02/2021] [Indexed: 01/30/2023] Open
Abstract
Although probiotics have been discovered in numerous diseases in the last decade, there is little consensus on the relationship between probiotic properties and minerals balance and their distribution in the organism. This research aimed to evaluate the calcium (Ca) and magnesium (Mg) status in rats on a diet containing multispecies probiotics. Thirty male 10-week-old Wistar rats were selected and divided into three groups (n = 10 rats)—a group fed a standard diet (C), a group fed a low-dose of multispecies probiotics with 2.5 × 109 CFU per day (LD), and a group fed high-dose of multispecies probiotics 1 × 1010 CFU per day (HD) for 6 weeks. The results revealed that HD intake significantly increased the Ca concentration in hair and Mg concentration in femur bones. A significant positive correlation was found between calcium and magnesium levels in hair. The Ca/Mg molar ratio was lower in testicles in the groups with probiotics. In conclusion, multispecies probiotics altered the Ca concentration in hair and Mg level in femur bone, and also changed the molar ratio of these elements in testicles in male rats.
Collapse
Affiliation(s)
- Joanna Suliburska
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624 Poznan, Poland; (I.A.H.); (K.S.)
- Correspondence:
| | - Iskandar Azmy Harahap
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624 Poznan, Poland; (I.A.H.); (K.S.)
| | - Katarzyna Skrypnik
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624 Poznan, Poland; (I.A.H.); (K.S.)
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego St. 82/84, 60-569 Poznan, Poland;
| |
Collapse
|
22
|
Gilani S, Chrystal PV, Barekatain R. Current experimental models, assessment and dietary modulations of intestinal permeability in broiler chickens. ACTA ACUST UNITED AC 2021; 7:801-811. [PMID: 34466684 PMCID: PMC8384772 DOI: 10.1016/j.aninu.2021.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Maintaining and optimising the intestinal barrier (IB) function in poultry has important implications for the health and performance of the birds. As a key aspect of the IB, intestinal permeability (IP) is mainly controlled by complex junctional proteins called tight junction proteins (TJ) that link enterocytes together. The disruption of TJ is associated with increased gut leakage with possible subsequent implications for bacterial translocation, intestinal inflammation, compromised health and performance of the birds. Despite considerable data being available for other species, research on IP in broiler chickens and in general avian species is still an understudied topic. This paper reviews the available literature with a specific focus on IP in broiler chickens with consideration given to practical factors affecting the IP, current assessment methods, markers and nutritional modulation of IP. Several experimental models to induce gut leakage are discussed including pathogens, rye-based diets, feed deprivation and stress-inducing agents such as exogenous glucocorticoids and heat stress. Although various markers including fluorescein isothiocyanate dextran, expression of TJ and bacterial translocation have been widely utilized to study IP, recent studies have identified a number of excreta biomarkers to evaluate intestinal integrity, in particular non-invasive IP. Although the research on various nutrients and feed additives to potentially modulate IP is still at an early stage, the most promising outcomes are anticipated for probiotics, prebiotics, amino acids and those feed ingredients, nutrients and additives with anti-inflammatory properties. Considerable research gaps are identified for the mechanistic mode of action of various nutrients to influence IP under different experimental models. The modulation of IP through various strategies (i.e. nutritional manipulation of diet) may be regarded as a new frontier for disease prevention and improving the health and performance of poultry particularly in an antibiotic-free production system.
Collapse
Affiliation(s)
- Saad Gilani
- Danisco Animal Nutrition (IFF), Oegstgeest, the Netherlands
| | | | - Reza Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA, Australia
- Corresponding author. South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia.
| |
Collapse
|
23
|
Han JC, Wang XN, Wu LH, Lv XL, He L, Qu HX, Shi CX, Zhang L, Wang ZX. Dietary calcium levels regulate calcium transporter gene expression levels in the small intestine of broiler chickens. Br Poult Sci 2021; 63:202-210. [PMID: 34190665 DOI: 10.1080/00071668.2021.1949697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. This study investigated the effect of dietary calcium (Ca) levels on growth performance, bone development and Ca transporter gene expression levels in the small intestine of broiler chickens.2. On the day of hatch, 350, Ross 308 male broilers were randomly allotted to one of five treatments with five replicate pens each and 14 birds per pen. Dietary Ca levels in feed were 5.0, 7.0, 9.0, 11.0 and 13.0 g/kg, in which 9.0 g/kg was in the control diet. All diets contained 4.5 g/kg non-phytate phosphorus (NPP).3. The increase in dietary Ca levels from 5.0 to 13.0 g/kg did not affect the growth performance of 1- to 18-day-old broilers (P > 0.05).4. Increasing the Ca levels linearly increased the ash weight and the contents of ash, Ca and phosphorus (P) in the tibia of broilers at 18 days of age (P < 0.05). The contents of ash, Ca and P in broilers fed with 9.0 g/kg Ca were higher than those in birds fed with 5.0 g/kg Ca (P < 0.05).5. Increasing the Ca levels linearly decreased mRNA expression levels of the Ca-binding protein 28-kDa (CaBP-D28k), plasma membrane Ca-transporting ATPase 1b (PMCAlb), sodium (Na)/Ca exchanger 1 (NCX1), nuclear vitamin D receptor (nVDR) and membrane vitamin D receptor (mVDR) in the duodenum of broilers at 18 d of age (P < 0.05). Similar results were seen in the jejunum and ileum. Broilers fed 9.0-13.0 g/kg Ca in feed had lower mRNA expression levels of CaBP-D28k and PMCAlb in the small intestine than birds fed 5.0 g/kg Ca in feed (P < 0.05).6. The data indicated that low levels of dietary Ca stimulated its transporter gene transcription and promoted absorption, but high levels of Ca inhibited transporter gene expression and prevented excessive absorption in the small intestine of broiler chickens.
Collapse
Affiliation(s)
- J C Han
- Department of Animal Science, College of Life Science, Shangqiu Normal University, Shangqiu, China
| | - X N Wang
- Department of Animal Science, College of Life Science, Shangqiu Normal University, Shangqiu, China.,College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - L H Wu
- Department of Animal Science, College of Life Science, Shangqiu Normal University, Shangqiu, China.,College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - X L Lv
- Department of Animal Science, College of Life Science, Shangqiu Normal University, Shangqiu, China.,College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - L He
- Department of Animal Science, College of Life Science, Shangqiu Normal University, Shangqiu, China.,College of Life Sciences, Henan Normal University, Xinxiang, China
| | - H X Qu
- Department of Animal Science, College of Life Science, Shangqiu Normal University, Shangqiu, China
| | - C X Shi
- Department of Animal Science, College of Life Science, Shangqiu Normal University, Shangqiu, China
| | - L Zhang
- Department of Animal Science, College of Life Science, Shangqiu Normal University, Shangqiu, China
| | - Z X Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
24
|
Lagos LV, Lee SA, Bedford MR, Stein HH. Reduced concentrations of limestone and monocalcium phosphate in diets without or with microbial phytase did not influence gastric pH, fecal score, or growth performance, but reduced bone ash and serum albumin in weanling pigs. Transl Anim Sci 2021; 5:txab115. [PMID: 34377950 PMCID: PMC8345825 DOI: 10.1093/tas/txab115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
An experiment was conducted to test the hypothesis that reducing limestone and monocalcium phosphate in diets for weanling pigs by lowering the concentration of Ca and P or by including microbial phytase in the diet will reduce stomach pH and fecal score and will improve growth performance of pigs. A total of 160 weanling pigs (5.75 ± 1.04 kg) were allotted to four corn-soybean meal-based diets in a completely randomized design with five pigs per pen. Diets for phase 1 (d 1 to 15) were formulated using a 2 × 2 factorial design with 2 concentrations of Ca and P (adequate or deficient levels of total Ca and digestible P) and 2 inclusion levels of phytase (0 or 2,000 units/kg feed). Phytase was assumed to release 0.16% total Ca and 0.11% digestible P. Common diets were fed in phases 2 (d 16 to 21) and 3 (d 22 to 35). Fecal scores were recorded in phase 1 and on d 15, gastric pH was measured and a blood sample and the right femur were collected from one pig per pen. Growth performance data were recorded within each phase. Results indicated that in phase 1, at deficient dietary Ca and P, pigs fed the diet with phytase had greater (P < 0.05) average daily gain (ADG) and gain to feed (G:F) compared with pigs fed the diet without phytase, but in diets with adequate levels of Ca and P, no effect of phytase inclusion was observed (interaction, P < 0.05). Without phytase, pigs fed the diet with deficient Ca and P had reduced (P < 0.05) G:F compared with pigs fed the diet with adequate Ca and P, but if phytase was included, there was no effect of Ca and P on G:F (interaction, P < 0.05). For phases 2 and 3, and from d 1 to 35, no differences among dietary treatments were observed for ADG or G:F. Bone ash was greater (P < 0.05) in pigs fed diets with adequate Ca and P than in pigs fed diets with deficient Ca and P, but no effect of phytase inclusion was observed on bone ash. Concentrations of Ca and P did not affect stomach pH or fecal score, but pigs fed diets with phytase tended (P < 0.10) to have reduced stomach pH and fecal score compared with pigs fed diets without phytase. Pigs fed diets with adequate Ca and P had greater (P < 0.05) albumin in serum than pigs fed the Ca- and P-deficient diets. In conclusion, phytase inclusion in phase 1 diets may reduce diarrhea, but lowering Ca and P does not reduce stomach pH or fecal score and decreases bone ash, although growth performance during the entire weanling period is not affected.
Collapse
Affiliation(s)
- L Vanessa Lagos
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Su A Lee
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | | | - Hans H Stein
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA.,Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
25
|
Tous N, Tarradas J, Francesch M, Font-i-Furnols M, Ader P, Torrallardona D. Effects of Exogenous 6-Phytase (EC 3.1.3.26) Supplementation on Performance, Calcium and Phosphorous Digestibility, and Bone Mineralisation and Density in Weaned Piglets. Animals (Basel) 2021; 11:1787. [PMID: 34203822 PMCID: PMC8232799 DOI: 10.3390/ani11061787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 11/16/2022] Open
Abstract
Phosphorus (P) is an essential mineral for growing piglets, which is poorly accessible in vegetable feedstuffs as it is stored as phytates. Thus, phytase supplementation is essential to increase P availability. Two experiments were conducted to evaluate a novel 6-phytase (EC 3.1.3.26) in weaned pigs fed low-P diets. In each experiment, one hundred and twenty piglets were fed a positive control (PC; adequate in Ca and P), a negative control (NC; limiting in Ca and P), or NC supplemented with 125, 250, or 500 FTU/kg of phytase (NC125, NC250, and NC500, respectively). P content was lower in diets of Experiment 1 than diets of Experiment 2. In Experiment 1, piglets offered PC or phytase diets had higher growth and efficiency compared with NC diets. In Experiment 2, similar effects were obtained, but the effects were less significant. In both experiments, P and Ca ATTD and bone density were significantly increased with phytase supplementation. Moreover, PC and NC500 had higher P concentrations and lower alkaline phosphatase activity in plasma than NC. To conclude, supplementation with the new 6-phytase at doses up to 500 FTU/kg enhanced P utilization, growth performance, and bone density in piglets fed P-limiting diets.
Collapse
Affiliation(s)
- Núria Tous
- Animal Nutrition, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre Mas Bové, Ctra. Reus-El Morell km. 3.8, 43120 Constantí, Spain; (N.T.); (J.T.); (M.F.)
| | - Joan Tarradas
- Animal Nutrition, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre Mas Bové, Ctra. Reus-El Morell km. 3.8, 43120 Constantí, Spain; (N.T.); (J.T.); (M.F.)
| | - Maria Francesch
- Animal Nutrition, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre Mas Bové, Ctra. Reus-El Morell km. 3.8, 43120 Constantí, Spain; (N.T.); (J.T.); (M.F.)
| | - Maria Font-i-Furnols
- Product Quality and Technology, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Finca Camps i Armet, 17121 Monells, Spain;
| | - Peter Ader
- BASF SE, Animal Nutrition, Europe. Chemiestrasse 22, 68623 Lampertheim, Germany;
| | - David Torrallardona
- Animal Nutrition, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre Mas Bové, Ctra. Reus-El Morell km. 3.8, 43120 Constantí, Spain; (N.T.); (J.T.); (M.F.)
| |
Collapse
|
26
|
Lee SA, Lagos LV, Bedford MR, Stein HH. Quantities of ash, Ca, and P in metacarpals, metatarsals, and tibia are better correlated with total body bone ash in growing pigs than ash, Ca, and P in other bones. J Anim Sci 2021; 99:6271124. [PMID: 33959745 DOI: 10.1093/jas/skab149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/04/2021] [Indexed: 01/18/2023] Open
Abstract
The objective was to determine correlations between individual bones and total body bone ash to identify the bone that is most representative of total body bone ash in growing pigs. Twenty growing pigs were allotted to 1 of 2 diets that were formulated to contain 60% or 100% of the requirement for standardized total tract digestible (STTD) P. Both diets had an STTD Ca to STTD P ratio of 1.90:1. Growth performance and carcass weights were determined. Metacarpals, metatarsals, femur, tibia, fibula, 3rd and 4th ribs, and 10th and 11th ribs, and all other bones from the left half of the carcass were collected separately. Each bone was defatted and ashed. Pigs fed the diet containing 100% of required Ca and P had greater (P < 0.05) average daily gain, gain to feed, and ash concentration (%) in total and all individual bones except femur and fibula compared with pigs fed the diet containing 60% of required Ca and P. Calcium and P concentrations in bone ash were not affected by dietary treatments. Weights (g) of bone ash, bone Ca, and bone P were greater (P < 0.05) or tended to be greater (P < 0.10) for pigs fed the diet containing 100% of required Ca and P. Correlation coefficients between the weight of ashed metacarpals, metatarsals, and tibia and the weight of total bone ash were >0.95. In conclusion, metacarpals, metatarsals, and tibia were more representative of total body bone ash compared with other bones.
Collapse
Affiliation(s)
- Su A Lee
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA
| | - L Vanessa Lagos
- Division of Nutritional Sciences, University of Illinois, Urbana 61801, USA
| | | | - Hans H Stein
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA.,Division of Nutritional Sciences, University of Illinois, Urbana 61801, USA
| |
Collapse
|
27
|
Lagos LV, Lee SA, Bedford MR, Stein HH. Formulation of diets for pigs based on a ratio between digestible calcium and digestible phosphorus results in reduced excretion of calcium in urine without affecting retention of calcium and phosphorus compared with formulation based on values for total calcium. J Anim Sci 2021; 99:skab138. [PMID: 33939802 PMCID: PMC8158427 DOI: 10.1093/jas/skab138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/23/2021] [Indexed: 11/14/2022] Open
Abstract
An experiment was conducted to test the hypothesis that formulating diets for pigs based on a ratio between standardized total tract digestible (STTD) Ca and STTD P instead of total Ca and STTD P does not decrease Ca retention, but increases P utilization. Forty barrows (59.4 ± 3.8 kg) were individually housed in metabolism crates and allotted to four corn-soybean meal-based diets in a randomized complete block design with two blocks and five pigs per diet in each block. Diets were formulated using a 2 × 2 factorial design with two diet formulation principles (total Ca or STTD Ca) and two inclusion levels of microbial phytase (0 or 500 units per kg of feed). Phytase was assumed to release 0.11% STTD P and 0.16% total Ca. Diets were formulated based on requirements for total Ca and STTD P or a ratio between STTD Ca and STTD P of 1.25:1. Diets were fed for 11 d and fecal and urine samples were collected from feed provided from day 6 to day 10. Interactions (P < 0.05) between diet formulation principle and phytase level were observed for Ca intake, Ca in feces, Ca absorbed, Ca retained, P digestibility, P absorbed, and P in urine. Phytase increased (P < 0.05) the digestibility of Ca in both total Ca and STTD Ca diets. Without phytase, Ca intake, Ca in feces, and Ca absorbed was greater (P < 0.05) from pigs fed total Ca diets than from pigs fed STTD Ca diets, but P absorbed, P digestibility, and P in urine was greater (P < 0.05) from pigs fed STTD Ca diets than from pigs fed total Ca diets. However, in the presence of phytase, no differences between diet formulation principles were observed in these variables. Regardless of phytase, Ca in urine was lower (P < 0.05) from pigs fed STTD Ca diets than from pigs fed total Ca diets. There were no differences in Ca retention between pigs fed STTD Ca diets and total Ca diets, but pigs fed total Ca diets retained less (P < 0.05) Ca if diets contained phytase. No differences in P retention were observed between diet formulation principles, but pigs fed non-phytase diets retained more (P < 0.05) P than pigs fed diets with phytase. In conclusion, because diets formulated based on STTD Ca contain less Ca than total Ca diets, pigs fed STTD Ca diets excreted less Ca in urine, but retention of Ca was not affected. Formulating non-phytase diets based on STTD Ca instead of total Ca increased P absorption, which confirms the detrimental effect of excess Ca on P digestibility. However, P retention was not improved if pigs were fed STTD Ca diets.
Collapse
Affiliation(s)
- L Vanessa Lagos
- Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Su A Lee
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | | | - Hans H Stein
- Division of Nutritional Sciences, University of Illinois, Urbana 61801
- Department of Animal Sciences, University of Illinois, Urbana 61801
| |
Collapse
|
28
|
Lagos LV, Lee SA, Bedford MR, Stein HH. Formulating diets based on digestible calcium instead of total calcium does not affect growth performance or carcass characteristics, but microbial phytase ameliorates bone resorption caused by low calcium in diets fed to pigs from 11 to 130 kg. J Anim Sci 2021; 99:6149108. [PMID: 33624767 DOI: 10.1093/jas/skab057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/18/2021] [Indexed: 11/14/2022] Open
Abstract
An experiment was conducted to test the hypothesis that the requirement for Ca expressed as a ratio between standardized total tract digestible (STTD) Ca and STTD P obtained in short-term experiments may be applied to pigs fed diets without or with microbial phytase from 11 to 130 kg. In a 5-phase program, 160 pigs (body weight: 11.2 ± 1.8 kg) were randomly allotted to 32 pens and 4 corn-soybean meal-based diets in a 2 × 2 factorial design with 2 diet formulation principles (total Ca or STTD Ca), and 2 phytase inclusion levels (0 or 500 units/kg of feed) assuming phytase released 0.11% STTD P and 0.16% total Ca. The STTD Ca:STTD P ratios were 1.40:1, 1.35:1, 1.25:1, 1.18:1, and 1.10:1 for phases 1 to 5, and STTD P was at the requirement. Weights of pigs and feed left in feeders were recorded at the end of each phase. At the conclusion of phase 1 (day 24), 1 pig per pen was euthanized and a blood sample and the right femur were collected. At the end of phases 2 to 5, a blood sample was collected from the same pig in each pen. At the conclusion of the experiment (day 126), the right femur of 1 pig per pen was collected and carcass characteristics from this pig were measured. No interactions were observed between diet formulation principle and phytase inclusion for growth performance in any phase and no differences among treatments were observed for overall growth performance. Plasma Ca and P and bone ash at the end of phase 1 were also not influenced by dietary treatments. However, on day 126, pigs fed nonphytase diets formulated based on total Ca had greater bone ash than pigs fed STTD Ca-based diets, but if phytase was used, no differences were observed between the 2 formulation principles (interaction P < 0.05). At the end of phases 2 and 3, pigs fed diets without phytase had greater (P < 0.05) plasma P than pigs fed diets with phytase, but no differences were observed at the end of phases 4 and 5. A negative quadratic effect (P < 0.05) of phase (2 to 5) on the concentration of plasma Ca was observed, whereas plasma P increased (quadratic; P < 0.05) from phases 2 to 5. However, there was no interaction or effect of diet formulation principle or phytase inclusion on any carcass characteristics measured. In conclusion, STTD Ca to STTD P ratios can be used in diet formulation for growing-finishing pigs without affecting growth performance or carcass characteristics and phytase inclusion ameliorates bone resorption caused by low dietary Ca and P.
Collapse
Affiliation(s)
- L Vanessa Lagos
- Division of Nutritional Sciences, University of Illinois, Urbana 61801, IL, USA
| | - Su A Lee
- Department of Animal Sciences, University of Illinois, Urbana 61801, IL, USA
| | | | - Hans H Stein
- Division of Nutritional Sciences, University of Illinois, Urbana 61801, IL, USA
- Department of Animal Sciences, University of Illinois, Urbana 61801, IL, USA
| |
Collapse
|
29
|
Becker SL, Gould SA, Petry AL, Kellesvig LM, Patience JF. Adverse effects on growth performance and bone development in nursery pigs fed diets marginally deficient in phosphorus with increasing calcium to available phosphorus ratios. J Anim Sci 2021; 98:5917806. [PMID: 33011771 PMCID: PMC7751169 DOI: 10.1093/jas/skaa325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/30/2020] [Indexed: 11/14/2022] Open
Abstract
The objective of this experiment was to evaluate the growth performance and bone mineral content (BMC) of nursery pigs in response to increasing total calcium (Ca) to available phosphorus (aP) ratios in diets containing phytase (250 FTU/kg; Natuphos E, BASF, Florham Park, NJ). A total of 480 nursery pigs (body weight (BW) = 5.7 ± 0.6 kg) with 10 pigs per pen and 7 pens per treatment (6 pens fed 2.75:1 diet) were allotted to seven treatments consisting of increasing ratios of calcium to available phosphorus (Ca:aP): 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, and 2.75. From day −7 to 0, pigs were fed a common diet. They were then fed the treatment diets during two experimental phases from day 1 to 14 and 15 to 28, respectively. Available P was formulated to 0.33% and 0.27% (approximately 90% of requirement) in dietary phases 1 and 2, respectively. BW, average daily gain (ADG), average daily feed intake (ADFI), and gain-to-feed ratio (G:F) were determined. BMC of the femur was measured on day 28 on one pig per pen using dual x-ray absorptiometry. Data were analyzed as a linear mixed model using PROC MIXED (SAS, 9.3). Orthogonal polynomial contrasts were used to determine the linear and quadratic effects of increasing the Ca:aP. Over the 28-d experimental period, increasing Ca:aP resulted in a linear decrease in ADG (353, 338, 328, 304, 317, 291, and 280 g/d; P < 0.01), ADFI (539, 528, 528, 500, 533, 512, and 489 g/d; P < 0.05), and G:F (0.68, 0.66, 0.64, 0.62, 0.61, 0.59, and 0.58; P < 0.01). Increasing Ca:aP also resulted in decreased BW on days 14 and 28 (P < 0.01). The BMC of the femur decreased with increasing Ca:aP (6.2, 6.3, 5.7, 5.9, 5.5, 5.6, and 5.3 g; P < 0.05). Regression analysis explained the impact of Ca:aP as follows on ADG (ADG [g/d] = 339 − 36x; r2 = 0.81), G:F (G:F = 0.61 – 0.03x; r2 = 0.72), and BMC (BMC [g] = 6.4 – 0.27x; r2 = 0.43), where x is the Ca:aP. In conclusion, all outcomes indicated that any level of calcium above the minimum used in this experiment impaired growth performance and skeletal development. Further research using even lower levels of dietary Ca is warranted.
Collapse
Affiliation(s)
| | - Stacie A Gould
- Department of Animal Science, Iowa State University, Ames, IA.,Iowa Pork Industry Center, Iowa State University, Ames, Iowa
| | - Amy L Petry
- Department of Animal Science, Iowa State University, Ames, IA
| | | | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA.,Iowa Pork Industry Center, Iowa State University, Ames, Iowa
| |
Collapse
|
30
|
Bury de Azevedo dos Santos L, Genova JL, de Oliveira Carvalho PL, Evaristo Rupolo P, Teixeira Carvalho S. Calcitic seaweed (Lithothamnion calcareum) as an organic source of calcium in piglet feeding. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Lithothamnion calcareum is a calcitic seaweed (CS), rich in calcium (Ca) and other minerals, with potential for use in piglet feeding.
Aim
The aims were to compare L. Calcareum (CS) with calcitic limestone (CL) as a source of Ca for use in piglet feeding for effects on total tract digestibility and daily balance of Ca, growth performance and serum variables, and to assess solubility of Ca sources through in vitro testing.
Methods
In Expt 1, an availability assay was performed on 24 crossbred male piglets with initial average body weight (BW) of 15.17 ± 0.70 kg in a randomised complete block design with six replicates of four treatments and one piglet per experimental unit. The starter dietary treatments were: basal diet with minimal amount of Ca (0.068%); diet with low Ca (0.018%); and two diets containing either CL or CS to provide 0.82% total Ca. In Expt 2 (growth performance), 96 crossbred male piglets, with initial average BW of 6.01 ± 0.70 kg were assigned in a randomised complete block design with eight replicates of three treatments (CL, CL + CS, or CS) and four piglets per experimental unit, assessed over pre-starter phases I and II and the starter phase.
Key results
In Expt 1, Ca source did not influence (P > 0.05) apparent and true digestibility or daily balance and concentration of Ca in the piglets. In Expt 2, no significant differences (P > 0.05) existed for growth performance during the pre-starter I and II phases, although a trend (P ≤ 0.1) was evident for final BW, daily weight gain and feed conversion ratio (FCR) during the pre-starter II phase. Piglets fed CL showed a reduction in FCR during the starter phase (P = 0.02) and for the total period (P = 0.007). Final BW and daily weight gain did not differ between CL and CS diets during the starter phase or for the total period. No effect (P > 0.05) was observed of Ca source on Ca and phosphorus concentrations in serum. CS had a solubility 1.9 times higher than CL.
Conclusion
Piglet performance parameters were generally similar for diets including CS and CL as a source of Ca.
Implications
Based on the evaluation criteria used in these experiments, L. calcareum has potential to replace calcitic limestone as an alternative source of Ca.
Collapse
|
31
|
Wegner B, Tenhündfeld J, Vogels J, Beumer M, Kamphues J, Hansmann F, Rieger H, Grosse Beilage E, Hennig-Pauka I. Lameness in fattening pigs - Mycoplasma hyosynoviae, osteochondropathy and reduced dietary phosphorus level as three influencing factors: a case report. Porcine Health Manag 2020; 6:41. [PMID: 33323132 PMCID: PMC7739479 DOI: 10.1186/s40813-020-00184-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple diagnostic procedures, their results and interpretation in a case with severe lameness in fattening pigs are described. It is shown that selected diagnostic steps lead to identification of various risk factors for disease development in the affected herd. One focus of this case report is the prioritization of diagnostic steps to verify the impact of the different conditions, which finally led to the clinical disorder. Assessing a sufficient dietary phosphorus (P) supply and its impact on disease development proved most difficult. The diagnostic approach based on estimated calculation of phosphorus intake is presented in detail. CASE PRESENTATION On a farrow-to-finishing farm, lameness occurred in pigs with 30-70 kg body weight. Necropsy of three diseased pigs revealed claw lesions and alterations at the knee and elbow joints. Histologic findings were characteristic of osteochondrosis. All pigs were positively tested for Mycoplasma hyosynoviae in affected joints. P values in blood did not indicate a P deficiency, while bone ashing in one of three animals resulted in a level indicating an insufficient mineral supply. Analysis of diet composition revealed a low phosphorus content in two diets, which might have led to a marginal P supply in individuals with high average daily gains with respect to development of bone mass and connective tissue prior to presentation of affected animals. Finally, the impact of dietary factors for disease development could not be evidenced in all submitted animals in this case. CONCLUSIONS Mycoplasma (M.) hyosynoviae was identified to be an important etiologic factor for disease. Other, non-infectious factors, such as osteochondrosis and claw lesions might have favored development of lameness. In addition, a relevant marginal P supply for pigs was found in a limited time period in a phase of intense growing, but the potential interaction with infection by M. hyosynoviae is unknown. The presented case of severe lameness in fattening pigs revealed that three different influences presumably act in pathogenesis. Focusing only on one factor and ignoring others might be misleading regarding subsequent decision-making for prevention and therapy. Finally, clinical symptoms disappeared after some changes in diet composition and anti-inflammatory treatment of individual animals.
Collapse
Affiliation(s)
- B Wegner
- Veterinary Practice Duemmerland, Steinfeld, Oldenburg, Germany
| | - J Tenhündfeld
- Vetland® Dr. Tenhündfeld & Kollegen, Vreden, Germany
| | - J Vogels
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - M Beumer
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - J Kamphues
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - F Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - H Rieger
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - E Grosse Beilage
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - I Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
32
|
Upadhaya SD, Kim IH. Importance of micronutrients in bone health of monogastric animals and techniques to improve the bioavailability of micronutrient supplements - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1885-1895. [PMID: 32164057 PMCID: PMC7649403 DOI: 10.5713/ajas.19.0945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/30/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
Vitamins and minerals categorized as micronutrients are the essential components of animal feed for maintaining health and improving immunity. Micronutrients are important bioactive molecules and cofactors of enzymes as well. Besides being cofactors for enzymes, some vitamins such as the fat-soluble vitamins, vitamin A and D have been shown to exhibit hormone-like functions. Although they are required in small amount, they play an influential role in the proper functioning of a number of enzymes which are involved in many metabolic, biochemical and physiological processes that contribute to growth, production and health. Micronutrients can potentially have a positive impact on bone health, preventing bone loss and fractures, decreasing bone resorption and increasing bone formation. Thus, micronutrients must be provided to livestock in optimal concentrations and according to requirements that change during the rapid growth and development of the animal and the production cycle. The supply of nutrients to the animal body not only depends on the amount of the nutrient in a food, but also on its bioavailability. The bioavailability of these micronutrients is affected by several factors. Therefore, several technologies such as nanoparticle, encapsulation, and chelation have been developed to improve the bioavailability of micronutrients associated with bone health. The intention of this review is to provide an updated overview of the importance of micronutrients on bone health and methods applied to improve their bioavailability.
Collapse
Affiliation(s)
- Santi Devi Upadhaya
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
33
|
Wubuli A, Gerlinger C, Reyer H, Oster M, Muráni E, Trakooljul N, Ponsuksili S, Wolf P, Wimmers K. Reduced phosphorus intake throughout gestation and lactation of sows is mitigated by transcriptional adaptations in kidney and intestine. BMC Genomics 2020; 21:626. [PMID: 32917128 PMCID: PMC7488499 DOI: 10.1186/s12864-020-07049-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/03/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The environmental impact of pig farming need to be reduced, with phosphorus (P) being of particular interest. Specified dietary regimens and management systems contribute to meet environmental concerns and reduce economic constrains. However, pregnant and lactating sows represent vulnerable individuals, whose reproductive potential and metabolic health status relies on adequate supply of macro- and micronutrients. The aim of this study was to investigate, whether sows fed with a dietary P content that is below or above current recommendations are capable to maintain mineral homeostasis during the reproduction cycle and which endogenous mechanisms are retrieved therefore in kidney and jejunum. Nulliparous gilts were fed iso-energetic diets with recommended (M), reduced (L), or high (H) amounts of mineral P supplements throughout gestation and lactation periods. Blood metabolites and hormones referring to the P homeostasis were retrieved prior to term (110 days of gestation) and at weaning (28 days of lactation). Transcriptional responses in kidney cortex and jejunal mucosa were analyzed using RNA sequencing. RESULTS The variable dietary P content neither led to an aberration on fertility traits such as total weaned piglets nor to an effect on the weight pattern throughout gestation and lactation. Serum parameters revealed a maintained P homeostasis as reflected by unaltered inorganic P and calcium levels in L and H fed groups. The serum calcitriol levels were increased in lactating L sows. The endocrine responses to the dietary challenge were reflected at the transcriptional level. L diets led to an increase in CYP27B1 expression in the kidney compared to the H group and to an altered gene expression associated with lipid metabolism in the kidney and immune response in the jejunum. CONCLUSIONS Our results suggest that current P requirements for gestating and lactating sows are sufficient and over supplementation of mineral P is not required. Shifts in renal and jejunal expression patterns between L and H groups indicate an affected intermediate metabolism, which long-term relevance needs to be further clarified.
Collapse
Affiliation(s)
- Aisanjiang Wubuli
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Christian Gerlinger
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
- Nutritional Physiology and Animal Nutrition, University of Rostock, Justus-von-Liebig-Weg 6b, 18059, Rostock, Germany
| | - Henry Reyer
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Michael Oster
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Eduard Muráni
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Petra Wolf
- Nutritional Physiology and Animal Nutrition, University of Rostock, Justus-von-Liebig-Weg 6b, 18059, Rostock, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
- Animal Breeding and Genetics, University of Rostock, Justus-von-Liebig-Weg 7, 18059, Rostock, Germany.
| |
Collapse
|
34
|
Lee SA, Lagos LV, Bedford MR, Stein HH. Increasing calcium from deficient to adequate concentration in diets for gestating sows decreases digestibility of phosphorus and reduces serum concentration of a bone resorption biomarker. J Anim Sci 2020; 98:5801101. [PMID: 32150262 DOI: 10.1093/jas/skaa076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/03/2020] [Indexed: 11/13/2022] Open
Abstract
The objective of this experiment was to test the hypothesis that the concentration of Ca in diets fed to late gestating sows affects the apparent total tract digestibility (ATTD) and retention of Ca and P, serum concentrations of Ca and P, hormones, and blood biomarkers for bone formation and resorption. Thirty-six sows (average parity = 2.8) were housed in metabolism crates from day 91 to day 104 of gestation and fed 1 of 4 experimental diets containing 25, 50, 75, or 100% of the requirement for Ca. All diets met the requirement for P. The initial 5 d of each period were the adaptation period, which was followed by 4 d of quantitative collection of feces and urine. At the end of the collection period, a blood sample was collected from all sows. Results indicated that feed intake, weights of dried fecal and urine samples, and the ATTD of DM were not affected by dietary Ca, but ATTD of Ca increased (quadratic, P < 0.05) as Ca in diets increased. Urine Ca output was not affected by dietary Ca, but Ca retention increased (quadratic, P < 0.05) as Ca intake increased. Fecal P output increased (linear, P < 0.001) as dietary Ca increased, which resulted in a linear decrease (P < 0.001) in the ATTD of P. Urine P output also decreased (linear, P < 0.001) as dietary Ca increased, but P retention increased (linear, P < 0.05). Regressing the apparent total tract digestible Ca against dietary Ca intake resulted in a regression line with a slope of 0.33, indicating that true total tract digestibility of Ca in calcium carbonate was 33%. Serum concentrations of Ca and P and estrogen, calcitonin, and parathyroid hormone were not affected by dietary Ca. Serum concentration of carboxyterminal cross-linked telopeptide of type I collagen (CTX-I) decreased (linear, P < 0.05) as dietary Ca increased, which is a result of reduced bone resorption as dietary Ca increased. Serum bone-specific alkaline phosphatase tended to decrease (linear, P < 0.10) as Ca in diets increased, but the concentration of osteocalcin (OC) in serum was not affected by dietary Ca. The ratio between OC and CTX-I tended to increase (P < 0.10) as dietary Ca increased, which indicated that there was more bone formation than resorption in sows as dietary Ca increased. In conclusion, P digestibility in late gestating sows decreased, but retention of P increased, as dietary Ca increased from inadequate to adequate levels and blood biomarkers for bone resorption changed as Ca and P retention increased.
Collapse
Affiliation(s)
- Su A Lee
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | - L Vanessa Lagos
- Division of Nutritional Sciences, University of Illinois, Urbana, IL
| | | | - Hans H Stein
- Department of Animal Sciences, University of Illinois, Urbana, IL.,Division of Nutritional Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
35
|
Abstract
Feeding strategies for growing monogastric livestock (particularly pigs) must focus on maximising animal performance, while attempting to reduce environmental P load. Achieving these goals requires a comprehensive understanding of how different P feeding strategies affect animal responses and an ability to predict P retention. Although along with Ca, P is the most researched macromineral in pig nutrition, knowledge gaps still exist in relation to: (1) the effects of P feed content on feed intake (FI); (2) the impact of P intake on body composition; (3) the distribution of absorbed P to pools within the body. Here, we address these knowledge gaps by gathering empirical evidence on the effects of P-deficient feeds and by developing a predictive, mechanistic model of P utilisation and retention incorporating this evidence. Based on our statistical analyses of published literature data, we found: (1) no change in FI response in pigs given lower P feed contents; (2) the body ash–protein relationship to be dependent upon feed composition, with the isometric relationship only holding for pigs given balanced feeds and (3) the priority to be given towards P retention in soft tissue over P retention in bones. Subsequent results of the mechanistic model of P retention indicated that a potential reduction in P feeding recommendations could be possible without compromising average daily gain; however, such a reduction would impact P deposition in bones. Our study enhances our current knowledge of P utilisation and by extension excretion and could contribute towards developing more accurate P feeding guidelines.
Collapse
|
36
|
Vier CM, Dritz SS, Wu F, Tokach MD, DeRouchey JM, Goodband RD, Gonçalves MAD, Orlando UAD, Woodworth JC. Effects of standardized total tract digestible phosphorus on growth performance of 11- to 23-kg pigs fed diets with or without phytase1,2. J Anim Sci 2019; 97:4032-4040. [PMID: 31374120 PMCID: PMC6776278 DOI: 10.1093/jas/skz255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022] Open
Abstract
Two experiments were conducted to determine the standardized total tract digestible phosphorus (STTD P) requirement for 11- to 23-kg nursery pigs fed diets with or without phytase. A total of 1,080 and 2,140 pigs (PIC 359 × Camborough, Hendersonville, TN; initially 11.4 ± 0.29 and 11.1 ± 0.24 kg) were used in Exp. 1 and Exp. 2, respectively. There were 23 to 27 pigs per pen with 6 and 12 replicate pens per treatment in Exp. 1 and Exp. 2, respectively. After weaning, pigs were fed a common pelleted diet with 0.45% STTD P for 7 d, and a common phase 2 meal diet with 0.40% STTD P for 14 d in Exp. 1 and 18 d in Exp. 2. Pens of pigs were then allotted to dietary treatments in a randomized complete block design with body weight (BW) as the blocking factor. In Exp. 1, dietary treatments consisted of 0.26%, 0.30%, 0.33%, 0.38%, 0.43%, 0.48%, and 0.53% STTD P. Treatments were achieved with the inclusion of monocalcium phosphate at the expense of corn. In Exp. 2, diets contained 1,000 phytase units (FYT; Ronozyme Hiphos 2500, DSM Nutritional Products, Inc., Parsippany, NJ) with assumed release value 0.132% STTD P, and treatments consisted of 0.30%, 0.33%, 0.38%, 0.43%, 0.48%, 0.53%, and 0.58% STTD P. These STTD P concentrations included the expected phytase release of 0.132% STTD P. In both experiments, a similar 1.17:1 Ca:P ratio was maintained across treatments. Statistical models included linear model (LM), quadratic polynomial (QP), broken-line linear (BLL), and broken-line quadratic (BLQ). In Exp. 1, increasing STTD P increased (linear, P < 0.001) ADG, ADFI, G:F, final BW, and grams of STTD P intake per day and per kilogram of gain. There was also a marginal quadratic response for G:F (P < 0.066). In Exp. 2, ADG and G:F increased quadratically (P < 0.05), whereas ADFI increased linearly (P = 0.060) with increasing STTD P. The BLL and QP model provided similar fit to G:F in Exp. 1, estimating the requirement for maximum G:F at 0.34% and 0.42%, respectively. The BLL was the best fitting model for ADG and G:F in Exp. 2, estimating the breakpoint at 0.40% and 0.37% STTD P, respectively. The BLL and BLQ models estimated the breakpoint for ADG as a function of STTD P intake in grams per day at 2.92 and 3.02 g/d, respectively. These data provide empirical evidence that for 11- to 23-kg pigs, the NRC (2012) accurately estimates the STTD P requirement on a g/d basis. As a percentage of the diet, the STTD P requirement for diets without or with 1,000 FYT added phytase ranged from 0.34% to 0.42%.
Collapse
Affiliation(s)
- Carine M Vier
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Steve S Dritz
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Fangzhou Wu
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | | | | | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| |
Collapse
|